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At the opening of the conference, our host, Hitoshi Murakami, charged the participants

to consider the past, present, and future of low-dimensional topology. Itherefore arrange

this paper to follow that format.

1The Past

1.1 Knot Concordance

Aknot is an embedding of an oriented $S^{1}$ in an oriented $S^{3}$ . We work here up to diffe0-

morphism or piecewise-linear locally flat homomorphism. Aknot K is concordant to a

knot J(K $\simeq J)$ if there exists amanifold pair W, consisting of an annulus embedded in

athree sphere cross an interval, W $\cong(S^{1}\cross I)\mathrm{c}arrow(S^{3}\cross I)$ , such that $\partial W\cong K\cup-J$ .

Here, -J means the knot J with the orientation reversed on both the ambient $S^{3}$ and

the embedded $S^{1}$ .

Concordance is an equivalence relation, and it respects connected sums of knots; i.e.

if K $\simeq K’$ and J $\simeq J’$ then $K\# J$ $\simeq K’\# J’$ . Thus we can form agroup $C_{1}$ out of
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knots, under the operation of connected sum. The identity of the group is the unknot.

To see that this group contains inverses, and to discuss other knots that are in the same

equivalence class as the unknot, we next consider slice knots.

1.2 Slice Knots

Slice knots were first defined by Fox and Milnor [3]. They defined slice knots as the knots

obtained from taking a2-sphere embedded in a4-sphere, and intersecting with astan-

dardly embedded 3-sphere. The intersection of a2-sphere with a3-sphere is generically a

collection of 1-spheres;if there is only one component in this collection, then that l-sphere

in the standardly embedded 3-sphere is aslice knot. Fox and Milnor asked what kind

of knots can occur as such slices. Amore recent definition is that aknot $K$ is slice if it

bounds atw0-disk embedded in afour-ball, i.e. $K=S^{1}\mapsto S^{3}=\partial(D^{2}\mathrm{e}arrow B^{4})^{*}$ . Fox’s

and Milnor’s question has been turned around to ask, given aknot, is it slice?

The connection of sliceness to concordance is that $K$ is slice if and only if $K$ is the

identity in $C_{1}$ . With abit of traditional three-manifold cut-and-paste and one can see

that $K\#$ $-J$ is slice if and only if $K\simeq J$ . This gives us our inverses in $C_{1}$ ; since clearly

$K\simeq K$ , we have K# $-K$ is slice, and so every knot has an inverse in $C_{1}$ . Also, we can

now think of $C_{1}$ as knots modulo slice knots.

’I use two different notations for an $n$-disk to provide aconvenient vocabulary: we can say “slice disk”
and “bounding ball” and the meaning of each is clear
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1.3 ANecessary Condition for K To Be Slice

The first’ obstruction to aknot being slice is found in the Seifert form of aknot. Let $K$

be aslice knot with slice disk $D$ and Seifert surface F. $F\cup D$ bounds a3-manifold $M$ in

the bounding ball. Easy algebraic topology gives that, for the inclusion map $i:F\mathrm{c}arrow M$,

$\mathrm{K}\mathrm{e}\mathrm{r}(H_{1}(F)arrow H_{1}(M))i_{\wedge}$ has half the rank of $H_{1}(F)$ . Ageometric argument shows that for

$a$ , $b\in \mathrm{K}\mathrm{e}\mathrm{r}(H_{1}(F)arrow H_{1}(M))i_{*}$ , the Seifert form $V$ vanishes on $a$ and 6, i.e. $V(a, b)=0$ . To

see why, first note that since $a$ and $b$ are in the kernel of $i_{*}$ , there are surfaces $A$ , $B\subset M$

such that $a=\partial A$ , $b=\partial B$ . Recall that the Seifert form $V(a, b)$ is the linking number

of $a$ “pushed off” of $F$ and 6; i.e. $V(a, b)=lk(a^{+}, b)$ . The linking form in $S^{3}$ is the

same as intersection in $B^{4}$ , thus $lk(a, b)=\mathrm{i}\mathrm{n}\mathrm{t}(A^{+}, B)$ . Because $A^{+}$ is “pushed” out of $M$ ,

$A^{+}\cap M=\emptyset$ , so int $(A^{+}, B)$ $=0$ . To summarize:

Proposition. $K$ slice implies that there exists $H\subset H_{1}(F)$ , with rank $H=1/2$ rank

$H_{1}(F)$ , such that $V|_{H\mathrm{x}H}\equiv 0$ .

1.4 Algebraic Sliceness

It was not known at first if the above implication is true in the other direction. To have

the terminology with which to attack that question, we take the converse of the theorem

and make from it adefinition. Thus:

Definition. Aknot $K$ is algebraically slice if for $F$ aSeifert surface of $K$ , there exists

either ordered historically or by decreasing simplicit
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$H\subset H_{1}(F)$ , rank $H=1/2$ rank $H_{1}(F)$ , $V|_{H\cross H}\equiv 0$ .

