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Notes on discrete subgroups of PU(1,2;C)
with Heisenberg translations IV

Shigeyasu KAMIYA* and John R. PARKER

1. Introduction

In the study of discrete groups it is important to find out conditions for a group to be
discrete. We concern ourselves with subgroups of PU(1,2;C). By using the stable basin
theorem, Basmajian and Miner have shown

Theorem 1.1 ([1; Theorem 9.11]). Fiz a stable basin point (r,c). Let g be a Heisenberg
translation of PU(1,2; C) with the form

where Re(s) = 1|a|%. If f is a lozodromic element of PU(1,2;C) with fized points 0 and
q, satisfying |\(f) — 1| < € and

(*) 6(0,q) > w(l +r24+vV1+41r?2),

then the group < f,g > generated by f and g is not discrete.

Parker has independently proved the following theorem in a different manner from
Basmajian and Miner’s. :

Theorem 1.2 ([10; Theorem 2.1]). Let g be the same Heisenberg translation as in
Theorem 1.1. Let f be any element of PU(1,2; C) with isometric sphere of radius Ry. If

R} > 8(gf (00), f 7} (00))8(gf(00), f(00)) + 2lal?,
then the group < f,g > generated by f and g s not discrete.

At first sight it is not clear what the relation between these results is. In our previous
papers [8] and [9] we have proved that Theorem 1.1 follows from Theorem 1.2. The
assumption (*) in Theorem 1.1 is rather strong and we would like to be able to replace it
with a weaker and more geometrical condition. So far we have not been able to do this
for all stable basin points. However, by placing additional restriction on (r,e) we show
that () may be replaced with a weaker condition. The assumption (*) in Theorem 1.1 is
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closely related to a condition on the cross ratio as shown in section 4. Let D be the set of
stable basin points (r,¢) such that

1—?—>(2e)% {2+(8+-@)%},

where M(e) = (1 +€)¥ + (1 +¢)~ 1.
The shading in the following figure indicates the set D.

We have

Theorem 1.3. Fiz a stable basin point (r,e) in D. Let g be the Heisenberg translation
as in Theorem 1.1. If f is a lozodromic element of PU(1,2; C) with fized points 0 and q,

satisfying |M(f) — 1| < € and |[0, g, 9(0), g(g)]| < r*, then the group < f,g > generated by
f and g is not discrete.

2. Preliminaries

We recall some definitions and notation. Let C be the field of complex numbers. Let

V = V12(C) denote the vector space C3, together with the unitary structure defined by
the Hermitian form

(2", w*) = —(Fwl +27w}) + Hw;s
for z* = (zg, 2{,23),w* = (w§,w},w}) in V. An automorphism g of V, that is a linear
bijection such that 5(g(z*),g(w*)) = 5(2*,11:*) for z*,w* in V, will be called a unitary
transformation. We denote the group of all unitary transformations by U(1,2;C). Let Vp =
{w*€V| &(w*,w*)=0}andV_ = {w* € V| &(w*,w*) <0}. It is clear that both V,
and V_ are invariant under U(1,2; C). We denote U(1,2; C)/(center) by PU(1,2; C). Set
V* =V_UV,—{0}. Let w : V* — 7(V'*) be the projection map defined by 7(wg, w?, w3) =
(w1, ws), where wy = w}/w§ and wy = w}/wg. We write oo for 7(0,1,0). We may identify
n(V_) with the Siegel domain
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H? = {w = (w;,ws) € C* | Re(w;) > %|w2|2}.

We can regard an element of PU(1,2; C) as a transformation acting on H? and its boundary
OH? (see [6]). Denote H2 U 8H? by H2. We define a new coordinate system in H? —
{o0}. Our convention slightly differs from Basmajian-Miner [1] and Parker [8]. The H —
coordinates of a point (wy, w;) € H2—{oo} are defined by (k,t,w,)y € (RTU{0})xRxC
such that k = Re(w;) — 3|w|? and t = Im(w,;). For simplicity, we write (f;,w’)y for
(07 t1, w,)H-

The Cygan metric p(p,q) for p = (k1,t1,w") g and ¢ = (k2,t2, W')H is given by

1 ; —
p(p,q) = |{'2'|W' —w'|?+ |kp — ka[} +i{ts — t2 + Im(w' W)} L.

