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Abstract

The theory of quandle $(\mathrm{c}\mathrm{o})\mathrm{h}\mathrm{o}\mathrm{m}\mathrm{o}\mathrm{l}\mathrm{o}\mathrm{g}\mathrm{y}$ and cocycle knot invariants is rapidly being developed.
We begin with asummary of these recent advances. One such advance is the notion of a
dynamical cocycle. We show how dynamical cocycles can be used to color knotted surfaces that
are obtained from classical knots by twist-spinning. We also demonstrate relations between
cocycle invariants and Alexander matrices.

1Introduction

The first half of this paper is asurvey of the rapidly growing area of knot invariants and knotted
surface invariants that are defined via quandles and their cocycles. Several key examples are closely
examined from the viewpoint of these recent developments. In particular, dynamical cocycles are
used to color knotted surfaces that are obtained from classical knots by twist-spinning, and relations
between cocycle invariants and Alexander matrices are demonstrated. Aquandle is aset with a
self-distributive binary operation (defined below) whose definition was partially motivated from
knot theory. A $(\mathrm{c}\mathrm{o})\mathrm{h}\mathrm{o}\mathrm{m}\mathrm{o}\mathrm{l}\mathrm{o}\mathrm{g}\mathrm{y}$ theory was defined in [7] for quandles, which is amodification of rack
$(\mathrm{c}\mathrm{o})\mathrm{h}\mathrm{o}\mathrm{m}\mathrm{o}\mathrm{l}\mathrm{o}\mathrm{g}\mathrm{y}$ defined in [14]. The cohomology theory has found applications to the classification
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of Nichols algebras [1]. State-sum invariants, called the quandle cocycle invariants, using quandle
cocycles as weights are defined [7] and computed for important families of classical knots and
knotted surfaces [8]. Other survey articles on this subject are available $[10, 21]$ .

In this paper, first we give ashort overview of the subject in Sections 2, 3, 4, and 5. New
extensions called extensions by dynamical cocycles defined in [1] are studied in relation to colorings
of twist-spun knots in Section 6. Then, we define ageneralized cocycle invariant in the form of a
family of vectors, which encorporates the refined version given in [28], with detailed computations
for afew examples in Section 7. Relations of these cocycle invariants and Alexander matrices are
given in Section 8.

2Quandles and Quandle Colorings

In this section we define quandles and quandle colorings.
Aquandle, $X$ , is aset with abinary operation $(a, b)\vdasharrow a*b$ such that
(I) For any $a\in X$ , $a*a=a$.
(II) For any $a$ , $b\in X$ , there is aunique $c\in X$ such that $a=c*b$.
(III) For any $a$ , $b$ , $c\in X$ , we have $(a*b)*c=(a*c)*(b*c)$ .
Arack is aset with abinary operation that satisfies (II) and (III).

$\{$

$\Leftrightarrow \mathrm{I}$

$\{$

a $a^{*}a$ $a$ $a$
$b$

$\Leftrightarrow$

II

$a$ $b$ $a$

Figure 1: Reidemeister moves and quandle conditions

Racks and quandles have been studied in, for example, [2, 13, 20, 22, 29]. The axioms for a
quandle correspond respectively to the Reidemeister moves of type $\mathrm{I}$ , $\mathrm{I}\mathrm{I}$ , and III (see Fig. 1and
$[13, 22]$ , for example). Quandle structures have been found in areas other than knot theory, see [1]
and [2] for example. Recently, it was pointed out in [40] that simple curves on asurface have a
quandle structure via an action by Dehn twists.

Afunction $f$ : $Xarrow \mathrm{Y}$ between quandles or racks is ahomomorphism if $f(a*b)=f(a)*f(b)$
for any $a$ , $b\in X$ . The following are typical examples of quandles.

1. Agroup $X=G$ with $n$-fold conjugation as the quandle operation: $a*b=b^{-n}ab^{n}$ .
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Figure 2: Quandle relation at acrossing

2. Any subset of G that is closed under conjugation.

3. Let $n$ be apositive integer. For elements $i,j\in\{0,1, \ldots,n-1\}$ , define $i*j\equiv 2j-i$ (mod $n$).
$\mathrm{T}\mathrm{h}\mathrm{e}\mathrm{n}*\mathrm{d}\mathrm{e}\mathrm{f}\mathrm{i}\mathrm{n}\mathrm{e}\mathrm{s}$ aquandle structure called the dihedral quandle, $R_{n}$ . This set can be identified
with the set of reflections of aregular $n$-gon with conjugation as the quandle operation.

4. Any $\Lambda(=\mathbb{Z}[T,T^{-1}])$ module $M$ is aquandle with $a*b=Ta+(1-T)b$, $a$ , $b\in M$ , called
an Alexander quandle. Furthermore for apositive integer $n$ , amod-n Alexander quandle
$\mathbb{Z}_{n}[T,T^{-1}]/(h(T))$ is aquandle for aLaurent polynomial $h(T)$ . It is finite if the coefl&cients
of the highest and lowest degree terms of $h$ are units in Zn. The dihedral quandle $R_{n}$ can be
identified with $\mathbb{Z}_{n}[T,T^{-1}]/(T+1)$ .

Let $X$ be afixed quandle. Let $K$ be agiven oriented classical knot or link diagram, and let 7?
be the set of (over-)arcs. The normals are given in such away that (tangent, normal) matches the
orientation of the plane, see Fig. 2. A(quandle) coloring $C$ is amap (: $R$ $arrow X$ such that at every
crossing, the relation depicted in Fig. 2holds. More specifically, let $\beta$ be the over-arc at acrossing,
and $\alpha$ , $\gamma$ be under-arcs such that the normal of the over-arc points from $\alpha$ to 7. Then it is required
that $C(\gamma)=C(\alpha)*C(\beta)$ . The color $C(\gamma)$ depends only on the choice of orientation of the over-arc;
therefore this rule defines the coloring at both positive and negative crossings.

For example, Fox’s $n$-coloring[15] is aquandle coloring by the dihedral quandle $R_{n}$ . The
classical result that aknot is non-trivially Fox $n$-colorable(for $n$ prime) if $n|\Delta(-1)$ (where $\mathrm{A}(\mathrm{T})$

denotes the Alexander polynomial) has been generalized by Inoue [19] to the following:
Let $\Delta_{K}^{(l)}(T)$ denote the greatest common divisor of all $(n-i-1)$ minor determinants of the

presentation matrix for the knot module obtained via the Fox calculus.

Theorem 2.1 [19] Let $p$ be a prime number, $J$ an ideal of the ring $\Lambda_{p}=\mathbb{Z}_{p}[T,T^{-1}]$ . For each
$i\geq 0$ , put $e:(T)=\Delta_{K}^{(\cdot)}(T)/\Delta_{K}^{(\dot{l}+1)}(T)$ . Then the number of colorings by the Alexander quandle
$\Lambda_{p}/J$ is equal to the cardinality of the module $\Lambda_{p}/J\oplus\oplus_{\dot{1}=0}^{n-2}\{\Lambda_{p}/(e:(T), J)\}$ .

Alternatively, acoloring can be described as aquandle homomorphism as follows. Classical
knots have fundamental quandles that are defined via generators and relations. The theory of
quandle presentations is given acomplete treatment in [13]. The quandle relation $a*b=c$ holds
where $a$ is the generator that corresponds to the under-arc away from which the normal to the over-
arc points, $b$ is the generator that corresponds to the over-arc and $c$ corresponds to the under-arc
towards which the transversal’s normal points, see Fig. 2. Acoloring of aclassical knot diagram by
aquandle $X$ gives rise to aquandle homomorphism ffom the fundamental quandle to the quandle
$X$ .

Using Waldhausen’s theorem Joyce shows
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Theorem 2.2 [20, 29] If trvo knots in $\mathbb{R}^{3}$ have isomorphic fundamental quandles, then the knots
are equivalent up to orientations of $\mathbb{R}^{3}$ and the knots.

This fundamental fact was generalized:

Theorem 2.3 [13] The fundamental augmented rack is a complete invariant for irreducible serni-

framed links in closed connected 3-manif0lds.

See [13] for afull account of the notation and terminology. Using an interpretation of cocycle knot
invariants in terms of the canonical class $c(L)$ of alink $L$ , the above theorem was further generalized
to:

Theorem 2.4 [34] If $L$ , $M$ are two links $in$ $S^{3}$ such that there is an isomorphism $\phi$ offundamental
racks with $\phi_{*}(c(L))=c(M)$ , then $L$ and $M$ are isotopic.

3Quandle Homology and Cohomology Theories

In this section, we present the ordinary quandle homology theory. Originally, rack homology and
homotopy theory were defined and studied in [14], and amodification to quandle homology theory
was given in [7] to define aknot invariant in astate-sum form. Then they were generalized to a
twisted theory in [4]. The most general form of the quandle homology known to date is given in
[1]. Computations are found in $[8, 9]$ and also in [12, 27, 30] by other authors.