That is, in some basis $V$ can be represented as amatrix

$V=(\begin{array}{ll}0 AB C\end{array})$

with $A$ , $B$ and $C$ matrices of half the size of $V$ . Forms which have a half-size* sub-form

which is zero is atheme throughout this theory; the half-size sub-0bject on which such a

form disappears is called ametaboliz\^e $r$, the form is called metabolic.

Note that since the Alexander polynomial can be found as $\det(V-tV^{t})$ , if $K$ is

algebraically slice, then its Alexander polynomial factors as $\Delta_{K}(t)=f(t)f(t^{-1})$ .

As an aid to finding the structure of the concordance group $\mathrm{C}_{1}$ , we define the algebraic

concordance group $\mathcal{G}$ as Seifert forms modulo algebraically slice Seifert forms. Then we

have an onto map $C_{1}arrow \mathcal{G}$ .

Levine investigated $\mathcal{G}$ , and found aset of invariants that fully classified it [9]. In fact,

he showed that ($;\cong \mathbb{Z}^{\infty}\oplus(\mathbb{Z}/2)^{\infty}\oplus(\mathbb{Z}/4)^{\infty}$ . He also investigated higher-dimensional

analogues of $\mathcal{G}$ and $C_{1}$ , and found that $\mathcal{G}\cong C_{n}$ for $n\geq 2^{\uparrow}$

In the classical knot dimension, the question “Are there algebraically slice knots that

are not slice?” remained open. The question can now be restated as, “Is there anon-trivial

kernel of $C_{1}arrow \mathcal{G}?$
”

’size meaning different things in different contexts
\dagger Those who do low-dimensional topology should recognize the pattern; again, higher dimensional

topological questions are completely determined by the algebra
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2The Past and the Present

2.1 Casson -Gordon Invariants

Casson and Gordon [1] created an invariant that gave apositive answer to the above

question. Let $K$ be aknot, $n$ and $d$ powers of primes, and denote by $K_{n}(\overline{K}_{n})$ the n-fold

(branched) cyclic cover of the knot complement. Choose amap $\chi:H_{1}(\overline{K}_{n})arrow \mathbb{Z}/d$ ;the

composition $\pi_{1}(K_{n})arrow H_{1}(K_{n})arrow\dot{*}$
.

$H_{1}( \overline{K}_{n})\frac{\chi_{1}}{r}\mathbb{Z}/d$ gives you a $d$-fold cyclic cover of $K_{n}$ .

The manifold $K_{n}$ already has an infinite cyclic cover which it shares with $K$ , so we get a

diagram of covers:

’ $K_{\infty,d}$

$K_{\infty}\downarrow$

’

$K_{n,d}\downarrow$

$K_{n}\downarrow$

$K$

Do 0-surgery on the lifts of the knot in the manifolds Kn, $K_{\infty}$ , ’
$K_{n,d}$ , $K_{\infty,d}$ to create

$\hat{K}_{n},\hat{K}_{\infty}" K\wedge n,d,\hat{K}_{\infty,d}$ ; we do this in order to have manifolds without boundary, but with

the same fundamental groups as the originals. This allows us to appeal to bordism theory

and find that Q3 $(\mathbb{Z}\cross \mathbb{Z}/d)$ is finite, so there exist aset of four-manifolds and an integer

$r$ such that

’
$\hat{K}_{\infty,d}$ , $V_{\infty,d}^{4}$

$\hat{K}_{\infty}$
$V_{\infty}^{4}$

$r$ .
$\downarrow$ ,

$\hat{K}_{n,d}\downarrow=\partial\downarrow$

,
$V_{n,d}^{4}\downarrow$

$\hat{K}_{n}$
$V_{n}^{4}$
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The $\mathbb{Z}\cross \mathbb{Z}/d$ cover of $V_{n}$ gives us atwisted homology $H_{*}(V_{n}; \mathbb{Q}(\mathbb{Z}\mathrm{x}\mathbb{Z}/d))$ . This is

homology on afour-manifold; according to Wall [18] we get an intersection form on the

second homology $H_{2}(V_{n};\mathbb{Q}(\mathbb{Z}\cross \mathbb{Z}/d))$ . Call this intersection form $t(V)$ ;it is the most

important ingredient in the Casson-Gordon $\tau$ invariant:

$\tau(K, \chi)=\frac{1}{r}(t(V_{n})-t_{0}(V_{n}))$ .

