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Stability calculations of three-dimensional short-crested waves very near

their tw0-dimensional standing wave limit are performed on water of uni-

form depth. Non-resonant waves are stable while resonant waves are unsta-

ble, which means that the resonant interaction contributes to instability.

1Introduction

Linearly, ashort-crested wave is defined as superposition between an

incident travelling wave with an angle $\theta$ to avertical wall and its reflected

wave, where 0is the angle between the direction of the incident wave and

the normal to the wall. The standing wave limit corresponds to the angle

$\theta=0^{0}$ .
The properties of short-crested waves have been discussed in Marchant

&Roberts (1987) on water of fifinite depth. The authors conjectured that

short-crested wave fields may be unstable through harmonic resonance phe-

nomena. Later, Ioualalen et al. (1996) showed that harmonic resonance is

associated with sporadic and weak superharmonic instability for short-

crested waves in finite depth. $\ln$ particular the instability region exhibits

abubble-like shape in the wave steepness parameter space. However their

short-crested wave solutions were not complete because only one branc
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of the multiple-like solutions associated with harmonic resonance has been

analysed. Ioualalen&Okamura (2002) calculated nonlinear short-crested

waves with multiple-like solutions, $i.e.$ , two branches linked by aturn-
$\mathrm{i}\mathrm{n}\mathrm{g}$ point and one single branch. They found the solutions by Ioualalen

et al. (1996) incomplete when harmonic resonance occurs. They also ob-

tained their stability diagram in the vicinity of harmonic resonance and

found that harmonic resonance is associated with two bubbles of instabil-
$\mathrm{i}\mathrm{t}\mathrm{y}$ that are not anymore sporadic.

In the present study, we examine the relation between short-crested waves
with a small angle $\theta$ and standing waves near the critical depth. Then we

perform a superharmonic stability analysis of resonant short-crested waves
very near the standing wave limit. Our stability scheme does not apply

directly to standing waves in order to use the stability analysis for steady

waves.

2 Formulation

We consider standing gravity waves on an inviscid, incompressible fluid

of fifinite depth where the flow is assumed irrotational. The governing equa-

tions are given in a dimensionless form with respect to the reference length

$1/k$ and the reference time $(gk)^{-1/2}$ , where $g$ is the gravitational accelera-

tion and $k$ the wavenumber of the incident wave train.

Let us defifine aframe of reference $(x^{*}, y^{*}, z^{*}, t^{*}, \phi^{*})$ so that $x^{*}=x-ct$ ,

$y^{*}=y$ , $z^{*}=z$ , $t^{*}=t$ and $\phi^{*}=\phi-cx^{*}$ , where $c$ represents the propagation

velocity of the short-crested wave train and is equal to $\omega/\alpha$ , $\omega$ being the

frequency of the wave and $\alpha=\sin\theta$ is $\mathrm{t}^{-}\mathrm{h}\mathrm{e}$

$x$-direction wave number, the

$y$-direction wave number being $\beta=\cos$ $\theta$ . $1\mathrm{f}$ we omit the asterisks for sake
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of simplicity, the governing equations are:

$\Delta\phi=0$ , $\mathrm{f}\mathrm{o}\mathrm{r}-d<z<\eta$ , (1)

$\phi_{z}=0$ , on $z=-d$, (2)

$\phi_{t}+\eta+\frac{1}{2}(\phi_{x}^{2}+\phi_{y}^{2}+\phi_{z}^{2}-c^{2})=0$ , on $z=\eta$ , (3)

$\eta_{t}+\phi_{x}\eta_{x}+\phi_{y}\eta_{y}-\phi_{z}=0$ , on $z=\eta$ , (4)

where $d$ is the depth of the fluid, $\phi(x, y, z, t)$ the velocity potential and

$z=\eta(x, y, t)$ the equation of the free surface.

We introduce the following functions to construct a stability problem:

$\eta(x, y, t)=\overline{\eta}(x, y)+\eta’(x, y, t)$ , (5)

$\phi(x, y, z, t)=\overline{\phi}(x, y, z)+\phi’(x, y, z, t)$ , (6)

where we assume that the surface elevation and the velocity potential are

superposition of a steady unperturbed wave $(\overline{\eta},\overline{\phi})$ and infifinitesimal pertur-

bations $(\eta’, \phi’)$ where $\eta’<<\overline{\eta}$ and $\phi’<<\overline{\phi}$ . After substituting expressions

(5) and (6) into equations (1) $-(4)$ and linearizing, we obtain the zeroth

order system of equations for which permanent short-crested waves are so-

lutions and the fifirst order perturbation equations representing the stability

problem.

