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1. Introduction

Drug review procedure and drug development strategies are changing rapidly due to “The

International Conference on Harmonisation of Technical Requirements for the Registration of

Pharmaceuticals for Human Use ”, which was initiated in 1990 (ICH, 1990). The ICH seeks for

improvement of the efficiency of the development and review processes for promising new drugs

by unifying necessary documentation and its associated formats for new drug applications (NDA)

to regulatory agencies. In particular, E5 guideline regarding ethnic factors in the acceptability of

foreign clinical data has asignificant impact on anew drug’s development by allowing the

extrapolation of foreign clinical data as apart of an NDA submission to the regulatory agency in a

new region (ICH, 1998). In the extrapolation of the foreign clinical data to the new regions, a

population pharmacokinetics study (PPK) is valuable for the evaluation of pharmacokinetics

parameters in order to investigate intrinsic factors among populations. In the population

pharmacokinetics studies, the two types of the statistical analyses are commonly employed. We

will investigate the statistical properties of the analyses through simulation studies.

2. Definition and Properties

For each subject $i$, $1\leq i\leq N$ , $n_{i}\cross 1$ observation vector, $\mathrm{y}_{i}$ , will follow anonlinear mixed

effects model defined as
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$\mathrm{y}_{i}=f(X_{i},\beta_{i})+\epsilon_{i}$ $\beta_{i}=\beta+b_{i}$ (1)

where $f(X_{i},\beta_{i})$ is anonlinear function ofpharmacokinetics model $\beta_{i}$ is an individual
$r\mathrm{x}1$ vector ofregression coefficients. $X_{i}$ is aknown $n_{i}\cross t$ design matrix. 7is a $r\mathrm{x}1$

fixed effects parameters $b_{i}$ is a $r\cross 1$ random effects parameter$\mathrm{s}_{\backslash }\epsilon_{i}$ is a $n_{i}\cross 1$ vector of

error terms. We assume that $b_{i}$ is normaly distributed with amean 0, covariance

matrix $\Psi$ denoted by, $N(0,\Psi_{r\mathrm{x}r})$ , $\epsilon_{i}$ is normally distributed with mean 0, covariance

matrix $\sigma^{2}\Lambda_{i}(\gamma)$ denoted by, $N(0,\sigma^{2}\Lambda_{i}(\gamma)_{n.\mathrm{x}n_{i}}.)$ , where $\gamma$ are unknown parameters. We

assume $\mathrm{t}\mathrm{h}\mathrm{a}\mathrm{t}b_{i}$ and $\epsilon$, are mutually independent. Our main goal is an estimation offixed

effects parameter $\beta$ . Therefore we need to know its marginal distribution of

individual observations.

Define $\mathrm{t}\mathrm{h}\mathrm{a}\mathrm{t}P(\mathrm{y}_{i}|b_{i})$ and $P(b_{i})\mathrm{a}re$ probability density functions of $\mathrm{y}_{i}|b_{i}$ andb. The

marginal density function of $\mathrm{y}_{j}$ , $P(y${, can be defined as

$P( \mathrm{y}_{i})=\int P(\mathrm{y}_{i}|b_{i})P(b_{i})db_{i}$ (2)

In contrast to alinear mixed effects model (Laird and Ware, 1982), their expected

values of the observed data are nonlnear functions of both the fixed effects and the

random effects. In general there is no closed forms existed. Commonly two types of the
$1^{\epsilon \mathrm{t}}$ order Taylor expansion are employed in order to get the closed forms. The first

approximation method is the $1^{\epsilon \mathrm{t}}$ order Taylor expansion around its expected values, 0

(Sheiner and Beal, 1980, 1985, Vonesh and Carter, 1992) and the second

approximation method is the $1^{s\mathrm{t}}$ order Taylor expansion around its estimated values of

the random effects, $\hat{b}_{i}$ (Lindstrom and Bates, 1990).

The first Taylor expansion around the expected values, 0, of the observed data can be

written as

(3)

where

$Z_{i}$
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Then the observed data can be approximated as

$\mathrm{y}_{i}=f(X_{i},\beta,b_{i}=0)-Z_{i}b_{i}+\epsilon_{i}$ (4)

It can be shown that the expected values of the observed data, $E[\mathrm{y}_{i}]$ , and the variance,

$Var[\mathrm{y}_{i}]$ , can be written as

$E[\mathrm{y}_{i}]=f(X_{i},\beta,b_{i}=0)=f(X_{i},\beta)$ (5)

$Var[\mathrm{y}_{i}]=Z_{i}\Psi Z_{i}^{T}+\sigma^{2}\Lambda_{i}(\gamma)$ (6)

The expected values are only functions of the fixed effects, and the variance are

functions of both the fixed effects and the random effects. Two points are noteworthy to

mention in this Taylor expansion: (1) this approximation is appropriate when the

variance of the random effects, $b_{i}$ , $Var[b_{i}]$ , is very small so that we can ignore

individual variations (Solomon and Cox, 1992) and (2) the expected values of the

marginal distribution must be correctly specified for inference of its covariance

parameters, $\gamma$ and $\sigma^{2}$ (Breslow and Clayton, 1993).