The $t_{0}(V_{n})$ is the intersection form on $V_{n}$ in ordinary, untwisted homology $H_{2}(V_{n};\mathbb{Q})$ ;it

and $r$ are needed in the definition to be sure that the invariant is well-defined, and does

not depend on the choice of the four-manifold $V_{n}$ . The invariant lives in aWitt group

tensored with the rational numbers. AWitt group is agroup of Hermitian bilinear forms

over agiven field, modulo metabolic forms. Recall that metabolic forms were to be a

theme here: just as aknot is algebraically slice if its Seifert from is metabolic, its Casson-

Gordon invariant is trivial if the form $\tau$ is metabolic. The Witt group is tensored with

the rational numbers to allow multiplication by $1/r$ .

Of course, this invariant is introduced in this paper because it detects slice knots:

Theorem (Casson, Gordon [1]). Let the knot $K$ have $n$ -fold branched cyclic cover $\overline{K}_{n}$ ,

with $n$ a power of a prime. If $K$ is slice, then there is a subgroup $H$ of $H_{1}(\overline{K}_{n})$ such that the

intersection pairing on $H$ is identically zero, and $\tau(K, \chi)=0$ for every $\chi:H_{1}(\overline{K}_{n})arrow \mathbb{Z}/d$ ,

$d$ a prime power, $\chi(H)=0$ .
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No exposition of the details of this intricate proof is better than the original. Any

summary or sketch can not do justice to the proof, but basically, if aknot is slice, it is

shown that one can use covers of $B^{4}$ branched over $D^{2}$ for the four-manifolds $V_{*}$ .

2.2 Logic

Casson’s and Gordon’s theorem, rewritten with symbols for universal and existential

quantifiers, and skipping some qualifying phrases, reads

Theorem (Casson, Gordon). $K$ slice $\Rightarrow$

$\exists H\subset H_{1}(\overline{K}_{n})\forall\chi:H_{1}(\overline{K}_{n})arrow \mathbb{Z}/d$, $\tau(K, \chi)=0$ .

Clearly this theorem can only be used to prove that some knot is not slice, by using

the contrapositive:

Theorem (Casson, Gordon). $\forall H\subset H_{1}(\overline{K}_{n})\exists\chi:H_{1}(\overline{K}_{n})arrow \mathbb{Z}/d$, $\tau(K, \chi)\neq 0$ $\Rightarrow$

$K$ not slice.

The basic tactic is this: list all subgroups H of $H_{1}(\overline{K}_{n})$ , and find a $\chi$ for each such

that the invariant does not disappear. It is therefore important to restrict the subgroups

H which one must consider. There are three basic restrictions: the size of the group H is

restricted to $|H|=\sqrt{|H_{1}(\overline{K}_{n})|}$;the linking form must be trivial on H, i.e. $1\mathrm{i}\mathrm{n}\mathrm{k}|_{H\mathrm{x}H}\equiv 0$ ;

and H is invariant under deck transformations. Hopefully this serves to limit the possible

Hs to two or three; one then finds an appropriate $\chi$ for each
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The problem of actually calculating $\tau$ is less easily surmountable.

2.3 Twisted doubles of the unknot

Casson and Gordon were the first to use this invariant; they used it to find knots that are

algebraically slice but not slice; thus finding non-trivial elements of the kernel of $C_{1}arrow \mathcal{G}$ .

The knots in question are twisted doubles of the unknot.

Atwisted double of the unknot is algebraically slice if the number of twists equals

$n(n-1)$ for some $n$ . These knots were chosen because their tw0-fold covers are lens

spaces, which are well understood. Particularly useful are the facts that, first, if the

twisted double of an unknot is algebraically slice, the first homology of the branched tw0-

fold cover is $\mathbb{Z}/k$ , $k$ asquare. Second, Casson and Gordon could use Atiyah-Singer index

theory to find expression for signature of intersection form on $H_{2}(V_{n};\mathbb{Q}(\mathbb{Z}_{d}))$ . They then

proved that this signature can be used to approximate the signature of $\tau$ . This sufficed

to prove that all the invariants $\tau$ were non-trivial.

If the number of twists in the twisted double of the unknot is 0, then the knot is the

unknot, which is slice. If the number of twists is 2, then the knot is the stevedore’s knot,

which is slice. Casson and Gordon proved that for an algebraically slice twisted double

of the unknot, for any number of twists greater than two, the knot is not slice. Thus

$\mathrm{K}\mathrm{e}\mathrm{r}(C_{1}arrow \mathcal{G})\neq\{0\}$, and the kernel in fact contains an infinite family of knots
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2.4 Aformula for $\tau$

Gilmer [4] made two great steps in the use of the Casson-Gordon invariant. Firstly, he

related maps $H_{1}(\overline{K}_{n};\mathbb{Z})arrow \mathbb{Z}/d$ that disappear on appropriate subgroups H $\subset H_{1}(\overline{K}_{n})$

to elements in specific subgroups of the homology of the Seifert surface of the knot itself.