Let $C_{n}^{\mathrm{R}}(X)$ be the free abelian group generated by $n$-tuples $(x_{1}, \ldots, x_{n})$ of elements of aquandle
$X$ . Define ahomomorphism $\partial_{n}$ : $C_{n}^{\mathrm{R}}(X)arrow C_{n-1}^{\mathrm{R}}(X)$ by

$\partial_{n}(x_{1}, x_{2}, \ldots, x_{n})$

$= \sum_{i=2}^{n}(-1)^{i}[(x_{1},x_{2}, \ldots,x_{i-1},x_{i+1}, \ldots, x_{n})$

- $(x_{1}*x_{i}, x_{2}*x_{i}, \ldots, x_{i-1}*x_{i}, x_{i+1}, \ldots, x_{n})]$ (1)

for $n\geq 2$ and $\partial_{n}=0$ for $n\leq 1$ . Then $C_{*}^{\mathrm{R}}(X)=\{C_{n}^{\mathrm{R}}(X), \partial_{n}\}$ is achain complex.
Let $C_{n}^{\mathrm{D}}(X)$ be the subset of $C_{n}^{\mathrm{R}}(X)$ generated by $n$-tuples $(x_{1}, \ldots, x_{n})$ with $x_{i}=x_{i+1}$ for some

$i\in\{1, \ldots, n-1\}$ if $n\geq 2$;otherwise let $C_{n}^{\mathrm{D}}(X)=0$ . If $X$ is aquandle, then $\partial_{n}(C_{n}^{\mathrm{D}}(X))\subset$

$C_{n-1}^{\mathrm{D}}(X)$ and $C_{*}^{\mathrm{D}}(X)=\{C_{n}^{\mathrm{D}}(X), \partial_{n}\}$ is asub-complex of $C_{*}^{\mathrm{R}}(X)$ . Put $C_{n}^{\mathrm{Q}}(X)=C_{n}^{\mathrm{R}}(X)/C_{n}^{\mathrm{D}}(X)$

and $C_{*}^{\mathrm{Q}}(X)=\{C_{n}^{\mathrm{Q}}(X), \theta_{n}\}$ , where $y_{n}$ is the induced homomorphism. Henceforth, all boundary
maps will be denoted by $\partial_{n}$ .

For an abelian group $G$ , define the chain and cochain complexes

$C_{*}^{\mathrm{W}}(X;G)=C_{*}^{\mathrm{W}}(X)\otimes G$ , $\partial=\partial\otimes \mathrm{i}\mathrm{d}$; (2)
$C_{\mathrm{W}}^{*}(X;G)=\mathrm{H}\mathrm{o}\mathrm{m}(C_{*}^{\mathrm{W}}(X), G)$ , $!=\mathrm{H}\mathrm{o}\mathrm{m}(\partial, \mathrm{i}\mathrm{d})$ (3)

in the usual way, where $\mathrm{W}=\mathrm{D}$ , $\mathrm{R}$ , Q.
The groups of cycles and boundaries are denoted respectively by $\mathrm{k}\mathrm{e}\mathrm{r}(\partial)=Z_{n}^{\mathrm{W}}(X;G)\subset$

$C_{n}^{\mathrm{W}}(X;G)$ and ${\rm Im}(\partial)=B_{n}^{\mathrm{W}}(X;G)\subset C_{n}^{\mathrm{W}}(X;G)$ while the cocycles and coboundaries are de-
noted respectively by $\mathrm{k}\mathrm{e}\mathrm{r}(\mathrm{d})=Z_{\mathrm{W}}^{n}(X;G)\subset C_{\mathrm{W}}^{n}(X;G)$ and ${\rm Im}(\partial)=B_{\mathrm{W}}^{n}(X;G)\subset C_{\mathrm{W}}^{n}(X;G)$ . In
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particular, aquandle 2-cocycle is an element $\phi\in Z_{\mathrm{Q}}^{2}(X;G)$ , and the equalities

$\phi(x, z)+\phi(x*z, y*z)$ $=$ $\phi(x*y, z)+\phi(x, y)$

and $\phi(x,x)$ $=$ 0

are satisfied for all $x,y$, $z\in X$ .
The $n\mathrm{t}\mathrm{h}$ quandle homology group and the $n\mathrm{t}\mathrm{h}$ quandle cohomology group [7] of aquandle $X$

with coefficient group $G$ are

$H_{n}^{\mathrm{Q}}(X;G)$ $=$ $H_{n}(C_{*}^{\mathrm{Q}}(X;G))=Z_{n}^{\mathrm{Q}}(X;G)/B_{n}^{\mathrm{Q}}(X;G)$,
$H_{\mathrm{Q}}^{n}(X;G)$ $=$ $H^{n}(C_{\mathrm{Q}}^{*}(X;G))=Z_{\mathrm{Q}}^{n}(X;G)/B_{\mathrm{Q}}^{n}(X;G)$ . (4)

The following developments have been made recently.

$\bullet$ The conjecture made in [9] on the long exact homology sequence was proved by Litherland
and Nelson in [27]: the long exact sequence of quandle homology

$\ldotsarrow H_{n}^{\mathrm{D}}(X;A)arrow H_{n}^{\mathrm{R}}(X;A)arrow H_{n}^{\mathrm{Q}}(X;A)arrow H_{n-1}^{\mathrm{D}}(X;A)arrow\cdots$

splits into short exact sequences

$0arrow H_{n}^{\mathrm{D}}(X;A)arrow H_{n}^{\mathrm{R}}(X;A)arrow H_{n}^{\mathrm{Q}}(X;A)arrow \mathrm{O}$ .

$\bullet$ Mochizuki has computed several key cohomology groups. We highlight some of his results.
First,

$H_{\mathrm{Q}}^{3}(h; \mathbb{Z}_{p})\cong \mathbb{Z}_{p}$,

and he gives an explicit expression for agenerating cocycle. He gives explicit 2-c0cycles
for Alexander quandles over afield $K$ thereby computing $H_{\mathrm{Q}}^{2}(K[T,T^{-1}]/(T-\omega);K)$ for
$\omega$ $\neq 0,1$ . He shows that dihedral quandles of odd order have vanishing rational cohomology
in all dimensions. This was shown independently in [27].

$\bullet$ Etingof and Grana [12] have computed the rational cohomology of any finite quandle in all
dimensions. In particular, they show that the bounds on the rank of the betti numbers given
in [9] are equalities. Furthermore, they relate the 2-dimensional quandle homology to group
cohomology. Let $X$ be aquandle and $G_{X}$ be its enveloping group: $G_{X}=\langle x\in X$ : $y^{-1}xy=$

$x*y\rangle$ . If $A$ is atrivial $G_{X}$-module(as is the case with ordinary quandle homology), then

$H_{\mathrm{Q}}^{2}(X;A)\cong H^{1}$ ( $G_{X}$ ;Fun(X, A))

where Fun(X, A) denotes the set of functions.
$\bullet$ Andruskiewitsch and Grana [1] have developed the theory of quandle and rack cohomology

further. They have developed acohomology theory that encompasses those in [4] and Oht-
suki’s theory [32]. Furthermore, their primary interest is in the classification of certain pointed
Hopf algebras called Nichols algebras. The quandle cohomology plays acentral role here.

$\bullet$ Using dynamical cocycles, Grana [17] classified indecomposable racks of order $p^{2}$ for any prime
$\mathrm{P}$ . Another classification theorem was proved by Nelson [31] who described isomorphism
classes of Alexander quandles by the submodules ${\rm Im}(1-T)$ .
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Figure 3: The untwisted 2-cocycle condition and type III move

4Cocycle Knot Invariants

Cocycle knot invariants of classical and virtual knots

Let $K$ be aclassical knot or link diagram. Let afinite quandle $X$ , and an (untwisted) quandle
2-cocycle $\phi\in Z_{\mathrm{Q}}^{2}(X;A)$ be given. A(Boltzmann) weight, $B(\tau, C)$ (that depends on $\phi$), at acrossing
$\tau$ is defined as follows. Let $C$ denote acoloring $C$ : $\mathcal{R}arrow X$ . Let $\beta$ be the over-arc at $\tau$ , and $\alpha$ , $\gamma$ be
under-arcs such that the normal to $\beta$ points from $\alpha$ to $\gamma$ , see Fig. 2. Let $x=C(\alpha)$ and $y=C(\beta)$ .
Then define $B(\tau,C)=\phi(x, y)^{\epsilon(\tau)}$ , where $\mathrm{e}(\mathrm{r})=1$ or -1, if (the sign of) the crossing $\tau$ is positive
or negative, respectively. By convention, the crossing in Fig. 2is positive if the orientation of the
under-arc points downward.

The (quandle) cocycle knot invariant is defined by the state-sum expression

$\Phi(K)=\sum_{C}\prod_{\tau}B(\tau,C)$ .

The product is taken over all crossings of the given diagram $K$ , and the sum is taken over all
possible colorings. The values of the partition function are taken to be in the group ring $\mathbb{Z}[A]$

where $A$ is the coefficient group written multiplicatively. The state-sum depends on the choice of
2-cocycle $\phi$ . This is proved in [7] to be aknot invariant. Figure 3shows the invariance of the
state-sum under the Reidemeister type III move. The sums of cocycles, equated before and after
the move, is the 2-cocycle condition.

Relations to braid group representations and quantum invariants are studied in [16], see also
[10] for aviewpoint from the bracket state-sum form and Dijkgraaf-Witten invariants
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Cocycle Invariants for Knotted Surfaces

The state-sum invariant is defined in an analogous way for oriented knotted surfaces in 4-space
using their projections and diagrams in 3-space. Specifically, the above steps can be repeated as
follows, for afixed finite quandle $X$ and aknotted surface diagram $K$ .

6 $(\mathrm{p}, \mathrm{q}, \mathrm{r})$

Figure 4: Colors at double curves and 3-cocycle at atriple point

$\bullet$ The diagrams consist of double curves and isolated branch and triple points [11]. Along the
double curves, the coloring rule is defined using normals in the same way as classical case, as
depicted in the left of Fig. 4.

\bullet The sign $\epsilon(\tau)$ of atriple point $\tau$ is defined [11] in such away that it is positive if and only if
the normals to top, middle, bottom sheets, in this order, match the orientation of 3-space.

$\bullet$ For acoloring $C$ , the Boltzman weight at atriple point $\tau$ is defined by $B(\tau,C)$ $=$

$\theta(x, y, z)^{\epsilon(\tau)}$ , where $\theta$ is a3-cocycle, $\theta\in Z_{\mathrm{Q}}^{3}(X;A)$ . In the right of Fig. 4, the triple point $\tau$

is positive, so that $\mathrm{B}(\mathrm{t},\mathrm{C})=\theta(p, q, r)$.

\bullet The state-sum is defined by $\Phi(K)=\sum_{C}\prod_{\tau}\mathrm{B}(\mathrm{t},\mathrm{C})$ .