In order to solve the zeroth order system of equations, we look for the

following form of the velocity potential:

$\overline{\phi}=-cx+\sum_{k=0j=2}^{N}\sum_{-(k\mathrm{m}\mathrm{o}\mathrm{d} 2)}^{N}\phi_{jk}\sin(j\alpha x)\cos(k\beta y)\frac{\cosh[\kappa_{jk}(z+d)]}{\cosh(\kappa_{jk}d)}$, (7)

where $\kappa_{JK}=[(J\alpha)^{2}+(K\beta)^{2}]^{1/2}$ and $N$ is the maximum order of expansion

and is chosen to be 19 $\mathrm{i}_{11}$ this paper. Further details about the computations

of the short-crested waves can be found in Okamura (1996)
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The first order system of equations is

$\triangle\phi’=0$ , $\mathrm{f}\mathrm{o}\mathrm{r}-d<z<\overline{\eta}$, (8)

$\phi_{z}’=0$ , on $z=-d$, (9)

$\phi_{t}’=-\overline{\phi}_{x}\phi_{x}’-\overline{\phi}_{y}\phi_{y}’-\overline{\phi}_{z}\phi_{z}’-\eta’(1+\overline{\phi}_{x}\overline{\phi}_{xz}+\overline{\phi}_{y}\overline{\phi}_{yz}+\overline{\phi}_{z}\overline{\phi}_{zz})$ , on $z=\overline{\eta}$ , (10)

$\eta_{t}’=\eta’(\overline{\phi}_{zz}-\overline{\eta}_{x}\overline{\phi}_{xz}-\overline{\eta}_{y}\overline{\phi}_{yz})-\overline{\eta}_{x}\phi_{x}’-\overline{\phi}_{x}\eta_{x}’-\overline{\eta}_{y}\phi_{y}’-\overline{\phi}_{y}\eta_{y}’+\phi_{z}’$ , on $z=\overline{\eta}$ . (11)

We look for non-trivial solutions of the following form:

$\eta’=e^{-i\sigma t}\sum_{J=-\infty}^{\infty}\sum_{K=-\infty}^{\infty}a_{JK}e^{i(J\alpha x+K\beta y)}$ , (12)

$\phi’=e^{-i\sigma t}\sum_{J=-\infty}^{\infty}\sum_{K=-\infty}^{\infty}b_{JK}e^{i(J\alpha x+K\beta y)_{\frac{\cosh[\kappa_{JK}(z+d)]}{\cosh(\kappa_{JK}d)}}}$ , (13)

which is reduced to the eigenvalue problem determining the eigenvalues $\sigma$

and their eigenvectors consisting of $a_{JK}$ and $b_{JK}$ .

3Relation between standing and short-crested waves

Marchant&Roberts (1987) showed that harmonic resonance occurs for

standing waves of fifinite depth when a harmonic $(m, n)$ is a solution of

the homogeneous differential equation derived from the surface conditions.

Such case occurs at critical depths $d$ which satisfy the relation,

$n\tanh(nd)=m^{2}\tanh d$ . (14)

The lowest order harmonic resonance occurs at depth $d_{\mathrm{h}\mathrm{r}}\approx 0.624$ which is

related to harmonic resonance $(3, 5)$ .

We analyse the $(3, 5)$ resonance because it is the strongest harmonic

resonance. Figure 1exhibits the multiple-like solution structure of the

coefficient $\phi_{35}$ as a function of the coefficient $\phi_{11}$ of the fundamental mode
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$\phi_{J\mathit{5}}$ $\theta=\mathit{0}^{\mathrm{o}}$ $\phi_{JS}$ $\theta=5^{\cdot}$

Figure 1: Coefficient $\phi_{35}$ versus coefficient $\_{11}$ for depth $d=0.58$ and angles $0=0^{0}$ (left)
and $\theta=5^{\mathrm{o}}$ (right). Circle-signs $(\circ)$ and plus-signs $(+)$ denote the unstable and stable
solutions, respectively (displayed only for $\theta=0^{\mathrm{o}}$ ).

for depth $d=0.58$ at angles $\theta=0^{0}$ and $\theta=5^{\mathrm{O}}$ . The solutions are composed

of three branches: branches (1) and (2) linked by a turning point (TP)

and branch (3). The figure shows that the solutions for $\theta=0^{\mathrm{o}}$ are very

similar to those for $\theta=5^{0}$ and thus we can use the short-crested waves for
$\theta=0.001^{0}$ to obtain the results for the stability of standing waves.

Figure 1also indicates that the resonant harmonic mode $\phi_{35}$ is relatively

dominant both on branch (2) and on branch (3) for $\phi_{11}$ smaller than the

turning point (TP). We call it resonant wave. However the fundamental

mode $\phi_{11}$ is relatively dominant both on branch (1) and on branch (3) for
$\phi_{11}$ larger than the turning point(TP). We call it non-resonant wave
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4 Superharmonic instability of short-crested waves
near their standing wave limit: $\mathit{0}--0.001^{\mathrm{O}}$

We perform here the superharmonic instabilities of short-crested waves

that are very close to standing waves; that is, angle $\theta=0.001^{0}$ . The aim of

this study is to characterize the superharmonic instability associated with

harmonic resonance appearing in standing waves as Ioualalen&Okamura

(2002) clarifified the relation between the superharmonic instability and

harmonic resonance for short-crested waves. The time scale of the strongest

instability tells us whether the multiple-like solution related to harmonic

resonance is observable or not.

