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1. Introduction

In the study of discrete groups it is important to find out conditions for agroup to be
discrete. We concern ourselves with subgroups of PU$($ 1, 2; $\mathrm{C})$ . By using the stable basin
theorem, Basmajian and Miner have shown

Theorem 1.1 ([1; Theorem 9.11]). Fix a stable basin point $(r,\epsilon)$ . Let $g$ be a Heisenberg
translation of PU(1, 2; C) with the form

$g=(_{a}$
$s1$

$001$ $\frac{0}{a,1’}$),
where $Re(s)= \frac{1}{2}|a|^{2}$ . If $f$ is a loxodromic element of PU(1, 2; C) with fixed points 0and

$\mathrm{g}$ , satisfying $|\lambda(f)-1|<\epsilon$ and

$(*) \delta(0, q)>\frac{\delta(0,g(0))}{r^{2}}(1+r^{2}+\sqrt{1+r^{2}})$ ,

then the group $<f,g>generated$ by $f$ and $g$ is not discrete.

Parker has independently proved the following theorem in adifferent manner from
Basmajian and Miner’s.

Theorem 1.2 ([10; Theorem 2.1]). Let $g$ be the same Heisenberg translation as in
Theorem 1.1. Let $f$ be any element of PU(1, 2; C) with isometric sphere of radius $R_{f}$ . If

$R_{f}^{2}>\delta(gf^{-1}(\infty),f^{-1}(\infty))\delta(gf(\infty),f(\infty))+2|a|^{2}$ ,

then the group $<f$ , $g>generated$ by $f$ and $g$ is not discrete.

At first sight it is not clear what the relation between these results is. In our previous
papers [8] and [9] we have proved that Theorem 1.1 follows from Theorem 1.2. The
assumption $(*)$ in Theorem 1.1 is rather strong and we would like to be able to replace it
with aweaker and more geometrical condition. So fax we have not been able to do this
for all stable basin points. However, by placing additional restriction on $(r, \epsilon)$ we show
that $(*)$ may be replaced with aweaker condition. The assumption $(*)$ in Theorem 1.1 is
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closely related to acondition on the cross ratio as shown in section 4. Let D be the set of
stable basin points $(r,\epsilon)$ such that

$\frac{1-r}{r}>(2\epsilon)^{1}2\{2+(8+\frac{M(\epsilon)}{2})12$ $\}$ ,

where $\mathrm{M}(\mathrm{e})=(1+\epsilon)\#+(1+\epsilon)^{-\mathrm{f}}$ .
The shading in the following figure indicates the set D.

We have

Theorem 1.3. Fix a stable basin point $(\mathrm{r},\mathrm{e})$ in D. Let $g$ be the Heisenberg translation
as $\dot{\iota}n$ Theorem 1.1. If $f$ is a loxodromic element of PU(1, 2; C) with fied point 0 and $q$ ,
satisfying $|\lambda(f)-1|<\epsilon$ and $|[0, q, g(0),g(q)]|<r^{4}$ , then the group $<f$, $g>genefixed$ by
$f$ and $g\dot{l}S$ not discrete.

2. Preliminaries

We recall some definitions and notation. Let $\mathrm{C}$ be the field of complex numbers. Let
$V=V^{1,2}(\mathrm{C})$ denote the vector space $\mathrm{C}^{3}$ , together with the unitary structure defined by
the Hermitian form

$\tilde{\Phi}(z^{*}, w^{*})=-(z_{0}^{*}w_{1}^{*}+z_{1}^{*}w_{0}^{*})+z_{2}^{*}w_{2}^{*}---$

for $z^{*}=(z_{0}^{*}, z_{1}^{*}, z_{2}^{*}),w^{*}=(w_{0}^{*}, w_{1}^{*},w_{2}^{*})$ in $V$ . An automorphism $g$ of $V$ , that is alinear
bijection such that $\tilde{\Phi}(g(z^{*}),g(w^{*}))=\tilde{\Phi}$ ( $z^{*}$ ,to’) for $z^{*},w^{*}$ in $V$, will be called aunitary
transformation. We denote the group of all unitary transformations by $U(1,2;\mathrm{C})$ . Let $V_{0}=$