This made finding appropriate Hs and $\chi \mathrm{s}$ for Casson and Gordon’s theorem simpler, as

they could be sought in the homology of the Seifert surface, rather than in homologies

of cyclic covers. Secondly, in certain cases, he provided aformula with which one could

calculate $\tau$ .

Theorem (Gilmer [4]). For $K$ an algebraically slice genus 1knot, for a 2-fold cover,

$\tau(K, \chi)=\rho(2\sigma_{\frac{*}{d}}(J_{x})+\frac{4(d-s)s}{d^{2}}V(x, x)-\sigma_{\frac{1}{2}}(K))$ .

Let F be aSeifert surface for the knot, and V the Seifert form. In the theorem,

x $\in H_{1}(F)$ such that $d|V(x,$x), $J_{x}$ is aknot on F representing x, $\sigma_{\alpha}$ is the Tristram-

Levine signature, and $\rho$ is apartial inverse to the signature map on the Witt group where

Casson-Gordon invariants live.

Gilmer gave an example of aknot K, reproduced in Figure 1, that is algebraically

slice and not slice. ASeifert surface can be seen in the diagram. The twists in the bands

of the Seifert surface are there to make the surface have aspecific Seifert form, in this
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Figure 1:

case that form is

($50$ $04$) $)$

in the basis indicated by the dashed lines. The Seifert form tells us that the knot is

algebraically slice. The knot cover has homology $H_{1}(\overline{K}_{2})\cong \mathbb{Z}/9$ CEt $\mathbb{Z}/9$ . The curve $J_{x}$ is

two copies of the trefoil knot connect summed with the mirror image of the $(2, 7)$ toru$\mathrm{s}$
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knot. The subgroup $H$ in Casson’s and Gordon’s theorem needs to have order 9, thus

such asubgroup can be isomorphic to $\mathbb{Z}/9$ or to $\mathbb{Z}/3\oplus \mathbb{Z}/3$ . Using theorems relating these

$H\mathrm{s}$ to subgroups of $H_{1}(F)$ , all candidates for $H$ can be eliminated, except for two, each

homomorphic to $\mathbb{Z}/3\oplus \mathbb{Z}/3$ . With clever choices for $\mathrm{x}\mathrm{s}$ , and the formula above, $\tau$ was

calculated for each of these $H\mathrm{s}$ , and shown non-trivial for each one.

2.4.1 Another formula for $\tau$

Naik [13] extended Gilmer’s formula for $\tau$ . By creating aspecific four-manifold that could

be used for the V in finding the Casson-Gordon invariant, she could write amore general

formula:

Theorem (Naik [13]). For a genus 1knot $K$ , and an $n$ -fold cover, where $x$ a generator

of $H_{1}(F)$ , $J_{x}$ a curve representing x, and $d|V(x,$x),

$\tau(K, \chi)=\sum_{i=0}^{n-1}(_{d}\sigma\underline{s}_{1}(J_{x})+\mathrm{i}V(x, x)-\sigma_{\hslash}-d^{2}.\cdot(K))2(d-s\cdot)s_{l}$

Without going into details, the $s$:are mod-d integers related to $V(x, y)$ .

Trotter [16] was the first to show that there are knots that are not equal to their

reverses. Areverse of aknot is the knot with the orientation of the $S^{1}$ reversed. We will

use the notation $K^{r}$ to denote the reverse of $K$ , and $K^{m}$ to denote the mirror of $K$;the

mirror of aknot is the knot with the orientation reversed on the ambient $S^{3}$ . Note that

$-K=K^{rm}$ . Trotter’s examples of knots not equal to their reverses were pretzel knots
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Reverses and mirrors of pretzel knots can be summarized as:

pretzel $(p, q, r)$ $arrow \mathrm{r}\mathrm{e}\mathrm{v}\mathrm{e}\mathrm{r}\mathrm{s}\mathrm{e}$ pretzel(r, $q$ , $p$ )

$\mathrm{m}\mathrm{i}\mathrm{r}\mathrm{r}\mathrm{o}\mathrm{r}\downarrow$
$\mathrm{m}\mathrm{i}\mathrm{r}\mathrm{r}\mathrm{o}\mathrm{r}\downarrow$

pretzel $(-p, -q, -r)$ $arrow \mathrm{r}\mathrm{e}\mathrm{v}\mathrm{e}\mathrm{r}\mathrm{s}\mathrm{e}$ pretzel $( \mathrm{r}, -q, -p)$

Naik used the formula to show that two of Trotter’s examples, the $(3,$ $-5, 7)$ pretzel knot

and the $(3,$ $-5, 17)$ pretzel knot, are not concordant to their reverses. To do this in the