Recall that afunction $\theta:X\cross X\cross Xarrow A$ is aquandle 3–cocycle if

$\theta(p,r, s)+\theta(p*r, q*r,s)+\theta[p,q,r)$ $=$ $\theta[p$ $*q,r$, $s)+\theta(p,q, s)+\theta(p*s,q*s,r *s)$

$\theta[p,p,q$) $=$ 0
$\theta(p,q,q)$ $=$ 0

By checking the analogues of Reidemeister moves for knotted surface diagrams, called Roseman
moves, it was shown in [7] that $\Phi(K)$ is an invariant, called the (quandle) cocycle invariant of
knotted surfaces.

The value of the state-sum invariant depends only on the cohomology class represented by the
defining cocycle. In particular, acoboundary will simply count the number of colorings of aknot
or knotted surface by the quandle $X$ .
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Applications

Important topological applications have been obtained using the cocycle invariants for knotted
surfaces.

$\bullet$ The 2-twist spun trefoil $K$ and its orientation-reversed counterpart $-K$ have shown to have
distinct cocycle invariants using acocycle in $Z_{Q}^{3}(R_{3;}\mathbb{Z}_{3})$ , providing aproof that $K$ is non-
invertible [7]. The higher genus surfaces obtained from $K$ by adding arbitrary number of
trivial 1-handles are also non-invertible, since such handle additions do not alter the cocycle
invariant. This result in higher genus cases is not immediately obtained from $[18, 35]$ , although
higher genus generalizations of the Farber-Levine pairing [25] can be used.

$\bullet$ Cocycle invariants for twist spun $($ 2; $n)$ -torus knots were computed using Maple [8] for some
quandles. Computer-free calculations and general formulas were obtained later in [37] using
explicit formulas of 3-cocycles provided in [30] for dihedral quandles. Mochizuki’s formulas
were also used for the following geometric application.

$\bullet$ The projection of the 2-twist spun trefoil was shown to have at least four triple points [38].

$\bullet$ The projection of the 3-twist spun trefoil was shown to have at least six triple points [39].
The cocycle employed here appeared in [8]. Satoh and Shima gave aset of linear equations
among numbers of colored triple points to give algebraic lower bounds on the number of triple
points. They have developed acomputer program to compute these bounds.

Colorings of knotted surfaces in relation to dynamical cocycles are discussed in Section 6,
that would provide the first step towards extending their results.

5Extension theory of quandles

Let $X$ be aquandle, and for agiven abelian coefficient group $A$ , take a2-cocycle $\phi\in Z_{\mathrm{Q}}^{2}(X;A)$ .
Let $E=A\cross X$ and define abinary operation by $(a_{1}, x_{1})*(a_{2}, x_{2})=(a_{1}+\phi(x_{1},x_{2}),$ $x_{1}*x_{2})$ . It was
shown in [4] that $(E, *)$ defines aquandle, called an abelian (or central) extension, and is denoted
by $E=E(X, A, \phi)$ . (This is in parallel to central extension of groups, see Chapter IV of [3].) The
following examples were given in [4].

$\bullet$ For any positive integer $q$ and $m$ , the quandle $E=W_{m+1}=\mathbb{Z}_{q}[T, T^{-1}]/(1-T)^{m+1}$ is an
abelian extension of $X=W_{m}=\mathbb{Z}_{q}[T, T^{-1}]/(1-T)^{m}$ over $\mathbb{Z}_{q}:E=E(X, \mathbb{Z}_{q}, \phi)$ , for some
$\phi\in Z_{\mathrm{Q}}^{2}(X;\mathbb{Z}_{q})$ .

$\bullet$ For any positive integers $q$ and $m$ , $E=U_{m+1}=\mathbb{Z}_{q^{m+1}}[T, T^{-1}]/(T-1+q)$ is an abelian
extension $E=E(\mathbb{Z}_{q^{m}}[T,T^{-1}]/(T-1+q), \mathbb{Z}_{q}, \phi)$ of $X=U_{m}=\mathbb{Z}_{q^{m}}[T,T^{-1}]/(T-1+q)$ for
some cocycle $\phi\in Z_{\mathrm{Q}}^{2}(X;\mathbb{Z}_{q})$ .

For these quandles, explicit formulas were obtained in [4] using extensions as follows.

$\bullet$ Represent elements of $E=W_{m+1}$ by $A=\mathrm{A}\mathrm{m}(1-T)^{m}+\cdots+A_{1}(1-T)+A_{0}$ , where $A_{j}\in \mathbb{Z}_{q}$ ,
$j=0$ , $\ldots$ , $m$ . Define $f$ : $E=W_{m+1}arrow \mathbb{Z}_{q}\cross X(=W_{m})$ by

$f(A)=(A_{m}(\mathrm{m}\mathrm{o}\mathrm{d} q), \overline{A}(\mathrm{m}\mathrm{o}\mathrm{d} (1-T)^{m-1}))$ ,
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where $\overline{A}=\sum_{j=0}^{m-1}A_{j}(1-T)^{j}$ . Then for $A$ , $B\in E$ , the quandle operation is computed by

$A*B$ $=$ $TA+(1-T)B$

$=$ $(A_{m}-A_{m-1}+B_{m-1})(1-T)^{m}+ \sum_{j=0}^{m-1}(A_{j}-A_{j-1}+B_{j-1})(1-T)^{j}$ ,

where $A_{-1}$ , $B_{-1}$ are understood to be zeros in the last summation, and the coefficients are
in $\mathbb{Z}_{q}$ . In $\mathbb{Z}_{q}[T,T^{-1}]/(1-T)^{m}$ , and we have $f(A*B)=(\phi(\overline{A},\overline{B}),\overline{A}*\overline{B})$ where $\phi(\overline{A},\overline{B})=$

$B_{m-1}-A_{m-1}$ . Hence $f$ yields an isomorphism.

$\bullet$ The cocycle $\phi$ has adescription using asection. Let

$s:\mathbb{Z}_{q}[T,T^{-1}]/(1-T)^{m}arrow \mathbb{Z}_{q}[T,T^{-1}]/(1-T)^{m+1}$

be aset-theoretic section defined by

$s(_{j=0}^{m-1} \sum Aj(1-T)^{j})=\sum_{j=0}^{m-1}Aj(1-T)^{j}$ $\mathrm{m}\mathrm{o}\mathrm{d} (1-T)^{m+1}$ .

Then we have $\overline{s(X)}*\overline{s(\mathrm{Y})}=\overline{s(X*\mathrm{Y})}$ for any $X$, $\mathrm{Y}\in \mathbb{Z}_{q}[T,T^{-1}]/(1-\mathrm{T})\mathrm{m}$ , so that $[s(X)*$
$s(\mathrm{Y})-s(X*\mathrm{Y})]$ is divisible by $(1-T)^{m}$ , and we have

$\phi(\overline{A},\overline{B})=[s(A)*s(B)-s(A*B)]/(1-T)^{m}\in \mathbb{Z}_{q}$ .

$\bullet$ For $E=U_{m+1}$ , represent elements of $\mathbb{Z}_{q^{m+1}}$ by $\{0, 1, \ldots,q^{m+1}-1\}$ and express them in their
$q^{m+1}$-ary expansion:

$A=A_{m}q^{m}+\cdots+A_{1}q+A_{0}\in \mathbb{Z}_{q^{m+1}}$ ,

where $0\leq A_{\mathrm{j}}<q$ , $j=0$, $\ldots$ , $m$ . Then $E=U_{m+1}$ and $X=U_{m}$ have asimilar description as
above.

An extension theory of quandles for “twisted” cohomology cocycles was developed in [5], and it
provided more general extension theories. In the twisted case, the coefficient group is taken to be a
A-module, thus has an Alexander quandle structure, and the extension $AE(X, A, \phi)=(A\cross X, *)$

is defined by $(a_{1}, x_{1})*(a_{2}, x_{2})=(a_{1}*a_{2}+\phi(x_{1}, x_{2}),x_{1}*x_{2})$ for $\phi\in Z_{\mathrm{T}\mathrm{Q}}^{2}(X;A)$ , and is called an
Alexander extension of $X$ by $(A, \phi)$ , where the subscript TQ represents the twisted theory. For
example, $R_{p^{m}}$ is an Alexander extension of $R_{p^{m-1}}$ by $R_{p}:R_{p^{m}}=AE(h^{m-1}, R_{p}, \phi)$ , for some
$\phi\in Z_{\mathrm{T}\mathrm{Q}}^{2}(l*m-1;h)$ .

Ohtsuki [32] defined anew cohomology theory for quandles and an extension theory, together
with alist of problems in the subject. Further generalizations of extensions by dynamical cocycles
as defined in [1] will be discussed and used for coloring twist spun knots in the next section.

6Extensions of quandles and colorings of twist-spun knots
Extensions by dynamical cocycles

This subsection is abrief summary of aquandle extension theory by Andruskiewitch and Grana
[1]. The notation has been changed below from that given in [1] to match our conventions in this
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paper. Let $X$ be aquandle and $S$ be anon-empty set. Let $\alpha$ : $X\cross Xarrow \mathrm{P}\mathrm{u}\mathrm{n}(S\cross S, S)=S^{S\cross S}$ be
afunction, so that for $\sigma$, $\tau\in X$ and $a$ , $b\in S$ we have $\alpha_{\sigma,\tau}(s, t)\in S$ .

Then it is checked by computations that $S\cross X$ is aquandle by the operation $(a, \sigma)*(b, \tau)=$

$(\alpha_{\sigma,\tau}(a, b)$ , $\sigma*\tau)$ , where $\sigma*\tau$ denotes the quandle operation in $X$ , if and only if $\alpha$ satisfies the
following conditions:

1. $\alpha_{\sigma,\sigma}(a, a)=a$ for all $\sigma\in X$ and $a\in S$ ;

2. $\alpha_{\sigma,\tau}(-, b):Sarrow S$ is abijection for all $\sigma$, $\tau\in X$ and for all $b\in S$ ;

3. $\alpha_{\sigma*\tau,\eta}(\alpha_{\sigma,\tau}(a, b)$ , $c)=\alpha_{\sigma*\eta,\tau*\eta}(\alpha_{\sigma,\eta}(a, c),$ $\alpha_{\tau,\eta}(b, c))$ for all $\sigma$ , $\tau$ , $\eta\in X$ and $a$ , $b$ , $c\in S$ .

