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1. INTRODUCTION

In 1988, Thurston published a list of unsolved problems on Kleinian
groups and hyperbolic 3-manifolds in [19]. One of the problems there asks
if every finitely generated Kleinian group is an algebraic limit of geomet-
rically finite ones. This problem can be regarded as a generalization of
Bers’ density conjecture asserting that every b-group would be a limit of
quasi-Fuchsian groups with the same conformal structure on invariant com-
ponents of the regions of discontinuity. Recently, Bromberg [5], using a
brilliant idea involving a deformation theory of geometrically finite cone
manifolds, solved most part of Bers’ density conjecture. To be more precise,
he proved that every totally degenerate b-group without parabolic elements
such that the corresponding hyperbolic 3-manifold has a simply-degenerate
end whose neighbourhood has unbounded injectivity radii is an algebraic
limit of quasi-Fuchsian groups. The case of bounded injectivity radii had
been already solved by Minsky [9], [11]. In the present paper, we shall prove
Thurston’s conjecture above for freely indecomposable Kleinian groups that
are not isomorphic to surface groups, using the result of Bromberg, but not
his technique.

Theorem 1. Let G be a finitely generated freely indecomposable Kleinian
group without parabolic elements that is not isomorphic to a surface group.
Then, there are a geometrically finite Kleinian group T' such that H3/T
is homeomorphic to H3/G and its quasi-conformal deformations T'; with
isomorphisms ¢; : I' = I'; which converge to an isomorphism ¢ : T — G as
representations into PSLyC.

We have been informed that Brock and Bromberg [4] also proved this
theorem using a similar argument previous to our work. They also dealt
with the case of doubly degenerate group. Thus, the only remaining case
of Thurston’s conjecture for freely indecomposable Kleinian groups is that
of groups with parabolic elements. We are also informed that Brock and
Bromberg are working on such Kleinian groups.

We should also note that our main theorem follows from the main theorem
of [15] if the ending lamination conjecture is solved affirmatively. Minsky
has been working on the conjecture (see [9], [10], [11]), and we expect that
he will achieve the goal in quite near future.

93



KEN’ICHI OHSHIKA

2. PRELIMINARIES

In this paper, all Kleinian groups are assumed to be finitely generated
and torsion free. For a Kleinian group G, we consider the corresponding
complete hyperbolic 3-manifold H3/G. The convex submanifold of H3/G
that is minimal among the convex deformation retracts is called the convex
core of H3/@, and is denoted by C(H?/G). A Kleinian group G is said to
be geometrically finite when the convex core C (H3/G) has finite volume.

By Scott’s theorem [17], for a Kleinian group G, there is a codimension-0
compact submanifold C in H3/G such that the inclusion from C to H3/G is
a homotopy equivalence. The boundary components of C' correspond bijec-
tively to the ends of H3 /G since for each boundary component S of C, there
is a unique end e contained in the component of the complement attached
to S. We say then that the end e faces the boundary component S, and also
that S faces e. An end e of H3/G is said to be geometrically finite when
there is a neighbourhood of e that contains no closed geodesics. If an end
e facing a boundary component S of a compact core is geometrically finite,
then e has a neighbourhood homeomorphic to S x R. The Kleinian group G
is geometrically finite if and only if all the ends of H3/G are geometrically
finite.

A Kleinian group G is said to be freely indecomposable when there is no
non-trivial free-product decomposition of G. Bonahon showed in [2] that
when G is freely indecomposable, every end of H?/G is either geometri-
cally finite or simply degenerate in the following sense. An end e facing
an incompressible boundary component S of a compact core is said to be
simply degenerate when there is a sequence of simple closed curves {7;} on
S such that the closed geodesic -] homotopic to 7; in H3/G tends to e as
i = oo. It was also proved that if e facing S is simply degenerate, then
e has a neighbourhood homeomorphic to S x R. Regarding simple closed
curves [;] as projective laminations on S, we can consider their limit, after
taking a subsequence, in the projective lamination space, which is compact.
Such a limit projective lamination or a measured lamination in that class is
said to represent the ending lamination of e. If two projective laminations
represent the ending lamination of the same end, then their supports must
coincide. Moreover, a measured lamination representing an ending lamina-
tion is known to be maximal and connected. Here we say that a measured
lamination is maximal when it is not a proper sub-lamination of another
measured lamination.