$\{w^{*}\in V| \tilde{\Phi}(w^{*}, w^{*})=0\}$ and $V_{-}=\{w^{*}\in V| \tilde{\Phi}(w^{*},w^{*})<0\}$ . It is clear that both $V_{0}$

and $V_{-}$ are invariant under $U(1,2;\mathrm{C})$ . We denote $U(1,2;\mathrm{C})/(center)$ by PU$($ 1, 2; $\mathrm{C})$ . Set
$V^{*}=V_{-}\cup V_{0}-\{0\}$ . Let $\pi$ : $V^{*}arrow\pi(V^{*})$ be the projection map defined by $\pi$( $w_{0}^{*}$ , $w_{1}^{*}$ , to;) $=$

$(w_{1},w_{2})$ , where $w_{1}=w_{1}^{*}/w_{0}^{*}$ and $w_{2}=w_{2}^{*}/w_{0}^{*}$ . We write $\infty$ for $\pi(0,1,0)$ . We may identify
$\pi(V_{-})$ with the Siegel domai
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$H^{2}=$ {w $=(w_{1},w_{2}) \in \mathrm{C}^{2}| Re(w_{1})>\frac{1}{2}|w_{2}|^{2}\}$ .

We can regard an element of PU(1, 2; $\mathrm{C}\llcorner \mathrm{a}\mathrm{e}$ transformation acting on $H^{2}$ and its boundary
$\partial H^{2}$ (see [6]). Denote $H^{2}\cup\partial H^{2}$ by $H^{2}$ . We define anew coordinate system in $\overline{H^{2}}-$

$\{\infty\}$ . Our convention slightly differs from Basmajian-Miner [1] and Parker [8]. The $H-$

coordinates of apoint $(w_{1},w_{2})\in\overline{H^{2}}-\{\infty\}$ are defined by $(k, t,w_{2})_{H}\in(\mathrm{R}^{+}\cup\{0\})\mathrm{x}\mathrm{R}\cross \mathrm{C}$

such that $k={\rm Re}( \mathrm{W}1)-\frac{1}{2}|w_{2}|^{2}$ and $t=Im(w_{1})$ . For simplicity, we write $(t_{1},w’)_{H}$ for
$(0, t_{1},w’)_{H}$ .

the Cygan metric $\rho(p,q)$ for $p=(k_{1},t_{1},w’)_{H}$ and $q=(k_{2,2}t, W’)_{H}$ is given by

$\rho(p,q)=|\{\frac{1}{2}|W’-w’|^{2}+|k_{2}-k_{1}|\}+i\{t_{1}-t_{2}+Im(\overline{w’}W’)\}|\}$ .

We note that the Cygan metric $\rho$ is ageneralization of the Heisenberg metric $\delta$ in $\partial H^{2}$

and that $\rho$ is invariant under Heisenberg translations (see [7]).
Let $f=(a_{j})_{1\leq i_{\dot{\beta}}<3}$ be an element of PU(1, 2; C) with $f(\infty)\neq\infty$ . We define the

isometric sphere $I_{f}$ of $\overline{f}$ by

$I_{f}=\{w=(w_{1}, w_{2})\in\overline{H}^{2}| |\tilde{\Phi}(W, Q)|=|\tilde{\Phi}(W,f^{-1}(Q))|\}$,

where $Q=(0,1,0)$, $W=(1,w_{1},w_{2})$ in $V^{*}$ (see [4]). It follows that the isometric sphere
$I_{f}$ is the sphere in the Cygan metric with center $f^{-1}(\infty)$ and radius $Rf=\sqrt{1/|a_{12}|}$, that
is,

$I_{f}=\{z=$ $(k, t, w’)_{H}\in(\mathrm{R}^{+}\cup\{0\})\mathrm{x}\mathrm{R}\mathrm{x}\mathrm{C}|\rho(z,f^{-1}(\infty))=\sqrt{\frac{1}{|a_{12}|}}\}$ .

Given four distinct points $q_{1}$ , $q_{2},q_{3}$ , $q_{4}$ of $\partial H^{2}$ , we define the cross ratio of these points
as

1 $[q_{1},q_{2},q_{3}, ,q_{4}]|= \frac{\delta(q_{3},q_{1})^{2}\delta(q_{4},q_{2})^{2}}{\delta(q_{4},q_{1})^{2}\delta(q_{3},q_{2})^{2}}$ .