Such afunction $\alpha$ is called adynamical quandle cocycle. The quandle constructed above is
denoted by $S\cross_{\alpha}X$ , and is called the extension of $X$ by adynamical cocycle $\alpha$ . The construction
is general, as they show:

Lemma 6.1 [1] Let $p:\mathrm{Y}arrow X$ be a surjective quandle homomorphism such that the cardinality of
$p^{-1}(x)$ is a constant for all $x\in X$ . Then $\mathrm{Y}$ is isomorphic to an extension $S\cross_{\alpha}X$ of $X$ by some
dynamical cocycle on a set $S$ .

Quandle extensions in wreath products

Let
$0arrow Narrow Garrow Hi\piarrow 1$

be asplit short exact sequence of groups that expresses the finite group $G$ as asemi-direct product
$G=N\mathrm{x}H$ , so that we have ahomomorphism $s$ : $Harrow G$ with $\pi\circ s=1_{H}$ . The elements of $G$

can be written as pairs $(x, \sigma)$ where $x\in N$ and $\sigma\in H$ . The multiplication rule in $C_{\tau}$ is given by
$(x, \sigma)\cdot$ $(y, \tau)=(x\sigma(y), \sigma\tau)$ , where $\sigma(y)$ denotes the action of $H$ on $N$ that gives $G$ the structure of
asemi-direct product.

Let $Q$ denote asubquandle of Conj(i/) (the group $H$ with the quandle structure given by
conjugation). Thus $Q$ is asubset of $H$ that is closed under conjugation. Let $\tilde{Q}=\{(x, \sigma) : \sigma\in Q\}$ ,
then $\tilde{Q}$ is aquandle by conjugation in $G$ . The group homomorphism $\pi$ : $Garrow H$ induces the
quandle homomorphism (denoted by the same letter) $\pi$ : $\overline{Q}arrow Q$ . Lemma 6.1 implies

Lemma 6.2 Suppose the cardinality $|\pi^{-1}(\sigma)|$ is independent of $\sigma\in Q$ . Then $\tilde{Q}$ is an extension $Q$

by a dynamical cocycle $\alpha$ : $Q\cross Qarrow S^{S\cross S}$ where $S$ is a set with cardinality $|\pi^{-1}(\sigma)|$ .

Now we specialize to the case that $Q$ is asubquandle of Conj $(\Sigma_{n})$ , where $\Sigma_{n}$ denotes the
symmetric group on $n$ letters, and $N=(\mathbb{Z}_{v})^{n}$ for some $v\in\{0,1, \ldots\}$ . (In case $v=0$, then $N$

is the direct product of the integers, and when $v=1$ then $N$ is trivial.) The action of $\Sigma_{n}$ is
given by permutation of the factors $\sigma(x_{1}, \ldots, x_{n})=\mathrm{a}(\mathrm{x})=(x_{\sigma(1)}, \ldots, x_{\sigma(n)})$, for $\sigma\in\Sigma_{n}$ and
$\vec{x}=(xj)_{j=1}^{n}\in(\mathbb{Z}_{v})^{n}$ . In this situation, $G=(\mathbb{Z}_{v})^{n}*$ $\Sigma_{n}$ is also called awreath product and denoted
by $G=(\mathbb{Z}_{v})\mathfrak{i}\Sigma_{n}$ . Hence the group operation in $G$ is written by

$(\vec{x}, \sigma)\cdot(\vec{y}, \tau)=(\vec{x}\sigma(y\gamma, \sigma\tau)$
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where $\sigma(\vec{y})=(y_{\sigma(1)}, \ldots, y_{\sigma(n)})$ .
It is well known that elements of $G$ can be represented by matrices with entries in $\{x^{j}\}$ as

follows. First, we represent the cyclic group $(\mathbb{Z}_{v})$ multiplicatively as ($x|x^{v}=1\rangle$ , and represent
$\vec{x}\in(\mathbb{Z}_{v})^{n}$ by $(x$:, ... ’

$x^{i_{n}})$ . Represent $\sigma\in\Sigma_{n}$ by an $(n\cross n)$ matrix $M(\sigma)$ acting on vectors of
$n$ letters ffom the left. It is amatrix with exactly one nonzero entry in each row and column,
and each non-zero entry is 1. The pair $(\vec{x},\sigma)$ is represented as amatrix At $($;, $\sigma)$ obtained from
$M(\sigma)$ by replacing the non-zero entry in the $j\mathrm{t}\mathrm{h}$ row by $x^{j}\dot{.}$ . The group composition in $G$ is matrix
multiplication of At $(\tilde{x}, \sigma)\mathrm{s}$ where 0 $\cdot x:=0$ and $xx^{j}:=x^{:+j}$ . For example, we write

$((x^{:}, x^{j},x^{k}),$(12) $)=(\begin{array}{lll}0 x\dot{.} 0x^{j} 0 00 0 x^{k}\end{array})$ ,

and

$((x^{\ell},x^{m},x^{p}), (123))=(\begin{array}{lll}0 0 x^{\ell}x^{m} 0 00 x^{\mathrm{p}} 0\end{array})$ .

The matrix product evaluates as

$(\begin{array}{lll}0 x\dot{.} 0x^{j} 0 00 0 x^{k}\end{array})$ . $(\begin{array}{lll}0 0 x^{\ell}x^{m} 0 00 x^{p} 0\end{array})=(\begin{array}{lll}X..+m 0 00 0 x^{\ell+j}0 x^{k+p} 0\end{array})$

which corresponds to $((x^{:+m},x^{\ell+j},x^{k+p}),$(23) $)$ . Meanwhile, the product

$((x^{\ell},x^{m},x^{p}),$(12) ) . $((x^{:},x^{j},x^{k}),$(12) $)=((x^{\ell+k},x^{m+:},x^{p+j}),$(13) $)$

is represented by the matrix

$(\begin{array}{lll}0 0 x^{\ell+k}0 x^{m+} 0x^{p+j} 0 0\end{array})$ .

Note that the cycles of $\Sigma_{n}$ act on $n$-letters from the left in this convention.
We take our subquandle $Q$ to be, for example, the dihedral quandle, $R_{n}$ , or asubset of agiven

conjugacy class that is itself closed under conjugation, such as $QS_{4}=\{(123), (142), (134), (243)\}\subset$

$\Sigma_{4}$ . We are interested in applications to knots herein, so we assume that $n$ is odd. Then for both
of $Q=R_{n}$ or $QS_{4}$ , an element $\sigma\in Q$ has afixed point in $\{$ 1, $\ldots$ , $n\}$ , and the matrix representation
$M(\sigma,\vec{x})$ of $(\sigma,\vec{x})$ has exactly one element along the diagonal. It is easy to see that the exponent
of the diagonal element is fixed under the conjugation action, so we restrict our attention to the
subquandle $Q(v)$ of $\tilde{Q}$ in which the non-zero diagonal element is 1. By Lemma 6.1, we see that
$Q(v)$ is also an extension of $Q$ by adynamical cocycle.

In the case of the dihedral quandle $Q=R_{n}$ for $n$ odd, we simplify the notation further. Consider
aregular $n$-gon whose vertices labeled with $\{$ 1, $\ldots$ , $n\}$ in this order, on which $R_{n}$ acts as reflections.
For $i=1$ , $\ldots$ , $n$ , let $\sigma i$ denote the reflection of aregular $n$-gon which fixes the vertex labeled $i$ .
Then $\sigma_{i}*\sigma j=\sigma_{2j-i}$ . Denote the element $(\vec{x},\sigma_{j})\in G$ where $\vec{x}=(x^{:_{1}}, \ldots,x^{\dot{l}_{\mathrm{j}-1}},1,x^{\dot{l}_{\mathrm{j}+1}}, \ldots,x^{\dot{l}n})$ ,
by $\sigma j$ (il, $\ldots,\hat{\iota}j$ , $\ldots$ , $i_{n}$ ) where $\hat{lj}$ indicates that the $j\mathrm{t}\mathrm{h}$ element in this list is missing. For example,
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set a $=\sigma_{1}$ , b $=\sigma_{2}$ , and c $=\sigma_{3}$ in $R_{3}$ and the elements of $R_{3}(v)$ are denoted by aj,k, $b_{i,k}$ , and $c_{\mathrm{z},j}$ ,

where i,j, k $\in \mathbb{Z}/v$ . For convenience we summarize the multiplication table for $R_{3}(v)$ as follows,

where $r*c$ indicates that the table represents (row)*(column).

Coloring twist-spun knots by extended quandles

Now we use the above extensions of quandles to color twist-spun knots.

(1) (2) (3) (4) (5)

Figure 5: The general method of twist spinning

Example 6.3 1. The $2v$ -twist spun trefoil is non-trivially colorable by the quandle $R_{3}(v)$ .
2. The $3u$ -twist spun trefoil is non-trivially colorable by the quandle $QS_{4}(u)$ .
3. The $2v$ -twist spun figure 8knot is non-trivially colorable by $R_{5}(v)$ .

Proof. The schematic diagram indicated in Fig. 5illustrates Satoh’s method [36] for obtaining the
twist spun knot from a(1 –1)-tangle $F$ whose closure is agiven classical knot $K$ .

From left to right in the diagram, amovie of one full twist of atangle is depicted. After
repeating $k$ full twists, the tangle is identified with the original one to form the $k$ twist spun
knot of $K$ . Reidemeister moves performed in the course of the isotopy correspond to critical or
singular points on the projection, see [11], for example, for details. In particular, triple points on
the projection correspond to type III moves, and they appear when the tangle $F$ goes over and
under the arc of axis, in steps between (1) and (2), (3) and (4) in the figure. The quandle colors
assigned to $F$ changes when $F$ goes under the axis, between (3) and (4), and every quandle element
$b$ assigned to an arc in $F$ changes to the quandle element $b*a$ if the arc of axis is colored by $a$ .