For a Kleinian group G, we denote by AH(G) the set of faithful discrete
representations of G into PSL,C modulo conjugacy. We endow AH(G)
with the quotient topology induced from the space of representations with
the topology of point-wise convergence. We represent an element of AH (G)
as a pair (I, §) where ¢ is a representation representing the element, andI'is
its image in PSLoC, which is a Kleinian group. An element (T, ¢) in AH(G)
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is said to be a quasi-conformal deformation of G when there is a quasi-
conformal homeomorphism f : §2 — S2 such that ¢(g) = fgf 1 forallg €
G. The subspace of AH(G) consisting of all quasi-conformal deformations
of G is denoted by QH(G). It is known, by work of Ahlfors, Bers, Kra,
Maskit and Sullivan, that if G is freely indecomposable, then QH(G) is
homeomorphic to the Teichmiiller space of Q¢/G, where Qg denotes the
region of discontinuity of G on S2,. This correspondence is given by taking
(I',¢) € QH(G) to the conformal structure on Q¢/G induced from the
natural conformal structure on Qr/I" using a homeomorphism from Q¢ /G
to Qr/T" given by a quasi-conformal homeomorphism f as above. We denote
the inverse of this correspondence by gc : T(2¢/G) = QH(G) and call it
the Ahlfors-Bers map.

Let S be a closed surface of genus at least 2. Since S admits a complete
hyperbolic metric, there is a faithful discrete representation of m;(S) into
PSLyR. The image of such a representation is called a Fuchsian group, and
its quasi-conformal deformations, regarded as representations to PSL,C,
are called quasi-Fuchsian groups. A Kleinian group G is quasi-Fuchsian
if and only if Q¢ consists of two components both of which are invariant
by G. For a Fuchsian group H, as was explained in the last paragraph,
the space .of quasi-Fuchsian groups modulo conjugacy is homeomorphic to
T(Qu/H) = T(S) x T(S), where T(S) denotes the Teichmiiller space of
the marked conformal structures with orientation reversing markings. The
Kleinian group G which is the image of a faithful discrete representation of
71(S) into PSLyC is said to be a b-group when Q¢ has only one invariant
component. Furthermore, if ()¢ is connected, then G is said to be a totally
degenerate b-group. We should note that any b-group without parabolic
elements must be totally degenerate. Similarly a Kleinian group G as above
is said to be doubly degenerate if Qg is empty. If such G without parabolic
elements is neither quasi-Fuchsian nor a totally degenerate b-group, then it
must be doubly degenerate.

3. PROOF OF THE MAIN THEOREM

Let C be a compact core of H3 /G. By Bonahon’s theorem, each end
of H3/G is either geometrically finite or simply degenerate. In particular,
H3/G is homeomorphic to the interior of C. By Thurston’s uniformization
theorem for atoroidal compact 3-manifolds with boundary (see Thurston
[20] and Morgan [12]), there is a geometrically finite Kleinian group without
parabolic elements I' such that H3/I' is homeomorphic to H3/G. Let 9 :
I' -+ G be an isomorphism induced by a homeomorphism as above, and
regard (G,v) as an element of AH(I'). We are to define a sequence of
quasi-conformal deformations {(I';, ¢;)}, which will be proved to converge
algebraically to (G, ) eventually.

Let S1,...,Sk be the boundary components of C, which are incompress-
ible since G is freely indecomposable. We number them so that Sy,... , S,
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among them face simply-degenerate ends, whereas the rest face geomet-
rically finite ends. We can assume that x > 1, for otherwise G itself is
geometrically finite. Consider a component S; with j < &, and let eSi be
the end of H3/G facing S;.

Take a subgroup G of G corresponding to the subgroup m(S;) of
m(C) 2 G.

Lemma 2. For j < k, the Kleinian group GSi is a totally degenerate b-
group.

Proof. Since we assumed that G has no parabolic elements, G5i has no par-
abolic elements either. Therefore, G5 is either quasi-Fuchsian or a totally
degenerate b-group or a doubly degenerate group. Since there is a neigh-
bourhood of the end e5i that can be lifted homeomorphically to H3/G"i,
which we denote by &5, the manifold H3 /G5 must have at least one simply-
degenerate end; hence G% cannot be quasi-Fuchsian.