$(3,$ $-5, 7)$ case, one needs to consider whether the knot

pretzel $(3,$ $-5, 7)\#$ pretzel $(3,$ $-5, 7)^{r}$

is slice; i.e. whether

pretzel $(3,$ $-5, 7)\#$ pretzel $(3,$ $-5, 7)^{m}=\mathrm{p}\mathrm{r}\mathrm{e}\mathrm{t}\mathrm{z}\mathrm{e}\mathrm{l}(3, -5,7)\neq$ pretzel $($ -3, $5,$ -7$)$

is slice. Pretzel knots are not, in general, algebraically slice, but they are genus one. The

sum of the knots pretzel $(3,$ $-5, 7)\#$ pretzel $($ -3, $5,$ -7$)$ is algebraically slice. By using the

above formula, and the fact from Gilmer [4] that $\tau(K\# J, \chi_{K}\oplus\chi j)=\tau(K, \chi_{K})+\tau(J, \chi_{J})$ ,

the calculation of Casson-Gordon invariants is possible. The fact that these invariants

vanish proves that the two pretzel knots $(3,$ $-5, 7)$ and $(3,$ $-5, 17)$ are not concordant to

their reverses.
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2.5 Twisted Alexander Polynomial

Despite great advances in calculating Casson-Gordon invariants, these invariants are still

not easy to find in general. One invariant that is calculable in general, and is related to the

Casson-Gordon invariant, is the twisted Alexander polynomial. The following definition

of the twisted Alexander polynomial follows Kirk and Livingston [7] in the specific case

that applies to sliceness of knots.

As in the setup for the Casson-Gordon invariant, n and d be powers of primes, let

K be aknot, let $K_{n}$ be the $n$-fold cyclic cover, and let $\overline{K}_{n}$ be the $n$-fold branched cyclic

cover. Again take $\chi:H_{1}(\overline{K}_{n})arrow \mathbb{Z}/d$. Then we have amap $\epsilon:\pi_{1}(K_{n})arrow\langle t\rangle$ and amap

$\rho:\pi_{1}(K_{n})arrow Aut(\mathbb{Q}(\zeta))$ , where \langle is aprimitive dth root of unity. The map $\rho$ is defined

by the composition

$\pi_{1}(K_{n})\underline{\dot{l}nc}.-$, $\pi_{1}(\overline{K}_{n})arrow H_{1}(\overline{K}_{n})\underline{x}\mathbb{Z}/darrow \mathrm{A}\mathrm{u}\mathrm{t}(\mathrm{Q}(\mathrm{Q}),$ ,

where an element of $\mathbb{Z}/d$ acts on $\mathbb{Q}(\zeta)$ by a.z $=\zeta^{a}z$ .

The group $\pi_{1}(K_{n})$ acts on $C_{*}(\tilde{K})$ , the chains of the universal cover of $K;\pi_{1}(K_{n})$ also

acts on $\mathbb{Q}(\zeta)[t, t^{-1}]$ via $\epsilon\otimes\rho$, the action given by

$\gamma$
. $\sum z_{i}t^{:}=t^{\epsilon(\gamma)}\sum\rho(\gamma)(z_{i})t^{:}$ .
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Thus we can form the tensor product

$C_{*}(\tilde{K})\otimes_{\pi_{1}(K_{n})}\mathbb{Q}(\zeta)[t, t^{-1}]$ .

We take the homology of that chain complex and call it $H_{*}(K;\mathbb{Q}(\zeta)[t, t^{-1}])$ . This is a

twisted homology of $K_{n}$ , twisted by the $d\cross\infty$ cover we get from the maps $\rho$ and $\epsilon$ .

Since $\mathbb{Q}(\zeta)[t, t^{-1}]$ is aPID, we can write

$H_{i}(X; \mathbb{Q}(\zeta)[t, t^{-1}])\cong\frac{\mathbb{Q}(\zeta)[t,t^{-1}]}{p_{1}(t)}\oplus\frac{\mathbb{Q}(\zeta)[t,t^{-1}]}{p_{2}(t)}\oplus\ldots\oplus\frac{\mathbb{Q}(\zeta)[t,t^{-1}]}{p_{n}(t)}\oplus(Q(\zeta)[t, t^{-1}])^{N}$ .

The twisted Alexander polynomial is then defined as the order of the torsion of the

twisted homology $H_{i}(X;\mathbb{Q}(\zeta)[t, t^{-1}])$ , i.e.

$\Delta_{i,\rho}(t)=\prod p_{k}(t)$ .