First we consider even twist spun trefoils. If we color the arcs of the trefoil as in the top left of
Fig. 6with color $a_{j,k}$ on the main arc of the axis of rotation, and color $b_{m,p}$ on the right, then such
acoloring extends to the entire trefoil if $j+k=m+p$. After each pair of twists the indices $a$ , $b$ ,
and $c$ return to the arcs of the diagram, but the subscripts $\mathrm{r}\mathrm{a},\mathrm{p}$, $k-p$ and $j+p$ are incremented
to $k+j+m$, $p-k-j$ , $k+m$, and $p-k$ respectively. After $2v$ full twists, the colors on the -arc
and the c-axc become $b_{m+v(j+k),p-v(k+j)}$ and $c_{(k-p)+v(k+j),(p+j)-v(p+m)}$ as indicated in the figure.
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Figure 6: The $2v$-twist spun trefoil

(The subscripts in the figure are subjected to the identity $j+k=m+p$ to obtain this result.)
Thus the extension colors the $2v$-twist spun trefoil if $v\equiv 0$ .

Next we consider acoloring of the trefoil by $QS_{4}$ . We label the elements of $(QS)_{4}(u)$ as follows:

$[0, j, k, \ell]=(\begin{array}{llll}1 0 0 00 0 x^{j} 00 0 0 x^{k}0 x^{\ell} 0 0\end{array})$ , $[i,$ $0$ , $k$ , $\ell\rfloor=(\begin{array}{llll}0 0 0 x^{|}0 1 0 0x^{k} 0 0 00 0 x^{\ell} 0\end{array})$

$[i,j, 0,\ell]=(\begin{array}{llll}0 x^{*} 0 00 0 0 x^{j}0 0 1 0x^{\ell} 0 0 0\end{array})$ , $[i,j, k, 0]=(\begin{array}{llll}0 0 x 0x^{j} 0 0 00 x^{k} 0 00 0 0 1\end{array})$

$[0.\mathrm{j}, \mathrm{k}1]$

Figure 7: Coloring the trefoil with $\overline{(QS)}_{4}$

In the illustration of Fig. 7, an extension to acoloring by $(QS)_{4}(u)$ is indicated. The main
arc is colored [0,j, k, $\ell]$ and the right hand arc is colored [m, 0, n,p]. These colors induce the colo
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[k $-n+p,j+n, \ell-p,$0] on the remaining arc of the diagram. Asufficient condition for this to be
acoloring of trefoil is that $j+k+\ell=m+n+p=2(k+p)$ .

We follow the coloring of the right hand arc (colored [m, 0, n,p]) for 6twists.

$[m, 0, n, p]$ $*[0,jk,\ell]- \mathit{3}$ $[\ell+m, k-\ell+p, 0, n-k]$

$*1_{-\neq^{k,\ell]}}^{0,j}$ $[j+\ell+m, n-k-\ell, k+p-j, 0]$

$*[0,jk,\ell]\lrcorner$ $[j+k+\ell+m, 0, -j-k-\ell+n, p]$

$*[0,jk,\ell]- S$ $[j+k+2\ell+m, k-\ell+p, 0, n-j-2k-\ell]$

$*[0,jk,\ell]- 4$ $[2j+k+2\ell+m, -j-2k-2\ell+n, -j+k+p, 0]$

$*[0,jk,\ell]\lrcorner$ $[2(\mathrm{i}+k+l)+m, 0, n-2(j+k+\ell), p]$

Observe that the 3-twist spun trefoil colors non-trivially with $QS_{4}(2)$ , since $2(k+p)=0=$
$(j+k+\ell)$ in this case. The result follows by induction.

Asimilar calculation applies to the figure 8knot and $R_{5}$ . We leave the details to the reader. $\blacksquare$

7Variations of cocycle knot invariants

The following variations of cocycle knot invariants for classical knots have been considered.

$\bullet$ For alink $L=K_{1}\cup\cdots\cup K_{n}$ , let $\mathcal{T}_{i}$ , $i=1$ , $\ldots$ , $n$ , be the set of crossings at which the under-arcs
belong to the component $K_{i}$ . Then it was observed [4] that $\vec{\Phi}(K)=(\sum_{C}\prod_{\tau\in \mathcal{T}}\dot{.}B(\tau,C))_{i=1}^{n}$

is alink invariant, strictly stronger than the single state-sum.

$\bullet$ Lopes [28] observed that the family $\{\prod_{\tau}B(\tau, C)\}_{C\in \mathrm{C}\mathrm{o}1}$ is aknot invariant, without taking
summation. Here, Col denotes the set of colorings. In particular, infinite quandles can be
used for coloring in this case. He also defined for links $L=K_{1}\cup\cdots\cup K_{n}$ the vector version
$( \{\prod_{\tau\in \mathcal{T}}.\cdot B(\tau, C)\}_{C\in \mathrm{C}\mathrm{o}1})_{i=1}^{n}$.

Now we combine these variations to define the following generalized cocycle invariant.

Definition 7.1 Let $X$ be aquandle, $\phi\in \mathbb{Z}_{\mathrm{Q}}^{2}(X;A)$ , where $A$ is an abelian group, $C$ acoloring of
$L$ by $X$ , and $B(\tau, C)$ the Boltzmann weight at acrossing $\tau$ for acoloring $C$ . Let $L=K_{1}\cup\cdots\cup K_{f}$

be alink and $\mathcal{T}_{i}$ , $i=1$ , $\ldots$ , $r$ , be the set of crossings of $L$ such that the under-arcs belong to $K_{\dot{l}}$ .
Define

$\tilde{\Psi}(L)=\{(\prod_{\tau\in \mathcal{T}_{1}}B(\tau,C),$ $\ldots,\prod_{\tau\in \mathcal{T}_{r}}B(\tau,C))\}_{C\in \mathrm{C}\mathrm{o}1}$

This version of afamily of vectors is potentially stronger than Lopes’s version of avector of
families. For example, the two distinct families of vectors $\{(1, t), (t, 1)\}$ and $\{(1,1), (t, t)\}$ give rise
to the same vector of families $(\{1, t\}, \{1, t\})$ . As examples, we evaluate the invariants for Whitehead
link and Borromean rings, using extension cocycles constructed in Section 5. We use the coefficient
group $A=\mathbb{Z}_{q}=\{t^{n}|n=0,1, \ldots, q-1\}$ for apositive integer $q$ .
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Figure 8: The Whitehead link

Example 7.2 Let $X=W_{m}=\mathbb{Z}_{q}[T,T^{-1}]/(1-T)^{m}$ or $X=U_{m}=\mathbb{Z}_{q^{m}}[T,T^{-1}]/(T-1+q)$ , and $L$

the Whitehead link. Then the generalized cocycle invariant is

$\tilde{\Psi}(L)=\{$

for $m=1,2$ ,

for $m\geq 3$ .

Consequently,

$\vec{\Phi}(L)=\{$

$(q^{2m},q^{2m})$ for $m=1,2$,
$(q^{m+2}(t^{q-1}+\cdots+t+1),q^{m+2}(t^{q-1}+\cdots+e - \mathit{1}- l))$ for $m\geq 3$ .

Proof. Let $X=\mathbb{Z}_{q}[T,T^{-1}]/(1-T)^{m}$ . The case for $X=\mathbb{Z}_{q^{m}}[T, T^{-1}]/(T-1+q)$ is similar. Pick base
points $b_{1}$ and $b_{2}$ on the components $K_{1}$ and $K_{2}$ , respectively, of the Whitehead link $L=K_{1}\cup K_{2}$

as depicted in Fig. 8, and $\mathrm{t}\mathrm{r}\mathrm{a}\mathrm{c}\mathrm{e}$ each component in the given orientation of the link. The colors
(elements of $X$ ) assigned to the arcs that appear in this order are $w_{1}$ , $w_{2}$ for $K_{1}$ , and $w_{3}$ , $\ldots$ , $w_{6}$ for
$K_{2}$ as depicted. The crossing at the initial point of the arc colored by $w_{i}$ is defined to be $\tau.\cdot$ . First
we determine the set of colorings: For $m\geq 3$ , for two elements $w_{1}$ , $w_{3}\in X$ assigned to the top two
arcs of the Whitehead link $L$ as shown in Fig. 8, there is acoloring of $L$ by $X$ which restricts to
the given $w_{1}$ , $w_{3}$ if and only if

$w3-w_{1}\equiv 0$ $(\mathrm{m}\mathrm{o}\mathrm{d} (1-T)^{m-3})$ for $\mathrm{w}\mathrm{u}\mathrm{w}3\in \mathbb{Z}_{q}[T,T^{-1}]/(1-\mathrm{T})\mathrm{m}$ .

For $m=1,2$ , there is such acoloring for any $w_{1}$ , $w_{3}\in X$ . This can be computed as follows.
Represent the elements of $X=\mathbb{Z}_{q}[T, T^{-1}]/(1-T)^{m}$ by $a=a_{m-1}(1-T)^{m-1}+\cdots+a_{1}(1-T)+a_{0}$ ,

where $a_{j}\in \mathbb{Z}_{q}$ . Note that (1 –(I – $\mathrm{T}$)) $(1+(\mathrm{I}-T)+ \cdots +(1-T)^{m-1})$ $=1$ in $X$ , so $T^{-1}=$

$1+(1-T)+\cdots+(1-T)^{m-1}$ . Note also that $a\overline{*}b=T^{-1}a+(1-T^{-1})b$.
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We have the following calculations for each arc:

$w_{2}$ $=$ $w_{1}*w_{3}=w_{1}+(1-T)(w_{3}-w_{1})$

$w_{4}$ $=$ $w_{3}*w_{2}=w_{3}+(1-T)(w_{2}-w_{3})=(w_{3}-w_{1})(1-T)^{2}-(w_{3}-w_{1})(1-T)+w_{3}$

$w_{6}$ $=$ $w_{3}\overline{*}w_{4}=T^{-1}w_{3}+(1-T^{-1})w_{4}=(w_{3}-w_{1})(1-T)^{2}+w_{3}$

tie5 $=$ $w_{4}*w_{6}=w_{4}+(1-T)(w_{6}-w_{4})=2(w_{3}-w_{1})(1-T)^{2}-(w_{3}-w_{1})(1-T)+w_{3}$.