A superharmonic instability associated with a harmonic resonance $(m, n)$

can arise only if the two eigenvalues with opposite signature are equal,

$\sigma_{m,n}^{s}(h)=\sigma_{-m,n}^{-s}(h)$ , (15)

for some wave steepness $h$ . For standing waves the condition of harmonic

resonance is equivalent to condition (14). Such superharmonic instability

is described as an interaction between the two eigenmodes $(\pm m, n)$ and the
$2m$-modes $(1, \pm 1)$ of the basic unperturbed standing wave, that is,

$\Omega_{1}=-\Omega_{2}+m\Omega_{01}+m\Omega_{02}$ , (16)

$k_{1}=k_{2}+mk_{01}+mk_{02}$ , (17)

where $\Omega_{i}=[|k_{i}|\tanh(\kappa_{mn}d)]^{1/2}$ , $\Omega_{0i}=\tanh^{1/2}d$ for $i=1,2$ and $k_{1}=$

$(\alpha m, \beta n)$ , $k_{2}=( \mathrm{m}, \beta n)$ , $k_{01}=(\alpha, \beta)$ , and $k_{02}=(\alpha, -\beta)$ .

In Figures 2 and 3 are plotted the frequencies and growth rates of the

eigenvalues $\sigma_{\pm 3,5}$ for all branches of the wave solutions for depths $d=0.58$

and $d=0.62$ in the vicinity of the critical depth $d_{\mathrm{h}\mathrm{r}}\approx 0.624$ . For both
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Figure 2: Frequency $[-\Re(\sigma\pm 35)]$ $(\bullet)$ and growth rate $[-\Im(\sigma\pm 35)](0)$ as a function of
coefficient $\phi_{11}$ for angle $\theta=0.001^{0}$ and depth $d=0.58$. The right panel is an enlargement
of the left panel.
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Figure 3: The same as Figure 2 except for depth $d=0.62$
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depths, branch (1) is stable on its whole region, from $\phi_{11}=0$ to the turning

point ( $\phi_{11}\approx 0.2305605$ for $d=0.58$ and $\phi_{11}\approx 0.0705$ for $d=0.62$), while

branch (2) is unstable on its whole region. The transition from stable to

unstable occurs when the frequency reaches the zero-axis, then the growth

rate value leaves it. For both depths the dominant instability appears

for $\phi_{11}=0$ and the instability on branch (2) weakens with increasing
$\phi_{11}$ to disappear at the turning point (here at the zer0-axis). Branch(3)

is unstable from $\phi_{11}=0$ to the turning point ahead ( $\phi_{11}\approx 0.2591$ for

$d=0.58$ and $\phi_{11}\approx 0.0709$ for $d=0.62$). The maximum of instability

also appears for $\phi_{11}=0$ . The instability occurs when eigenvalues $\sigma_{3,5}$ and

$\sigma_{-3,5}$ coalesce at zero-frequency ( $\mathrm{p}\mathrm{h}_{\mathrm{f}\mathrm{f}\mathrm{i}}\mathrm{e}$-locked with the unperturbed wave).

Such instability is physically associated witha resonant interaction: the

coalescence of the two eigenmodes at zero-frequency simply means that the

harmonics $(\pm 3,5)$ propagate at the same phase speed as the basic wave,

bearing in mind that the stability problem has been computed in the frame

of reference moving with the basic wave.

Ioualalen&Okamura (2002) showed that for resonant short-crested waves
the instability region is a small range of 0 like a bubble. In the present case
the instability region is a wide range of $\phi_{11}$ , which is much different from

that in the short-crested waves. The instability is strong for resonant wave,
$i.e.$ , on branch (2) and the left part of branch (3). The instability weakens

as $\phi_{11}$ becomes larger. Beyond the turning point the solution on branch (3)

remains weakly unstable within a certain range of the parameter regime

then it turns stable
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5 Conclusion

This study deals with the stability of the two-dimensional standing waves
with multiple-like solutions for the strongest harmonic resonance $(3,5)$ oc-
curs. Since our numerical procedure calculating the stability of three-

dimensional short-crested waves does not apply to two-dimensional stand-
$\mathrm{i}\mathrm{n}\mathrm{g}$ waves because the waves are not anymore stationary, we fifirst show

that short-crested waves and standing waves match each other at the limit
$(\thetaarrow 0^{\mathrm{o}})$ in order to extend the stability results here to standing waves.
Then we perform a superharmonic stability analysis of short-crested waves
very near $\mathrm{t}\mathrm{h}\mathrm{e},\mathrm{i}\mathrm{r}$ standing wave limit. The stability analysis shows that $\mathrm{r}\mathrm{e}\mathrm{s}-$

onant waves are strongly unstable. By contrast, non-resonant waves are
almost stable and weakly unstable within a sporadic range of the parameter

region then non-resonant waves are therefore only solutions to exist.
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