We note that the Cygan metric p is a generalization of the Heisenberg metric § in OH?
and that p is invariant under Heisenberg translations (see [7}).

Let f = (aij)i<i,j<3 be an element of PU(1,2;C) with f(oo) # co. We define the
isometric sphere Iy of f by '

Ir={w=(w,w)ed | |&W,Q)|=I8W,f(Q)I},

where Q = (0,1,0), W = (1,w;,w2) in V* (see [4]). It follows that the isometric sphere
I; is the sphere in the Cygan metric with center f~!(c0) and radius Ry = y/1/la12], that

1s,

1
Iy = {Z = (k,t,w')g € R U{0}) xR x C | p(z,f~}(c0)) = Ta_-l} :
12
Given four distinct points ¢1, ¢z, 93,94 of 3H?2, we define the cross ratio of these points
as
8(g3,91)%6(g4,92)?
l[Qh 92,93, Q4]I - 6(q4, q1)25((J3, q2)2 .

We note that the cross ratio is invariant under PU(1,2; C). The definition is extended by
continuity to the case when one of the g; is oo so, for example,

6(q4 ) q2)2
5(‘14, 91)2 '

Using the cross ratio, one can formulate in an invariant way what it means for pairs
of fixed points to be close.

".qls q2, 00, q4]| =

Proposition 2.1 ([1; Proposition 7.1]). Let f and g be lozodromic elements with fized

points {q1,92},{g3, a4}, respectively. If the cross ratio |[q1,92,43,, 4]l =% < 1, then there
ezists an element h € PU(1,2;C) such that

(1) hfh~! has fized points at 0 and oo, and
(2) hgh~! has fized points at Cygan distance r and 1/r from 0.
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3. Stable basin region
We recall the stable basin region (see 1], [8] and [9]). Let
B,.={z€ 8H? | §(2,0) < r},

and let §: = OH? - B,. Given r and s with r < s, the pair of open sets (Br,ﬁj) is said
to be stable with respect to a set S of elements in PU(1,2; C) if for any element g € S,

9(0) € B, g(0) € B,.
__ Let S(r,¢) denote the family of loxodromic elements f with fixed points in B, and

B:/r, and satisfying |A(f) — 1| < ¢. For positive real numbers r and r' with r < 1/4/3 and
r' <1, we define ¢(r,r') by

e(r,r') = sup{|\(f) - 1]}, (3.1)

where |A(f) — 1| satisfies the inequality

_ 1- B+ 1A 1) \? (1=38r2\? /r\? ,
[A(F) -1] < \/1+ ( T o3 T2 - ) 1. (3.2)
A triple of non-negative numbers (r,r’, ) is said to be a basin point provided that

r < 1/V/3,r' <1 and € < ¢(r,r'). In particular, if r' < r, we call (r,r',€) a stable basin
point. Call the set of all such points the stable basin region.

Theorem 3.1 ([9; Theorem 2.2], Stable Basin Theorem). Given positive real numbers
r and r' withr < 1/v/3 and ' < 1, the pair of open sets (B,:,f;/,_,) is stable with respect
to the family S(r,e(r,r")), where e(r,r') is given by (8.1).

The following figure shows the stable basin region.

0.3

0.2¢
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4. Groups with Heisenberg translations

In this section we show that Theorem 1.3 follows from Theorem 1.2. To prove Theorem
1.3, we need two lemmas.

Lemma 4.1. Suppose that §(0,9(0)) < (g, 9(9))- If |[0,4,9(0), 9(9)]| < r*, then

50,0 > (2) 80,60,

Proof. Using the triangle inequality and the invariance of § under Heisenberg trans-
lations, we have

6(¢,9(0)) < 6(0,9(0)) + 6(0,9)

and

6(0,9(q)) < 6(0,9(0)) + 5(9(0), 9(q)) = 6(0,49(0)) + 6(0, g).
It follows that .
r* > |[0,4,9(0), 9(a)]l

_ (15(0,9(0))5(41,g(q)))2
6(0,9(q))6(q,9(0))

§(0,9(0)) ‘
> (6(o,g(0))+6(o, q)) ’

which implies
5(0,q) > (lr;’)é(o, 9(0)).