These relations are obtained using the top four crossings ( $\tau_{2}$ , $\tau_{4}$ , $\tau_{3}$ , and T5, respectively). The
bottom two crossings ( $\tau_{6}$ and 71) of the link give rise to the next two relations. The first relation is
$w_{6}*w_{2}=w_{5}$ for the second bottom crossing, giving $(\mathrm{w}\mathrm{i}-w_{3})(1-T)^{3}\equiv 0$ $(\mathrm{m}\mathrm{o}\mathrm{d} (1-T)^{m})$ . The
second relation that corresponds to the bottom crossing is $w_{1}*w_{6}=w_{2}$ giving $(w_{3}-w_{1})(1-T)^{3}\equiv 0$

$(\mathrm{m}\mathrm{o}\mathrm{d} (1-T)^{m})$ , as claimed above.
Now we determine the contribution to the invariant for each coloring. Recall that $\phi(w_{1}, w_{3})=$

$\mathrm{s}(\mathrm{w}3)*s(w_{3})-s(w_{1}*\mathrm{w}\mathrm{s})$ $(1-\mathrm{T})\mathrm{m}$ . Since $(w_{3}-\mathrm{w}\mathrm{i})(1-T)^{3}\equiv 0$ $(\mathrm{m}\mathrm{o}\mathrm{d} (1-T)^{m})$ , we see that
the contribution is

$\phi(w_{1}, w_{3})-\phi(w_{1}, w_{6})$

$=$ $[s(w_{1})*s(w_{3})-s(w_{1}*w_{3})]/(1-T)^{m}$

$-[s(w_{1})*s(w_{3})+(w_{3}-w_{1})(1-T)^{3}-s(w_{1}*w_{3})]/(1-T)^{m}$

$=$ $-(w_{3}-w_{1})(1-T)^{3}/(1-T)^{m}$ $(\mathrm{m}\mathrm{o}\mathrm{d} q)$ ,

for the first component, and for the second component, computations show that

$\phi(w_{3}, w_{2})-\phi(w_{6}, w_{2})+\phi(w_{6}, w_{4})+\phi(w_{4}, w_{6})=(w_{3}-w_{1})(1-T)^{3}/(1-T)^{m}$ $(\mathrm{m}\mathrm{o}\mathrm{d} q)$ .

$(w_{3}-\mathrm{w}\mathrm{i})(1-T)^{3}=k(1-T)^{m}=(k_{0}+k_{1}(1-T)+k_{2}(1-T)^{2})(1-T)^{m}=k_{0}(1-T)^{m}\in E$.

Thus the contribution to the invariant for the first and second components are $t^{-k_{0}}$ and $t^{k_{0}}$ , re-
spectively.

To find the number of colorings conrtibuting to $t^{-k_{0}}$ and $t^{k_{0}}$ , fix $k_{0}$ . We have $q^{m}$ choices for
$w_{1}$ and $q^{2}$ choices for $k$ . Then $w_{3}$ is uniquely determined by $w_{3}=w_{1}+k(1-T)^{m-3}$ . In total, the
contribution is $q^{m}q^{2}=q^{m+2}$ for each $t^{-k_{0}}$ and $t^{k_{0}}$ . Setting $n=-k_{0}$ we obtain the result. $\blacksquare$

Example 7.3 Let $X=\mathbb{Z}_{q}[T, T^{-1}]/(1-T)^{m}$ or $X=\mathbb{Z}_{q^{m}}[T,T^{-1}]/(T-1+q)$ , and $L$ the Borromean
rings. Then the generalized cocycle invariant is

$\vec{\Psi}(L)=\{$

for $m=1$ ,

for $m\geq 2$ .
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$\mathrm{y}_{2}$
$\mathrm{b}$

$\mathrm{K}_{2}$ $\mathrm{K}_{3}$

Figure 9: Borromean Rings

Consequently,

$\tilde{\Phi}(L)=\{$

$(q^{3m}, q^{3m}, q^{3m})$ for $m=1$ ,
$(q^{m+2}(t^{q-1}+\cdots+t+1), q^{m+2}(t^{q-1}+\cdots+t+1)$ , $q^{m+2}(t^{q-1}+\cdots+t+1))$ for $m\geq 2$ .

Proof. Let $X=\mathbb{Z}_{q}[T,T^{-1}]/(1-T)^{m}$ and let $L$ be the Borromean rings as depicted in Fig. 9. The
case for $X=\mathbb{Z}_{q^{m}}[T, T^{-1}]/(T-1+q)$ is similar. Calculations are similar to the preceding example
and we give asketch. First we determine the set of colorings: For three elements $y_{1}$ , $y_{2}$ , $y_{3}\in X$

assigned to each outer arc in the diagram of $L$ , there is acoloring of $L$ by $X$ which restricts to the
given $y_{1},y_{2}$ , $y_{3}$ if and only if

$(y_{2}-y_{3})(1-T)^{2}\equiv 0$, $(y_{1}-y_{2})(1-T)^{2}\equiv 0$ and $(y_{3}-y_{1})(1-T)^{2}\equiv 0$.

The outer three crossings are used to describe $y_{4},y_{5}$ , $y_{6}$ in terms of the rest, and the inner three
crossings give the above relations.

Contributions to the invariant are computed as follows. The contribution for the first component
of $L$ colored by $y_{1}$ is $\phi(y_{1}, y_{2})-\phi(y_{1}, y_{2}*y_{3})=-(y_{3}-y_{2})(1-T)^{2}/(1-T)^{m}$ $(\mathrm{m}\mathrm{o}\mathrm{d} q)$ . For $m=1$ ,
the contribution is trivial, and the total number of colorings is $q^{3m}$ . For $m\geq 2$ , $(y_{3}-y_{2})(1-T)^{2}$ is
divisible by $(1-T)^{m}$ , so $y_{3}-y_{2}$ is uniquely written as $y_{3}-y_{2}=k(1-T)^{m-2}$ , where $k=k_{0}+k_{1}(1-T)$
and $k_{0}$ , $k_{1}\in\{0,1, \ldots, q-1\}$ . So

$(y_{3}-y_{2})(1-T)^{2}=k(1-T)^{m}=(k_{0}+k_{1}q)(1-T)^{m}=k_{0}(1-T)^{m}$,

and the first component contributes $t^{-k_{0}}$ to the invariant. For the second component of $L$ colored by
$y_{2}$ , similar calculations as above give the contribution $\phi(y_{2}, y_{3})-\phi(y_{2}, y_{3}*y_{1})=-(y_{1}-y_{3})(1-T)^{2}$,
which is divisible by $(1-T)^{m}$ so $y_{1}-y_{3}=(\ell_{0}+\ell_{1}(1-T))(1-T)^{m-2}$ and $\mathrm{t}\mathrm{h}\mathrm{e}\mathrm{r}\mathrm{e}\mathrm{f}\mathrm{o}\mathrm{r}\mathrm{e}-(y_{1}-y_{3})(1-$

$T)^{2}=-\ell \mathrm{o}(1-T)^{m}$ . The we obtain $y_{2}-y_{1}=-[(k_{0}+\ell_{0})+(k_{1}+\ell_{1})(1-T)](1-T)^{m-2}$ , so that
the third component contributes $t^{k_{0}+\ell_{0}}$ . Finally, the contribution to the invariant is the vector
$(t^{-k_{0}}, t^{-\ell_{0}}, t^{k_{0}+\ell_{0}})$ , where the entries correspond to the components $K_{1}$ , $K_{2}$ , $K_{3}$ , respectively. The
result follows. @

In the above examples, we see that the cocycle invariant is non-trivial when the given link is
colored by $X=\mathbb{Z}_{q}[T,T^{-1}]/(1-T)^{m}$ but not by $E=\mathbb{Z}_{q}[T, T^{-1}]/(1-T)^{m+1}$ , and the descrepancy
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in extending the coloring contributes to the invariant. This is the case in general, as proved in [4]

for the knot case. We rephrase the theorem in our situation and include asimilar proof for reader’s

convenience.
Let $K$ be aclassical or virtual knot or link. Let $C$ be acoloring of $K$ by $X$ . Let $E$ be aquandle

with asurjective homomorphism $p:Earrow X$ . If there is acoloring $C’$ of $K$ by $E$ such that for every
arc $a$ of $K$ , it holds that $p(C’(a))=C(a)$ , then $C’$ is called an extension of $C$ .

Theorem 7.4 Let

$\vec{\Psi}(L)=\{(\prod_{\tau\in \mathcal{T}_{1}}B(\tau,C),$ $\ldots,\prod_{\tau\in \mathcal{T}_{r}}B(\tau, C))\}_{C\in \mathrm{C}\mathrm{o}1}$

be the generalized cocycle invariant of a link $L=K_{1}\cup\cdots\cup K_{n}$ with a quandle $X$ and a cocycle
$\phi\in Z_{\mathrm{Q}}^{2}(X;A)$ for an abelian group A. Then $( \prod_{\tau\in \mathcal{T}_{1}}B(\tau,C)$ , $\ldots$ , $\prod_{\tau\in \mathcal{T}r}B(\tau,C))$ is a vector with
every entry 1for a coloring $C$ if and only if the coloring $C$ extends to a coloring of $L$ by $E(X, A, \phi)$ .