Since this polynomial depends only on $K$ and $\chi$ , we usually write it as $\Delta_{\chi}(t)$ . Two

important theorems regarding these polynomials are:

Theorem (Kirk, Livingston [7]). Let $\pi_{1}(K_{n})=\langle g_{1}, \ldots, g_{n}|r_{1}, \ldots, r_{n-1}\rangle$ . form the

Jacobian of Fox derivatives $(\partial r_{i}/\partial g_{j})$ and let M be the matrix obtained from applying

$\epsilon\otimes\rho$ to the elements of the Jacobian. Let $g_{k}$ be a generator such that $\epsilon\otimes\rho(g_{k})$ is non

49



trivial; let $M_{k}$ be the matrix M with the kth column removed. Then

$\Delta_{\chi}(K)=\frac{\det(M_{k})}{1-\epsilon\otimes\rho(g_{k})}\mathrm{g}\mathrm{c}\mathrm{d}(1-\epsilon\otimes\rho(g:))$ .

The definition of atwisted Alexander polynomial as $\det(M_{k})/(1-\epsilon\otimes\rho(g_{k}))$ was given

by Wada [17]; the theorem in [7] proves that the two definitions are related.

The theorem that relates the twisted Alexander polynomial to Casson-Gordon invari-

ants is

Theorem (Kirk, Livingston [7]). Up to norms of polynomials and invertible elements

of $\mathbb{Q}(\zeta)[t, t^{-1}]$ ,

$\Delta_{\chi}(K)(1-t)^{e}=\det(\tau(K, \chi))$ .

Here $e$ is either 0or 1, depending on whether $\rho$ is non-trivial or not.

The first theorem shows how to calculate $\Delta_{\chi}(t)$ in apurely algorithmic way; the second

connects it to the Casson-Gordon invariant and thus to the sliceness of knots. Specifically,

the second theorem implies that if K is slice, then $\Delta_{\chi}(t)$ factors as $f(t)\overline{f}(t^{-1})(1-t)^{e}$ ,

where $\overline{f}(t)$ is the complex conjugate of $f(t)$ . These theorems were used by Kirk and

Livingston [8] to show that the knot $8_{17}$ is not concordant to its reverse
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2.6 Order 2in $\mathcal{G}$

As an application of the twisted Alexander polynomial, we consider the question of

whether knots of order 2in $\mathcal{G}$ are order 2in $C_{1}$ . As we know, there is adirect summand

of $\mathcal{G}$ which is the infinite direct sum of copies of $\mathbb{Z}/2$ ;it turns out that the pre-image of

$(\mathbb{Z}/2)^{\infty}$ in $C_{1}$ is not all of order two.

Some examples of knots that of order two in $\mathcal{G}$ are: $k$-twisted doubles of the unknot

for $4k+1$ prime, $k\geq 3$ , as well as $8_{13},9_{14},9_{19},9_{30},9_{33},9_{44},10_{10},10_{13},10_{26},10_{28},10_{34}$ ,

1058, $10_{60}$ , I091, I0102, I0119, lOi35, $10_{158}$ , and $10_{165}$ from Rolfsen’s [14] table. It has been

shown [15] that none (except $10_{158}$ ) of the above are order two in $C_{1}$ ; $8_{1}$ and $10_{1}$ are, in

fact, of infinite order in $C_{1}$ . Two different methods were used. For all the knots $K$ except

$8_{1}$ and 1Ox, twisted Alexander polynomials were computed for $K\# K$ . This, of course,

required investigation of subgroups $H$ of $H_{1}(\overline{K}_{n})$ , and finding appropriate $\chi \mathrm{s}$ for each are,

so that the twisted Alexander polynomials do not factor as the theorem requires, proving

the knots not slice. The knots $8_{1}$ and 1Oi are twisted doubles of the unknot; these were

shown to have infinite order in $\mathrm{C}_{1}$ via methods similar to Casson’s and Gordon’s [1].

2.7 Order 4in $\mathcal{G}$

Some more general results have been found regarding elements of order 4in $\mathcal{G}$ . According

to Levine [9], if aknot has Alexander polynomial $\Delta_{K}(t)=at^{2}-(2a+1)t+a$ , and if

further $|H_{1}(\overline{K}_{2})|=\Delta_{K}(-1)=p^{n}m$ , with $p$ aprime such that $p\equiv 3(\mathrm{m}\mathrm{o}\mathrm{d} 4)$ , $n$ odd,

$\mathrm{g}\mathrm{c}\mathrm{d}(p, m)=1$ , then the knot $K$ is of order 4in $\mathcal{G}$ . There are many examples of such
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knots: many twisted doubles of the unknot are such, as are many knots with eleven or

fewer crossings on standard knot tables. As acontrast, many such knots are of infinite

order in $C_{1}$ :

Theorem (Livingston, Naik [12]). For $K$ a knot, $H_{1}(\overline{K}_{2})\cong \mathbb{Z}_{p^{n}}\oplus G$ , $p$ a prime such

that p $\equiv 3$ (mod 4), n odd, p { |G|, then K is infinite order in $C_{1}$ .