Lemma 4.2 ([9; Lemma 3.3]). Let f be a lozodromic element with fized points 0 and
q, satisfying |\(f) — 1| < €. Then

We are ready to prove Theorem 1.3.

Proof of Theorem 1.3. Without loss of genarality, we may assume that §(0,¢(0)) <

6(g,9(q)), because Theorem 1.2 is invariant under Heisenberg translations. Let (r,¢) be a
stable basin point in D. By Lemmas 4.1 and 4.2,



%5(0#1)
1)* (:20) s0.000
2 (9
> {2+ (8+ Mz(s) %}|s|¥

> v2|a| + (4|a|2 +

|s|L

2
R} > =

+2v2|a|Ry + 2|a|?

————

sl)%

2

In the same manner as in the proof Theorem 4.5 in (8] we have

> §(gf(c0), f(00))8(gf 1 (00), £ ~1(00)) + 2lal*.

We conclude from Theorem 1.3 that the group < f,g > generated by f and g is not

discrete.
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Collorary 4.3. Fiz a stable basin point (r,e) in D. Let g be the same Heisenberg

We need a lemma to prove Collorary 4.3.

Lemma 4.4 ([1; Lemma 7.3]). If §(0,q) > 6(0,¢(0)), then

1[0, ¢, 9(0), g(g))I# < (1 +

6(0,¢)

6(0,9(0))

6(0a Q) - 6(0) g(O))

)(

Proof of Collorary 4.3. We see that our assumption

5(0,9) > ——5(°’r-"2(°))(1 +r? 4+ V1 +r2)

6(0,¢) — 6(0,9(0))

)

translation as in Theorem 1.1. If f is a lozodromic element with fized points 0 and g,

satisfying |A(f) — 1| < € and §(0,q) > i(_‘l:;%ﬂ.‘lll(l + 72+ /14 r2), then the group < f,g >
generated by f and g is not discrete.
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is equivalent to

6(0’ q) 6(0’ 9(0)) 1‘2
(1 T 50,0 - 5(0,9(0))) (5(0,4) - §(0, 9(0))) =T

It follows from Lemma 4.4 that |[0, g, 9(0), g(g)]| < r*. By Theorem 1.3, the group < f,g >
generated by f and g is not discrete.

References

1. A. Basmajian and R. Miner, Discrete subgroups of complex hyperbolic motions, In-
vent. Math. 131, 85-136 (1998).

. A.F. Beardon, The Geometry of Discrete Groups, Springer-Verlag, New York, 1983.
. L. R. Ford, Automorphic Functions (Second Edition), Chelsea, New York, 1951.
. W. M. Goldman, Complex hyperbolic geometry, Oxford University Press, 1999.

v WN

. S. Kamiya, Notes on non-discrete subgroups of U/ (1,n; F), Hiroshima Math. J. 13,
501-506, (1983).

6. S. Kamiya, Notes on elements of U(1,n; C), Hiroshima Math. J. 21, 23-45, (1991).

7. S. Kamiya, Parabolic elements of U(1,n; C), Rev. Romaine Math. Pures et Appl. 40,
55-64, (1995).

8. S. Kamiya, On discrete subgroups of PU(1,2;C) with Heisenberg translations, J.
London Math. Soc. (2) 62 (2000), 827-842.

9. S. Kamiya and J. Parker, On discrete subgroups of PU (1,2; C) with Heisenberg trans-
lations II, (to appear).

10. J. Parker, Uniform discreteness and Heisenberg translations, Math. Z. 225, 485-505
(1997).

Shigeyasu Kamiya (#BER)

Okayama University of Science (P FRR}A % T %55)

1-1 Ridai-cho, Okayama 700-0005 JAPAN

e-mail:kamiya@are.ous.ac.jp

John R. Parker

University of Durham

South Road, Durham DH1 3LE U.K.
e-mail:j.r.parker@durham.ac.uk