We note that the cross ratio is invariant under PU$($ 1, 2; $\mathrm{C})$ . The definition is extended by
continuity to the case when one of the $q$:is $\infty$ so, for example,

1 $[q_{1}, q_{2}, \infty,q_{4}]|=\frac{\delta(q_{4},q_{2})^{2}}{\delta(q_{4},q_{1})^{2}}$ .

Using the cross ratio, one can formulate in an invariant way what it means for pairs
of fixed points to be close.

Proposition 2.1 ([1; Proposition 7.1]). Let $f$ and $g$ be loxodromic elements with fixed
points $\{q_{1}, q_{2}\},\{q_{3}, q_{4}\}$ , respectively. If the cross ratio $|[q_{1}, q_{2},q_{3}, , q_{4}]|=r^{4}<1$ , then there
exists an element $h\in PU(1,2;\mathrm{C})$ such that

(1) $hfh^{-1}$ has fixed points at 0and $\infty$, and
(!) $hgh^{-1}$ has fixed points at Cygan distance $r$ and $1/r$ from 0.
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3. Stable basin region

We recall the stable basin region (see [1], [8] and [9]). Let

$B_{f}=\{z\in\partial H^{2}|\delta(z, 0)<r\}$ ,

and let $\overline{B}_{s}^{\mathrm{c}}=\partial H^{2}-\overline{B}_{\epsilon}$ . Given $r$ and $s$ with $r<s$ , the pair of open sets $(B_{r},\vec{B_{\iota}})$ is said
to be stable with respect to aset $S$ of elements in PU(1, 2; C) if for any element $g\in S$ ,

$g(0)\in B_{f}$ $g(\infty)\in\overline{B}_{\iota}^{\mathrm{c}}$ .

Let $S(r, \epsilon)$ denote the family of loxodromic elements $f$ with fixed points in $B_{r}$ and
$\overline{B}_{1/r}^{e}$ , and satisfying $|\lambda(f)-1|<\epsilon$ . For positive real numbers $r$ and $r’$ with $r$ $<1/\sqrt{3}$ and
$r’<1$ , we define $\epsilon(r,r’)$ by

$\epsilon(r,r’)=\sup\{|\lambda(f)-1|\}$ , (3.1)

where $|\lambda(f)-1|$ satisfies the inequality

$|\lambda(f)-1|<\sqrt{1+(\frac{1-(3+|\lambda(f)-1|)r^{2})}{1-2r^{2}})^{2}(\frac{1-3r^{2}}{1-r^{2}})^{2}(\frac{r’}{r})^{2}}-1$ . (3.2)

Atriple of non-negative numbers $(r,r’, \epsilon)$ is said to be abasin point provided that
$r$ $<1/\sqrt{3}$ , $r’<1$ and $\epsilon<\epsilon(r, r’)$ . In particular, if $r’\leq r$ , we call $(r, r’, \epsilon)$ astable basin
point Call the set of all such points the stable basin region.

Theorem 3.1 ([9; Theorem 2.2], Stable Basin Theorem). Given positive real numbers
$r$ and $r’$ with $r$ $<1/\sqrt{3}$ and $r’<1$ , the pair of open sets $(B_{f’},\overline{B}_{1/\mu}^{\mathrm{c}})$ is stable with respect
to the family $S(r, \epsilon(r, r’))$, where $\epsilon(r, r’)$ is given by (S. 1).

The following figure shows the stable basin region.
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4. Groups with Heisenberg translations

In this section we show that Theorem 1.3 folows from Theorem 1.2. To prove Theorem
1.3, we need two lemmas.

Lemma 4.1. Suppose that $\delta(0,g(0))<\delta(q,g(q))$ . $If|[0,q,g(0),g(q)]|<r^{4}$ , $\theta\iota en$

$\delta(0,q)>(\frac{1-r}{r})\delta(0,g(0))$.

