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For acompact Riemann surface $R$ of genus greater than one, it is $\mathrm{w}\mathrm{e}\mathrm{U}$ known that
the Teichmiiller modular group (or mapping class group) Mod(R) acts on the finite
dimensional Teichmiiller space $T(R)$ isometrically and properly discontinuously. In
more details, although Mod(7?) has fixed points on $T(R)$ , the isotropy subgroup
Stab(p) at any $p\in R$ is afinite group. However, this is not always the case for
non-compact Riemann surfaces such as $R$ of infinite genus or of the infinite number
of punctures, for which the Teichmiller space $T(R)$ is infinite dimensional. In this
case, the orbit of apoint in $T(R)$ under Mod(7?) may be non-discrete and the
isotropy subgroup Stab(p) may be infinite. In this note, we consider the action
of isotropy subgroups more closely. Teichmiiller spaces are always assumed to be
infinite dimensional hereafter.

Let $R$ be aRiemann surface and Aut(ff) the group of all conformal automor-
phisms of $R$. The isotropy subgroup at the origin of the Teichmiiller space $T(R)$ is
identified with Aut(7?). Let $B(R)$ be the complex Banach space of the holomorphic
quadratic differentials $\varphi$ on $R$ with the hyperbolic $L^{\infty}$ more $||\varphi||$ finite. By the
Bers embedding, the Teichmiiller space $T(R)$ can be identified with abounded con-
tractible domain in $B(R)$ . Then the action of Aut(7?) on $T(R)$ is nothing but the re-
striction of the action on $B(R)$ to $T(R)$ , which is defined by $\varphi\mapsto g^{*}(\varphi):=\varphi(g)\cdot(g’)^{2}$

for $\varphi\in B(R)$ and $g\in \mathrm{A}\mathrm{u}\mathrm{t}(\mathrm{i}\mathrm{t})$ . For asubgroup $G$ of Aut(7?), we set

$B(R/G)=$ { $\varphi\in B(R)|g^{*}(\varphi)=\varphi$ for $\forall g\in G$}.

This is aBanach subspace of $B(R)$ , whose intersection with $T(R)$ corresponds to
the Bers embedding of the Teichmiiller space of the orbifold $R/G$.

For asubset $X$ of $B(R)$ , the limit set of $X$ is defined as $L(X):=\overline{X}-X$ . For a
subgroup $G\subset \mathrm{A}\mathrm{u}\mathrm{t}(7?)$ and apoint $\varphi\in B(R)$ , the orbit of $\varphi$ under $G$ is defined as

$G(\varphi):=\{g^{*}(\varphi)\in B(R)|g\in G\}$.

We say that the orbit $G(\varphi)$ is discrete if it has no accumulation points in $B(R)$ .
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Proposition. Let $G$ be a subgroup of Aut(R) and $\varphi$ a point in $B(R)$ . The orbit
$G(\varphi)$ is discrete if and only if the limit set of the orbit $L(G(\varphi))$ is empty.

Proof. If the orbit $G(\varphi)$ is discrete, then $G(\varphi)$ is closed and hence the limit set
$L(G(\varphi))$ is empty. Conversely, suppose that $G(\varphi)$ is not discrete. Then there exists
asequence $\{g_{n}\}$ of elements in $G$ such that $g_{n}^{*}(\varphi)$ converges to some point in $B(R)$ .
We may assume that this point is $\varphi$ itself by replacing $g_{n}$ with $g_{n+1}^{-1}\mathrm{o}\mathrm{g}\mathrm{n}$ . Moreover,
for each point $g^{*}(\varphi)$ in $G(\varphi)$ , asequence $\{(g\circ g_{n})^{*}(\varphi)\}\subset G(\varphi)$ converges to $g^{*}(\varphi)$ .
If $G(\varphi)$ is closed, then this implies that $G(\varphi)$ is aclosed perfect set. In acomplete
metric space in general, every closed perfect set contains uncountably many points.
However this contradicts the fact that $G(\varphi)$ is countable. Hence $G(\varphi)$ is not closed,
that is, $L(G(\varphi))$ is not empty. $\square$

We announce the following two results in this note. These are prototypes of our
further investigation of the action of the modular groups on infinite dimensional
Teichmiiller spaces.

Theorem 1. If $\varphi$ belongs to the limit set $\mathrm{L}(1)\mathrm{B}(\mathrm{R}/\mathrm{G}\mathrm{n}))$ for some infinite sequence
of subgroups $\{G_{n}\}_{n=1}^{\infty}$ of $G=\mathrm{A}\mathrm{u}\mathrm{t}(R)$ , then the orbit $G(\varphi)$ is not discrete. Such an
orbit always eists whenever $G$ contains an element of infinite order.