Suppose now, seeking a contradiction, that G is doubly degenerate.
Then H3/GS has a simply-degenerate end & other than &%. Let p5i :
H3/GSi — H3/G be the covering projection associated to the inclusion.
By the covering theorem due to Thurston (see also Canary [6]), there is a
neighbourhood E' of & such that pSi|E’ is proper and a covering map to
its image since H3/G is not a surface bundle over S!. Also, it is impossible
that E' covers a neighbourhood of €53 since the ending laminations for & and
for &5 differ. It follows that H3/G has a simply-degenerate end €’ distinct
from €%, whose neighbourhood is covered by E'. Let S’ be the boundary
component of C facing €. Then €' has a neighbourhood homeomorphic to
S' x I. It follows that pleated surfaces f; : § — H3/G tending to €', which
can be obtained by projecting pleated surfaces in H3/GSi tending to &,
are homotopic to a finite-sheeted covering by S’. Therefore, S’ must be
homotopic to a finite-sheeted covering of S. This is impossible, as can be
seen by elementary 3-dimensional topology, since we assumed that C' is not
homeomorphic to § x I. a

Thus, we have shown that G5 is a totally degenerate b-group. By the
main theorem of Bromberg [5], there is a sequence of quasi-Fuchsian groups
H; with isomorphisms p; : m(S;) = H; converging to the isomorphism
¢: m(S;) = GSi induced by the inclusion of S; to H3/G. Let (n],m’) be a
point in 7(S;) x T(S;) corresponding to (Hj, p;) by the Ahlfors-Bers map.
Here, {ﬁf} converges in the Thurston compactification of the Teichmiiller
space to a projective lamination [);] representing the ending lamination of
eSi, and mJ is constant with respect to i.

Recall that we have a parametrization of the quasi-conformal deforma-
tions of ' by gc : 7T(S1) X -+ x T(Sx) = QH(T) since Qr/I' is home-
omorphic to 8C by a homeomorphism inducing the isomorphism 1 from
I = m((H3UQ)/T) to G =2 m(C). We numbered Sj,...,Sk so that
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Sk+1,--. ,Sk face geometrically finite ends. The conformal structure at in-
finity of H3/G facing them, i.e., that of Q¢ /G, determines points n/ € 7(S;)
for j =k +1,... k. We define a sequence of quasi-conformal deformations

{(Ts, ¢i)} by setting (T, ¢;) = ge(nl, ... nf netl o nk),
Lemma 3. The sequence {(T';,¢;)} converges in AH ('), after passing
through a subsequence if necessary.

Proof. This lemma follows from Theorem 3.5 and Lemma 3.6 of Ohshika
[L3]. We have only to verify that our sequence {(Ts, ¢i)} satisfies the as-
sumption of Theorem 3.5 using Lemma 3.5 there. Let A be an essential
annulus in H3/T' = (H3UQr)/T. Then, each component of A is contained
either in a component of Qr/T" corresponding to Sj with j > k on which the
conformal structure is constant with respect to 7, or in a component corre-
sponding to S; with j < k, hence intersects essentially the limit projective

lamination to which {nf } converges since the lamination is maximal and
connected. By Lemma 3.6 in [13], in the latter case, there exists a sequence
of measured laminations {\;} on 8H3/T with bounded length_;(X;), whose

limit measured lamination intersects A essentially. Therefore, we can apply
Theorem 3.5 in [13] to the quasi-conformal deformations I';, and see that
{(T';, #i)} has a convergent subsequence. O

Let (G',9') € AH(T) be an algebraic limit of (a subsequence) of {(Ts, ¢:)}-

Lemma 4. The limit group G' has no parabolic elements. Let ¥ : H3 /T =
H3/G' be a homotopy equivalence wnducing the isomorphism ¢' : T — G'.
Then, ¥ is homotopic to a homeomorphism from H3/T to H3/@'.

Proof. Let C' be a compact core of H3/G’. We shall prove that ¥’ |C is
homotopic to a homeomorphism to C’. This is sufficient to prove the second
sentence of our lemma, since the inclusions of both C and C’ are homotopic
to homeomorphisms. ‘

Consider a component Sj of 8C. If j < &, then {nl} converges to the
projective lamination [A;] as ¢ — co. By the continuity of the length function
(see Thurston [21], Ohshika [16], and Brock [3]) together with Theorem 2.2
in Thurston [21], whose proof can be found in [23], as was shown in the
proof of Theorem 8 in Ohshika [15], there is a simply-degenerate end of
H3/G' whose ending lamination is represented by a measured lamination
homotopic to ¥'();), and there is a boundary component of C' homotopic
to \Il'(Sj).