The paper defines characters $H_{1}(\overline{K}_{n})arrow \mathbb{Z}/p^{n}$ via the linking form. Choose an element

a $\in H_{1}(\overline{K}_{n})$ , and define the character $\chi_{a}$ as link(a, .). Also, rather than the Casson-Gordon

$\tau$ invariant, the invariant $\sigma$ is used, which is acertain signature of $\tau$ .

Here, the method of proof is not the usual of finding all metabolizers and then cal-

culating Casson-Gordon invariants, but rather alogically related tactic of contradiction.

Consider aknot K that fulfills the hypothesis of the theorem, but which has finite order

in $C_{1}$ . According to Levine, the order of K in $\mathcal{G}$ is 4, so if K is to be of finite order in $C_{1}$ ,

then that order is 4k. The -primary component of the metabolizer in $H_{1}((4k)\overline{K}_{2})$ from

Casson’s and Gordon’s theorem is isomorphic to $(\mathbb{Z}_{p^{n}})^{2k}$ , generated by vectors $v_{1}$ , \ldots , $v_{2k}$ .
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By achange of basis, we can assume that these vectors are:

$(1, 0, \ldots)$

$(0, p, 0,0,0, \ldots)$

$(0, 0, p, 0,0, \ldots)$

$(0, 0, 0, p, 0, \ldots)$

$(0, 0, 0, 0, p^{2},0,0,0, \ldots)$

$(0,0,0,0,0,p^{2},0,0, \ldots)$

$(0,0,0,0,0,0,p^{2},0, \ldots)$

$..$.

With some linear algebra work, we can create avector $(p^{n-1}, \ldots,p^{n-1}, *, \ldots, *)$ in the

metabolizer. Since $K$ is slice, $\sigma((4k)K, \chi_{(p^{n-1},\ldots,*)})=0$ . It is then shown that this implies

$\mathrm{a}(\mathrm{K}, \chi_{p^{n-1}})=0$ . Then an induction argument and further manipulation of the vectors

listed above show $\sigma(K, \chi_{p^{(n-1)/2}})=0$;this is acontradiction to the fact that

$\sigma(K, \chi_{p^{(n-1)/2}})=1\mathrm{i}\mathrm{n}\mathrm{k}(p^{(n-1)/2},p^{(n-1)/2})\mathrm{m}\mathrm{o}\mathrm{d} \mathbb{Z}$ ,

and that the linking form is non-singular.

As aresult, we have the following corollaries:

Corollary (Livingston, Naik [12]). Let $K$ be a knot $K$ with Alexander polynomial
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$\Delta(t)=nt^{2}-(2n+1)t+n$ , with $4n+1=p^{odd}q$ , $p\equiv 4(\mathrm{m}\mathrm{o}\mathrm{d} 4)$ , with the p-pr many

summand of $H_{1}(\overline{K}_{2})$ cyclic. Then $K$ is of infinite order in $C_{1}$ .

Corollary (Livingston, Naik [12]). A twO-bridge knot $K_{m/n}$ is infinite order in $C_{1}$ if
some prime congruent to 3mod 4has odd exponent in $m$ .

Corollary (Livingston, Naik [12]). Any twisted double of a knot is order 4in $\mathcal{G}$ is of

infinite order in $C_{1}$ .

2.8 The Alexander Polynomial, and splitting $\tau$

S. Kim [5] found aconnection between the Alexander polynomial and Casson-Gordon

invariants.

Theorem (S. Kim [5]). Let $K_{1},$ $K_{2}$ be knots such that their Alexander polynomials have

no common factors, and so that $K_{1}$ has a non-singular Seifert forrm. Then if Casson-

Gordon invariant of $K_{1}\# K_{2}$ is zero, so are the invariants of $K_{1}$ and $K_{2}$ .

This theorem makes it easier to find knots that are linearly independent in $C_{1}$ ; all

that is necessary is that they be infinite order in $C_{1}$ , and that their (untwisted) Alexander

polynomials have no common factors.

Also proved was:

Theorem (S. Kim [5]). All but finitely many twisted doubles of a knot are of infinite

order in $C_{1}$ .
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As acorollary to these two theorems, since the Alexander polynomial of atwisted

double of aknot is $kt^{2}-(2k+1)t+k$ , where $k$ is the number of twists, we have that all

but finitely many twisted doubles of aknot are linearly independent in $C_{1}$ . Thus there is

acopy of $\mathbb{Z}^{\infty}$ in $C_{1}$ .

2.9 Order 2in $\mathrm{K}\mathrm{e}\mathrm{r}(C_{1}arrow \mathcal{G})$

More work on finding subgroups of $C_{1}$ was done by Livingston [11]. He created afamily

of knots that represents an infinite direct sum of copies of $\mathbb{Z}/2$ in the kernel of $C_{1}arrow \mathcal{G}$ .