Proof. Let $C$ be acoloring whose contribution to $\vec{\Psi}(L)$ is (1, $\ldots$ , 1). Fix this coloring in what

follows. Pick abase point $b_{0}$ on acomponent $K_{i}$ of $L$ . Let $x\in X$ be the color on the arc $\alpha 0$

containing $b_{0}$ . Let $\alpha_{i}$ , $i=1$ , $\ldots$ , $n$ , be the set of arcs that appear in this order when the diagram
$K$ is traced in the given orientation of $K_{i}$ , starting from $b_{0}$ . Pick an element $a\in A$ and give acolor
$(a, x)$ on $\alpha_{0}$ , so that we define acoloring $C’$ by $E$ on $\alpha_{0}$ by $C’(\alpha_{0})=(a, x)\in E$ . We try to extend

it to the entire diagram by traveling the diagram from $b_{0}$ along the arcs $\alpha_{i}$ , $i=1$ , $\ldots$ , $n$ , in this
order, by induction.

Suppose $C’(\alpha_{i})$ is defined for $0\leq i<k$ . Define $C’(\alpha_{k+1})$ as follows. Suppose that the crossing
$\tau_{k}$ separating $\alpha_{k}$ and $\alpha_{k+1}$ is positive, and the over-arc at $\tau k$ is $\alpha j$ . Let $C’(\alpha k)=(a, x)$ and
$C(\alpha_{j})=y\in X$ . Then we have $C(\alpha_{k+1})=x*y\in X$ . Define $C’(\alpha_{k+1})=(a\phi(x, y),$ $x*y)$ in this case.

Suppose that the crossing $\tau_{k}$ is negative. Let $C’(\alpha_{k})=(a, x)$ and $C(\alpha_{j})=y\in X$ . Then if
$C(\alpha_{k+1})=z$ , then we have $z*y=x$ . Define $C’(\alpha_{k+1})=(a\phi(z, y)^{-1},$ $z)$ in this case.

Define $C’(\alpha_{i})$ inductively for all $i=0$, $\ldots$ , $n$ . Regard $\alpha_{0}$ as $\alpha_{n+1}$ , and repeat the above con-
struction at the last crossing $\tau_{n}$ to come back to $\alpha_{0}$ . By the construction we have $C’(\alpha_{n+1})=$

$(a \prod_{\tau}B(\tau,C),C(\alpha_{0}))$ , where $\prod_{\tau}\mathrm{E}(\mathrm{x},C)$ is the state-sum contribution (the product of Boltzmann
weights over all crossings) $\mathrm{o}\mathrm{f}C$ . This contribution is equal to 1by the assumption that $\prod_{\tau}B(\tau,C)$ $=$

$1$ , and we have awell-defined coloring $C’$ . Hence this color extends to $E(X, A, \phi)$ .
Conversely, if acoloring $C$ by $X$ extends to acoloring by $E(X, A, \phi)$ , then from the above

argument, we have that $(a, x)=(a \prod_{\tau}B(\tau, C),$ $x)$ , if $(a, x)$ is the color on the base point $b\circ\cdot$ Hence
$[\mathrm{J}_{\tau}B(\tau,C)=1$ . $\blacksquare$

8Cocycle invariants and Alexander matrices

In this section we point out relations of the cocycle invariants to Alexander matrices. We examine
closely Example 7.2 given in Section 7from this new point of view.

Let $B_{D_{L}}= \sum_{i=1}^{n}B_{i}$ be an $(n\cross n)$-matrix where $B_{i}$ is the $(n\cross n)$-matrix corresponding to each
crossing point $\tau_{\dot{l}}$ such that $(k_{i}, i)$ entry is $T^{\epsilon:}$ , $(\ell_{i}, i)$ entry is $1-T^{\epsilon:}$ and otherwise is 0. Here $\epsilon$:
means the sign of the crossing point $\tau_{i}$ . Set $A_{D_{L}}=B_{D_{L}}-E_{n}$ , where $E_{n}$ denotes the n-dimensional
identity matrix, then from the definitions it follows that $A_{D_{L}}$ is an Alexander matrix. Recall that
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Figure 10: Labeling acrossing

acoloring is afunction $C$ : $Rarrow X$ , where $R$ is the set of over-arcs in the diagram and $X$ is afixed
Alexander quandle $\mathrm{A}/\mathrm{J}$ for an ideal $J$ . Acoloring which assigns $y$:to an arc $a_{\dot{l}}(C(a:)=y:)$ is
represented by the vector $\vec{y}=$ $(y_{1}, \ldots, y_{n})$ satisfying $\vec{y}A_{D_{L}}^{(X)}=\vec{0}$ . These descriptions are given in
[19] to prove Theorem 2.1.

Proposition 8.1 Let $L=K_{1}\cup\cdots\cup K_{f}$ be a link and $X=\mathrm{A}\mathrm{q}/\mathrm{J}$ be an Alexander quandle. Suppose
$E=\Lambda_{q’}/J’$ is an abelian extension of $X$ , where $q$ , $d$ are positive integers. Let $A_{D_{L}}^{(X)}$ (respectively
$A_{D_{L}}^{(E)})$ be the matrix $A_{D_{L}}$ regarded as a matrix over $X$ (respectively over $E$). Then a coloring $\vec{y}$

of $L$ by $X$ contributes a non-trivial value to the invariant $\vec{\Psi}(L)$ if and only if $y\vec{A}_{D_{L}}^{(X)}=\vec{0}$ and
$s(\vec{y})A_{D_{L}}^{(E)}=\vec{x}\neq\vec{0}$, where $s:Xarrow E$ is the natural section.

Proof. Let $\psi$ : $(\Lambda_{q}/J)^{n}arrow(\Lambda_{q}/J)^{n}$ be the map which takes arow vector $\vec{y}$ to $\vec{y}A_{D_{L}}$ . By Inoue’s
description given above, the set of all quandle colorings is equal to $\mathrm{k}\mathrm{e}\mathrm{r}A_{D_{L}}^{(X)}$ . If $\vec{y}A_{D_{L}}^{(X)}=\vec{0}$ and
$s(\vec{y})A_{D_{L}}^{(E)}=\vec{x}\neq 0$, then by Theorem 7.4 we obtain that $\tilde{\Psi}(L)$ is non-trivial. $\blacksquare$

Next, we compute the non-trivial contributions using Alexander matrices, for extensions dis-
cussed in Section 5. Let $X=W_{m}=\Lambda_{q}/(1-T)^{m}$ or $X=U_{m}=\Lambda_{q^{m}}/(T-1+q)$ , md $E=W_{m+1}$

or $E=U_{m\dagger 1}$ be their abelian extensions, respectively. For this purpose, we fix the following
convention in numbering crossings and arcs of agiven diagram.

Let $L=K_{1}\cup\cdots\cup K_{r}$ be alink with $n$ crossings. Pick abase point $b_{:}$ on $K_{\dot{l}}$ , for $i=1$ , $\ldots$ , $r$ . Let
$a_{1}$ , $\ldots,a_{\dot{l}_{1}}$ be the arcs of $K_{1}$ such that $a_{1}$ contains $b_{1}$ and they appear in this order when one traces
$K_{1}$ in the given orientation of $K_{1}$ starting from $b_{1}$ . Then let $a_{\dot{l}_{1}+1}$ be the arc of $K_{2}$ containing $b_{2}$ and
$a:_{1}+2$ , $\ldots,$ $ai_{2}$ be the arcs of $K_{2}$ similarly defined from the given orientation. Repeat this process for
the remaining components to obtain the arcs $a_{1}$ , $\ldots$ , $a$:, $a:_{1}+1$ , $\ldots$ , $a:_{2}$ , $a:_{2}+1$ , $\ldots$ , $a:_{r-1}+1$ , $\ldots$ , $a:,$ $=$

$a_{n}$ . Let $C$ : $Rarrow X$ be a coloring of $L$ by $X$ . Let $w_{i}=C(ai)$ and $\tau i$ be the crossing such that the
outcoming under-arc is $a$:for $i=1$ , $\ldots$ , $n$ (see Fig. 10). This convention is used in Fig. 8.

Let $s:Xarrow E$ be the section defined in Section 5respectively by

s ($\sum_{j=0}^{m-1}A_{j}(1-T)^{j}$ mod$(1-T)^{m}$) $=$ $\sum_{j=0}^{m-1}A\mathrm{j}(1-T)^{j}$ mod$(1-T)^{m+1}$ for $W_{m}$ , and

s $( \sum_{j=0}^{m-1}X_{j}q^{j})$ $=$ 0 $\cdot q^{m}+\sum_{j=0}^{m-1}X_{j}q^{j}$ for $U_{m}$ .
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For the following theorem, let $\vec{\Psi}(L)$ be the generalized cocycle invariant defined with the cocycle
$\phi\in Z_{\mathrm{Q}}^{2}(X;\mathbb{Z}_{q})$ corresponding to the extension p:E $arrow X$ specified above.

Proposition 8.2 Let $A_{D_{L}}$ be the Alexander matrix obtained from $D_{L}$ with the above choice of
order of $w_{i}$ and $\tau_{i}$ .

A given coloring represented by a vector $\vec{w}$ contributes a non-trivial vector to the invariant $\vec{\Psi}(L)$

if and only if $\vec{w}A_{D_{L}}^{(X)}=\vec{0}$ and $s(\vec{w})A_{D_{L}}^{(E)}=\vec{z}\neq\vec{0}$ . This contribution is

$(t^{\Sigma j_{=1}^{1}}\eta(\tau j)z_{j}/(1-T)^{m}, \ldots, t^{\Sigma_{j=i_{r-1}}^{i_{r}}\eta(\tau_{j})z_{j}/(1-T)^{m}}+1)$ for $X=W_{m}$ , and
$(t^{\Sigma^{i_{1}}\eta(\tau_{j})z_{j}/q^{m}}j=1, \ldots, t^{\Sigma \mathrm{j}_{=i_{r-1}}^{r}\eta(\tau_{j})z_{j}/q^{m}}+1)$ for $X=U_{m}$ , respectively

where $\eta(\tau)=1$ for a positive crossing $\tau$ and $\eta(\tau)=T$ for a negative crossing $\tau$ .