Proof. Take asequence $\{\varphi_{n}\}$ such that $\varphi_{n}\in B(R/G_{n})$ and $||\varphi_{n}-\varphi||arrow 0$ . Take an
element $g_{n}\in G_{n}$ for each $n$ and consider asequence $\{g_{n}^{*}(\varphi)\}$ . Since $g_{n}^{*}(\varphi_{n})=\varphi_{n}$ ,
we have

$||g_{n}^{*}(\varphi)-\varphi||=||g_{n}^{*}(\varphi)-g_{n}^{*}(\varphi_{n})||+||\varphi_{n}-\varphi||$

$=2||\varphi_{n}-\varphi||arrow 0$ ,

which means that $g_{n}^{*}(\varphi)$ converge to $\varphi$ . Here $g_{n}^{*}(\varphi)\neq\varphi$ for every $n$ because $\varphi$ does
not belong to any $B(R/G_{n})$ . Hence the orbit $G(\varphi)$ is not discrete.

Next suppose that $G$ contains an element $g$ of infinite order and set $G_{n}=$

$\langle g^{2^{(n-1)}}\rangle$ . Consider the normal covering $R/G_{n+1}arrow R/G_{n}$ for each $n$ . Then
$G_{n}/G_{n\dagger 1}\cong \mathrm{Z}_{2}$ acts on $R/G_{n+1}$ as the covering transformation group and thus
acts on $B(R/G_{n+1})$ with the fixed point set $\mathrm{B}(\mathrm{R}/\mathrm{G}\mathrm{n})$ . Excluding afew excep
tional surfaces which do not appear in our present case, we know that the action of
the Teichmiiller modular group is faithful. (This was first proved in [1]. Another
proof was given in [2].) This implies that the containment $B(R/Gn)\subset B(R/G_{n+1})$

is proper. Therefore we have astrictly increasing sequence of closed subspaces

$B(R/G_{1})$ ; $\mathrm{B}(\mathrm{R}/\mathrm{G}\mathrm{n})\subset\neq\cdots\neq B\subset(R/G_{n})\subset\neq\cdots\subset B(R)$ .

Then $L(\cup B(R/G_{n}))$ is not empty by the Baire category theorem. $\square$
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Theorem 2. Suppose that the orders of the elements of $G=\mathrm{A}\mathrm{u}\mathrm{t}(R)$ is uniformly
bounded. If $\varphi$ does not belong to the limit set $L(\cup B(R/G_{n}))$ for any infnninite se-
quence of subgroups $\{G_{n}\}_{n=1}^{\infty}$ of $G$, then $G(\varphi)$ is discrete.

Proof. Assume that $G(\varphi)$ is not discrete. Then there exists asequence $\{g_{n}\}$ of
elements in $G$ such that $g_{n}^{*}(\varphi)$ converges to $\varphi$ as in the proof of Proposition. Also
we may assume that none of $\{g_{n}\}$ fixes $\varphi$ . For $G_{n}=\langle g_{n}\rangle$ , this means that $\varphi$ does
not belong to $\cup B(R/G_{n})$ . Let $k(n)$ be the order of $g_{n}$ . The average of the orbit of
$\varphi$ under $G_{n}$ is defined as

$P_{G_{n}}( \varphi):=\frac{1}{k(n)}.\cdot\sum_{=0}^{k(n)-1}(g_{n}.\cdot)^{*}(\varphi)$ .

Then $\psi_{n}=P_{G_{n}}(\varphi)$ satisfies $g_{n}^{*}(\psi_{n})=\psi_{n}$ , which means that $\psi_{n}\in B(R/G_{n})$ .
We prove that $\psi_{n}$ converge to $\varphi$ . The difference is estimated by

$|| \psi_{n}-\varphi||\leq\frac{1}{k(n)}.\cdot\sum_{=0}^{k(n)-1}||(g_{n}.\cdot)^{*}(\varphi)-\varphi||$

$\leq.\cdot\frac{\sum_{=0}^{k(n)-1}i}{k(n)}||(g_{n})^{*}(\varphi)-\varphi||$

$= \frac{k(n)-1}{2}||(g_{n})^{*}(\varphi)-\varphi||$ .

Since $(g_{n})^{*}(\varphi)$ converge to $\varphi$ and since $k(n)$ is uniformly bounded, we see that this
converges to 0as $narrow\infty$ . This implies that $\varphi$ belongs to $L(\cup B(R/G_{n}))$ . $\square$

Remark 1. Concrete examples of the point $\varphi$ for which the orbit $G(\varphi)$ is not
discrete was given in [3]. Theorem 1asserts that such points always exist if $G$ has
an element of infinite order.

An infinite group the orders of whose elements are bounded is known to exist
as acounterexample to the Burnside problem in the group theory. Hence, due to
the uniformization theorem, we can see that there exists aRiemann surface $R$ such
that $G=\mathrm{A}\mathrm{u}\mathrm{t}(\mathrm{i}\mathrm{J})$ satisfies the assumption of Theorem 2.

The remaining case where the orders of the elements of $G$ are finite but not
bounded seems more difficult to treat.

Remark 2. In the proof of Theorem 1, we have used the fact that if aholomorphic
normal covering of non-exceptional Riemann surfaces $Rarrow R’$ is not trivial, then
the containment $B(R)\supset B(R’)$ is proper. In [4], this result is extended to any
covering $Rarrow R’$ , not necessarily normal
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