Let $T$ be aknot, let $K_{T}$ be the knot created by tying the knots $T\mathrm{a}\mathrm{n}\mathrm{d}-T$ in the bands

of aknot, as shown in Figure 2. Note that since $K_{T}=-K_{T}$ , $K_{T}$ is order 2in $C_{1}$ .

Figure 2:

As in Gilmer’s example above, the twists in the bands determine the algebraic con
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cordance class of $K_{T}$ ;we arrange to have $K_{T}$ have aSeifert form

V $=(\begin{array}{l}110-1\end{array})$ .

Litherland [10] has formulas for calculating the Casson-Gordon invariants of satellite

knots. Using these formulas, one finds

$\sigma(K_{T}, \chi_{a})=\sigma(K_{0}, \chi)+2\sigma_{\frac{a}{5}}(T)+2\sigma_{\frac{3a}{5}}(-T)$ .

The knot $K_{0}$ is the knot as described above, but with T the unknot.

Now let $J_{\dot{l}}=K_{0}\# K_{\#:\mathrm{t}\mathrm{o}\mathrm{r}\mathrm{u}\mathrm{s}(2,7)}$ . With the twists in the bands correctly arranged, the

knot $K_{0}$ and $K_{\#:\mathrm{t}\mathrm{o}\mathrm{r}\mathrm{u}8(2,7)}$ represent the same class in $\mathcal{G}$;and since these knots are of order

two, $J_{i}$ algebraically slice. Further, for i $\neq j$ , the knots $J_{\dot{*}}$ and $J_{j}$ can be proven to be not

concordant; thus we have that $\mathrm{K}\mathrm{e}\mathrm{r}(C_{1}arrow \mathcal{G})$ contains asubgroup isomorphic to $\mathbb{Z}_{2}^{\infty}$ .

2.10 Beyond the Casson-Gordon invariant

Of course, having avanishing Casson-Gordon invariant does not guarantee that aknot is

slice, and efforts were made to extend Casson’s and Gordon’s work to find afiner invariant.

Cochran, Orr, and Teichner [2] found an infinite filtration of $C_{1}$ . The first step of this

filtration implies algebraic sliceness, and the second implies avanishing Casson-Gordon
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The idea is to try to construct slice disk from agrope. Take aknot K in $S^{3}$ , with

$D^{4}$ bounding $S^{3}$ . Embed aonce-punctured oriented surface, possibly with genus, in $D^{4}$ ,

with the boundary identified with $K$ . If the surface has genus, find curves on the surface

representing generators of the homology of the surface, and attach oriented, punctured

surfaces to each of these. If, at any level, the surfaces at that level have no genus, then

one can do surgery along all the surfaces in the grope and create aslice disk for the knot.

Cochrain, Orr, and Teichner defined (n) solvability of aknot, and showed that aknot

is (n)-solvable if it bounds agrope of height $n+2$ . More specifically, they defined (n)

solvability and (n.5) solvability for knots; (n) solvability implies the existence of acertain

obstruction, and (n.5) solvability implies that that obstruction vanishes. The definition

carries on the theme of metabolizers and metabolic forms. Aknot is (n) solvable if

there exists asequence of $n$ sub.modules $P_{n}$ of Alexander modules $A_{n}$ , the choice of each

$P_{n}$ dependent on the choice of all the previous ones. Each of the submodules $P_{n}$ is a

metabolizer for ageneralized Blanchfield pairing. Further, (n) solvability implies that

every element of $P_{n}$ corresponds to an element in aWitt group. If the knot is (n.5)

solvable, then each of these elements in the Witt group is trivial.

They have proven that aknot being (1.5) solvable implies that the Casson-Gordon

invariants for the knot vanish, though T. Kim [6] has shown that the converse is not true.

Cochrain, Orr and Teichner also have examples of aknots that generate an infinite family

of knots that are (2) solvable but not (2.5) solvable. They also know that there are knots

that are (n) solvable but not (n.5) solvable for all $n$ .
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3The Future

Clearly our current knowledge of the structure of the group $C_{1}$ is far from complete. It

seems likely that there are many knots that are slice. It also seems likely that there

is no torsion other than 2-torsion in $C_{1}$ , since the only examples we have of torsion are

knots that are concordance order 2, and since we have atheorem of Livingston and Naik

eliminating many knots of algebraic order four from being concordance order four. We

also know of many families of knots that are infinite order in $C_{1}$ .

The tools that we have available today for the investigation of these questions have

yielded many answers, but they are not the end of the story. There are several examples

of knots that are not slice but whose Casson-Gordon invariant vanishes; and there is no

reason to think that knots that are (n) and (n.5) solvable for all n are necessarily slice.

My hope for the future is that more powerful tools are found, if we wish to understand

the knot concordance group.
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