On the other hand, by Lemma 3 in Abikoff [1], for each S; with j > &,
there is a geometrically finite end of H3/G' facing a boundary component of
C’ which is homotopic to ¥'(S;). Combining these, we can apply Corollary
13.7 in Hempel [8] (originally due to Waldhausen [24]) to conclude that ¥’|C
is homotopic to a homeomorphism to C’. Moreover, since each boundary
component of C’ faces a unique end as above, there is no room for a simple
closed curve representing a parabolic element of G’, which must reside on
the boundary of C'. a
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We shall next show that the limit is a quasi-conformal deformation of G.

Proposition 5. The limit group (G',v') is a quasi-conformal deformation
of G.

To prove this proposition, we consider first subgroups corresponding to
the boundary components of 0C. Let I'Si be a subgroup of I corresponding
to G"’“J by ¥ : I' = G. Then, I'; contains a quasi-conformal deformation
(I‘ d)s’ ) of I'Si converging as i — oo to a subgroup of (G’ ,1,[)' ), which we
denote by (G'5 ' ¥5)-

Lemma 6. For j < &, the limit group G' Siisa quasi-conformal deforma-
tion of G5i.

Proof. There is a pair (n},r}) € T(S;)x7T(S;) such that gc(n},r}) = (I‘ qSSj )

where we regard the first factor as corresponding to the component of
Qps; /T that is a homeomorphic lift of a component of Qr/I'. Since n;
‘here is equal to n, which we defined before, {n;} converges to the pro-
jective lamination [)\ ;] in the Thurston compactification of the Teichmiiller
space 7 (S;). We shall show that {r{} stays in a compact set of 7(S;). Sup-
pose not. Then, there is a projective lamination [¢;] to which a subsequence
of {r}} converges in the Thurston compactification. Since A; represents an
ending lamination, it is maximal and connected on SJ Hence, by the main

theorem of Ohshika [16], if i(u;, Aj) = 0, then {(F } has no convergent
subsequences. Therefore, we have i(pj, Aj) > 0.

On the other hand, if p; is either not maximal or disconnected, each
boundary component of the minimal hyperbolic subsurface of S; containing
a component of y; represents a parabolic element of G5, (This fact is
originally due to Thurston [22] See also Lemma 4.1 in [13].) Since G'Si,
which is a subgroup of G’, has no parabolic elements, this is 1mpossxble
Hence p; must also be maximal and connected.

By Theorem 2.2 in Thurston [21] (and a remark there), there is a se-
quence of measured laminations V] converging to pu; as k — oo such that
length,: (V’) —~ 0asi — oo. It follows from Sullivan’s theorem proved by
Epstem—Marden [7] or Proposition 2.1 in [14] that the length of the reahza-
tion of V] in H3/T; by a pleated surface inducing the isomorphism ¢; 5i also
goes to 0 as 1 — 0o. By the continuity of the length function, we see that
p; represents an ending lamination of H3/G’S . Since i(Aj, uj) > 0, the
end with ending lamination represented by pu; is distinct from the one with
ending lamination represented by A;. Therefore, H3/GS has two simply-
degenerate ends. As before, using the covering theorem, we get a contradic-
tion. Thus we have proved that {r}} stays in a compact set of 7(Sj).
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By taking a subsequence, we can assume that {r]} converges to a point
Too € T(Sj) as i — oco. Therefore gc(n}, rl) is a K;- qua31—conformal deforma-

tion of g¢(n!,m’) with bounded K;. (Recall that n} = = nJ.) This implies that
its limit (G’ S , ¢J) is a quasi-conformal deformation of (G’SJ Y|T5). O

Proof of Proposition 5. The lemma above implies that a neighbourhood of
the end of H3/G' facing ¥'(S;) is quasi-isometric to a neighbourhood of
the end €5 by a homeomorphism in the right homotopy class. Since this
holds for each S; facing a simply-degenerate end, this means that there is
a quasi-isometry in the right homotopy class from H3/G to H3/G'; hence
(G',9') is a quasi-conformal deformation of (G, ). O

Let f : §2, — S2 be a quasi-conformal homeomorphism such that
fYf~! = ¢'. Since the conformal structures of Q¢'/G' corresponding to
the geometrically finite ends are the same as those on g/G by our defini-
tion of I';, this map f is taken to be conformal on Q. By Sullivan’s rigidity
theorem ([18]), this implies that f is in fact a conformal homeomorphism;
hence (G, 1) = (G',4'). Thus, we have proved that (G, ) is also a limit of
geometrically finite groups (I';, ¢;), and completed the proof of Theorem 1.
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