Proof. We consider the case $X=W_{m}$ , as the other case is similar. Let t# : $(\Lambda_{q}/(1-T)^{m})^{n}arrow$

$(\Lambda_{q}/(1-T)^{m})^{n}$ be the map which takes arow vector $\tilde{w}$ to $\tilde{w}A_{D_{L}}^{(X)}$ . Assume that $\vec{w}A_{D_{L}}^{(X)}=\tilde{0}$ and
$s(\vec{w})A_{D_{L}}^{(E)}=\vec{z}\neq\vec{0}$ . The contribution to the invariant at apositive crossing $\tau i$ is given by

$\phi(w_{k_{i}}, w_{\ell:})$ $=$ $[s(w_{k_{i}})*s(w_{\ell}.)-s(w_{k_{i}}*w_{\ell_{i}})]/(1-T)^{m}$

$=$ $[s(w_{k_{i}})*s(w_{\ell_{t}})-s(w_{i})]/(1-T)^{m}$ ,

where $w_{\ell_{i}}$ is the color on the over-arc at the crossing $\tau_{i}$ , and $w_{k_{i}}$ is the color on the incoming under-
arc at $\tau i$ if $\tau i$ is positive (see Fig. 10). Since $\vec{w}$ is in the kernel, $wk_{i}*w\ell_{i}\overline{\backslash }wi=Twk_{i}+(1-T)w\ell:-w:=$

$0\mathrm{m}\mathrm{o}\mathrm{d} (1-T)^{m}$ and we have $[s(w_{k}):*s(w\ell_{:})-s(w_{i})]/(1-T)^{m}=z_{i}/(1-T)^{m}$ .
Suppose $\tau i$ is negative. Then the contribution is

$-\phi(w_{i}, w\ell_{:})$ $=$ $-[s(w_{i})*s(w\ell_{:})-s(w_{i}*w_{\ell_{i}})]/(1-T)^{m}$

$=$ $-[s(w_{i})*s(w_{\ell}\dot{.})-s(w_{k:})]/(1-T)^{m}$

$=$ $-[Tw_{i}+(1-T)w_{\ell_{i}}-w_{k}]:/(1-T)^{m}$ .

On the other hand,

$z_{i}=T^{-1}w_{k}:+(1-T^{-1})w_{\ell_{i}}-w_{i}=-T^{-1}[Tw_{i}+(1-T)w\ell_{:}-w_{k}]$:

so that the contribution is $Tz_{i}$ in this case. Hence the total contribution of the invariant for the
component $K_{r}$ is

$t^{\Sigma_{j=:_{r-1}+1}^{i_{r}}\eta(\tau_{j})z_{j}/(1-T)^{m}}$ ,

where $\{z_{1}, \ldots, zi_{r}\}\in K_{r}$ . $\blacksquare$

Example 8.3 We consider the Whitehead link $L=K_{1}\cup K_{2}$ depicted in Fig. 8. Let $X=W_{m}$ and
$E=W_{m+1}$ . Use the letters $w_{i}$ , $(i=1, \ldots, 6)$ as depicted in the figure as colors assigned to the
arcs, as well as generators for the Alexander matrix. Then the Alexander matrix $A_{D_{L}}=B_{D_{L}}-E_{n}$

with respect to the columns corresponding to $(\tau_{1}, \ldots, \tau_{6})$ and rows corresponding to $(w_{1}, \ldots, w_{6})$

is given by
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$A_{D_{L}}=($ $1-T^{-1}T^{-1}-1000$ $1-T-1T000$ $1-T-1T000$ $1-T-1T000$ $1-T-1T000$ $1-T^{-1}T^{-1}-1000$ ).
After some row and column permutations we obtain

$A_{0}=\{$ $1-T-1T000$ $1-T-1T000$ $1-T-1T000$ $1-T-1T000$ $1-T^{-1}T^{-1}-1000$ $1-T^{-1}T^{-1} \frac{0}{0}10)$ ,

with respect to the columns corresponding to $(\tau_{2}, \tau_{4}, \tau_{3}, \tau_{5}, \tau_{6}, \tau_{1})$ and rows corresponding to
$(w_{2}, w_{4}, w_{6},w_{5}, w_{1},w_{3})$ . This permutation is performed so that we can diagonalize the first four
rows and columns by column reductions to obtain

$A_{1}=(-1+T-T0001$ $-1+T-T^{2}-T+T^{2}0001$ $-1-(1-T)^{2}(1-T)^{2}0001$ $-2+3T-2T^{2}1-3T+2T^{2}0001$ $-T^{-1}(1-T)^{3}T^{-1}(1-T)^{3}0000$ $-T^{-1}(1-T)^{3}T^{-1}(1-T)^{3}0000)$

The solution set
$(w_{2}, w_{4}, w_{6}, w_{5}, w_{1}, w_{3})A_{1}^{(X)}=(0,0,0,0,0,0)$ ,

is written by

$w_{2}$ $=$ $Tw_{1}+(1-T)w_{3}$

$w_{4}$ $=$ $T(1-T)w_{1}+(T+(1-T)^{2})w_{3}$

$w_{6}$ $=$ $-(1-T)^{2}w_{1}+(1+(1-T)^{2})w_{3}$

$w_{5}$ $=$ $(T(1-T)-(1-T)^{2})w_{1}+(T+2(1-T)^{2})w_{3}$

0 $=$ $(w_{3}-w_{1})T^{-1}(1-T)^{3}$

where $A_{1}^{(X)}$ denotes the matrix $A_{1}$ regarded as amatrix over $X$ . The set of colorings is represented
by vectors in the kernel of $A_{1}^{(X)}$ . Specifically, the kernel is the set of vectors $\vec{w}$ with $w_{1}$ and
$w_{3}$ satisfying $(1-T)^{3}(w_{3}-w_{1})=0$ in $X$ and $w_{2}$ , $w_{4}$ , $w_{6}$ , $w_{5}$ determined accordingly as above.
This matches the computations in Example 7.2. The contribution to the invariant is obtained by
computing

$\vec{z}=$ $s(\vec{w})A_{D_{L}}^{(E)}$

$=$ $(-T^{-1}(1-T)^{3}(w_{3}-w_{1}), 0,0,0,0, T^{-1}(1-T)^{3}(w_{3}-w_{1}))$ .
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By Proposition 8.2 the non-trivial contribution to $\vec{\Psi}(L)$ is $(t^{\Sigma_{j=1}^{2}\eta(\tau_{j})z_{j}/(1-T)^{3}}, t^{\Sigma_{j=3}^{6}\eta(\tau_{j})z_{j}/(1-T)^{3}})=$

$(t^{-s}, t^{s})$ for some $s(0\leq s\leq q-1)$ depending on the value of $w_{3}-w_{1}$ , and this matches Example 7.2.

Finally we observe arelation to the Conway polynomial. Let $\Delta_{L}(T)\in \mathbb{Z}[T^{-\frac{1}{2}}, T^{\frac{1}{2}}]$ be the
Conway-normalized Alexander polynomial [26]. In our case, let $A_{D_{L}}’$ be the matrix obtained from

$A_{D_{L}}$ by deleting the $j\mathrm{t}\mathrm{h}$ column and $j\mathrm{t}\mathrm{h}$ row for some $j$ , $j=1$ , $\ldots$ , $n$ , let $f(T)=\det(A_{D_{L}}’)\in$

$\mathbb{Z}[T^{1},T^{-1}]$ and $\mu$ and $\nu$ be the maximai and minimal degree of $f$ respectively. Then $\Delta_{L}(T)=$

$T^{-\mu\pm}2f(T)\underline{\nu}$ . The Conway polynomial $\mathrm{V}\mathrm{L}(\mathrm{z})\in \mathrm{Z}[\mathrm{z}]$ is defined by $\nabla_{L}(T^{-\frac{1}{2}}-T^{\frac{1}{2}})=\Delta_{L}(T)$ where
$z=T^{-\frac{1}{2}}-T^{\frac{1}{2}}$ .

Proposition 8.4 Let the minimal degree of Vl(z) he denoted by $\min-\deg\nabla_{L}(z)$ , then it satisfies
$\min-\deg\nabla_{L}(z)\geq m$ , $w$ here $m$ is the smallest integer such that the cocycle invariant defined from
the extension of $\mathbb{Z}_{q}[T,T^{-1}]/(1-T)^{m}$ to $\mathbb{Z}_{q}[T,T^{-1}]/(1-T)^{m+1}$ is non-trivial

Proof. Assume that $\tilde{y}A_{D_{L}}^{(X)}=\vec{0}$ and $s(\vec{y})A_{D_{L}}^{(E)}=\tilde{x}\neq\vec{0}$ . Then $\vec{y}$ contributes anon-trivial value to
the invariant $\tilde{\Psi}(L)$ as in Proposition 8.1. Since $\tilde{x}\neq\tilde{0}$ there exists $i$ , $1\leq i\leq n$ , such that $x_{i}\neq 0$ .
Let $j$ be an integer, $1\leq j\leq n$ , with $j\neq i$ . Let $x^{\vec{\prime}}$ be the vector $\vec{x}$ with the $xj$ entry deleted. Then
there exists $y^{\vec{\prime}}\neq\vec{0}$, where $y^{\tilde{\prime}}$ is the vector $\vec{y}$ with the $j\mathrm{t}\mathrm{h}$ entry deleted, such that $y^{\vec{\prime}}A_{D_{L}}^{(X)}’=\vec{0}$. This

implies that $\det A_{D_{L}}^{(X)}’=0$ . Hence $\det A_{D_{L}}’\equiv 0$ $(\mathrm{m}\mathrm{o}\mathrm{d} (1-T)^{m})$ , and we have $\min-\deg\nabla_{L}(z)\geq m$ .
$\blacksquare$
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