Proof. Using the triangle inequalty and the invaxiance of 6under Heisenberg trans-
lations, we have

$\delta(q,g(0))\leq\delta(0,g(0))+\delta(0,q)$

and

$\delta(0,g(q))\leq\delta(0, g(0))+\delta(g(0),g(q))=\delta(0,g(0))+\delta(0,q)$ .
It follows that

$r^{4}>|[0, q, g(0),g(q)]|$

$=( \frac{\delta(0,g(0))\delta(q,g(q))}{\delta(0,g(q))\delta(q,g(0))})^{2}$

$>( \frac{\delta(0,g(0))}{\delta(0,g(0))+\delta(0,q)})^{4}$,

which implies

$\delta(0,q)>(\frac{1-r}{r})\delta(0,g(0))$.

Lemma 4.2 ([9; Lemma 3.3]). Let $f$ be a loxodromic element with fixed points 0and
$q$ , satisfying $|\lambda(f)-1|<\epsilon$ . Then

$( \frac{\delta(0,q)}{R_{f}})^{2}\leq 2\epsilon$ .

We are ready to prove Theorem 1.3.

Proof of Theorem 1.3. Without loss of genarality, we may assume that $\delta(0,g(0))<$

$\delta(q,g(q))$ , because Theorem 1.2 is invariant under Heisenberg translations. Let $(r,\epsilon)$ be a
stable basin point in $D$ . By Lemmas 4.1 and 4.2,
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$R_{f}>( \frac{1}{2\epsilon})^{2}\delta(0, q)[perp]$

$>( \frac{1}{2\epsilon})^{2}1(\frac{1-r}{r})\delta(0,g(0))$

$=( \frac{1}{2\epsilon})^{8}(\frac{1-r}{r})|s|^{1}2$

$> \{2+(8+\frac{M(\epsilon)}{2})^{2}\}|s|1\#$

$> \{2+(8+\frac{L}{2})^{\}}\}|s|^{\mathrm{A}}2$

$=2|s|^{\}}+(8|s|+ \frac{L|s|}{2})^{*}$

$> \sqrt{2}|a|+(4|a|^{2}+\frac{L|s|}{2})^{2}[perp]$

In the same manner as in the proof Theorem 4.5 in [8] we have

$R_{f}^{2}> \frac{|s|L}{2}+2\sqrt{2}|a|R_{f}+2|a|^{2}$

$>\delta(gf(\infty), f(\infty))\delta(gf^{-1}(\infty),f^{-1}(\infty))+2|a|^{2}$ .

We conclude from Theorem 1.3 that the group $<f,g>\mathrm{g}\mathrm{e}\mathrm{n}\mathrm{e}\mathrm{r}\mathrm{a}\mathrm{t}\mathrm{e}\mathrm{d}$ by $f$ and $g$ is not
discrete.

Collorary 4.3. Fix a stable basin point $(r, \epsilon)$ in D. Let $g$ be the same Heisenberg
translation as in Theorem 1.1. If $f$ is a loxodromic element with fixed points 0and $q$ ,
satisfying $|\lambda(f)-1|<\epsilon$ and $6(0, q)> \frac{\delta(0,g(0))}{\mathrm{r}^{2}}(1+r^{2}+\sqrt{1+r^{2}})$ , then the group $<f,g>$
generated by $f$ and $g$ is not discrete.

We need alemma to prove Collorary 4.3.

Lemma 4.4 ([1; Lemma 7.3]). If $\delta(0, q)>\delta(0,g(0))$ , then

$|[0, q, g(0), g(q)]|^{1}2 \leq(1+\frac{\delta(0,q)}{\delta(0,q)-\delta(0,g(0))})(\frac{\delta(0,g(0))}{\delta(0,q)-\delta(0,g(0))})$ .

Proof of Collorary 4.3. We see that our assumptio

$\delta(0, q)>\frac{\delta(0,g(0))}{r^{2}}(1+r^{2}+\sqrt{1+r^{2}})$
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is equivalent to

$(1+ \frac{\delta(0,q)}{\delta(0,q)-\delta(0,g(0))})(\frac{\delta(0,g(0))}{\delta(0,q)-\delta(0,g(0))})<r^{2}$.

It follows from Lemma 4.4 that $|[0, q,g(0),g(q)]|<r^{4}$ . By Theorem 1.3, the group $<f,g>$
generated by $f$ and $g$ is not discrete.
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