The other Taylor expansion around the estimated random values, $\hat{b}_{i}$ , of the

observed values can be defined as

$\mathrm{y}_{i}=f(X_{i},\beta,b_{i}=\hat{b}_{i})-[\frac{\partial f}{\delta b_{i}^{T}}|_{b_{i}=\hat{t}_{j}}](b_{i}-\hat{b}_{i})+\epsilon_{i}$ (7)

where

$Z_{i}^{*}$

Then the expected values and its covariance can be written as follows:

$E[\mathrm{y}_{i}]=f(X_{i},\beta,b_{i}=\hat{b}_{i})-Z_{i}^{*}\hat{b}_{i}$ (8)

$Var[\mathrm{y}_{i}]=Z_{i}^{*}\Psi Z_{i}^{*T}+\sigma^{2}\Lambda_{i}(\gamma)$ $(9\rangle$

In contrast to the results derived ffom the Taylor expansion around the expected

values, 0both the expected values and its covariance are function of the estimated

random value, $\hat{b}_{i}$ . These results will influence an asymptotic distribution of

estimators, $\hat{\beta}$ , of the fixed effects. The likelihood function derived ffom the Taylor

expansion around the estimated random values, $\hat{b}_{i}$ , can be derived by Laplac
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approximation (Wolfinger, 1993, Vonesh, 1996). It can be shown that the required

condition for consistency can be given as

(10)$\hat{\beta}-\beta=O_{p}[\max\{\frac{1}{\sqrt{N}},$ $\frac{1}{\min(n_{i})}\}]$

(Vonesh, 1996). The condition indicates that an increasing rate of asample size and of

observations per subject must be constant in order to obtain the consistency of $\hat{\beta}$ .

It is well known that population pharmacokinetics analysis is suitable to data

consisting of afew data points per subject from many individuals. We can apply the

first order Taylor expansion around the expected values, 0, when we can ignore the

variability among individuals, i.e., $Var[b_{i}]$ . In that case we require alarge number of

individuals, $N$, with few data points per subject, $I\mathit{1}_{j}$ for the consistency of $\hat{\beta}$ . On the

other hand, the main purpose of population pharmacokinetics analysis is to estimate

population parameters adjusting for variability among subjects, $Var[b_{i}]$ . The first

order Taylor expansion around the estimated random effects, $\hat{b}_{i}$ , is appropriate in this

case. This method requires alarge number of observations per individual, which is

contradict to the merit of population pharmacokinetics analysis requiring few

observations per subject from many individuals for the consistency of the population

parameters. We investigate behaviors of the estimated population parameters, 7,

influenced by either atotal sample size, $N$, or observations per subject, $I2_{\dot{p}}$ depending

on adegree of $Var[bl,]$ through simulation studies. Finaly we consider an appropriate

study design in clinical trial settings.

3. Simulation Studies

Plasma concentrations are simulated from the following l-compartment

pharmacokinetics model defined by equation (11) after multiple dosing

$C_{m_{y}}= \{A^{*}[\frac{1-\exp(-m^{*}k_{ei}^{*}\tau)}{1-\exp(-k_{ei}^{*}\tau)}]\iota_{\mathrm{C}\mathrm{X}\propto-k_{ei}^{*}t_{ij})-A\{\begin{array}{l}\mathrm{j}_{ai}^{*}\mathrm{l}-\mathrm{e}\mathrm{x}\mathrm{p}(-mk\tau)\mathrm{l}-\mathrm{e}\mathrm{x}\mathrm{p}\langle-k_{ai}^{*}\tau)\end{array}\}*}’\exp(-k_{ai}^{*}t_{y})\}*\exp(e_{ij})$
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$\Lambda=\frac{k_{ai}*F_{i}*D_{i}}{VD_{i}*(k_{ai}-k_{ei})}$ ,

$k_{ei}= \frac{CL_{i}}{VD_{i}},CL_{i}=\mu_{CL}\exp(*Z_{CL},),VD_{i}=\mu_{VD}\exp(*Z_{VD_{l}}),k_{ai}=\mu_{k_{a}}\exp(*Z_{k_{\Phi|}})$

The observations, $C_{mij}$, are simulated plasma concentrations of subject 1at time $t_{\mathrm{j}\dot{p}}$

after multiple $m$-dosing on the $\log$-scale to provide additive residual error. The times at

each multiple-dosing are fixed as [0.25, 0.5, 1, 1.5, 2, 2.5, 3, 3.5, 4, 4.5, 5, 6, 8, 10, 12,

24]. $\tau$ is fixed as 24. The observations on each individual are randomly selected from a

uniform distribution.

The fixed effects population parameters of interest are $k_{\theta}$, $VD$ and $CL$. The

parameter, $k_{a}$ , is an absorption rate constant, $VD$ is atotal distribution volume

constant and $CL$ is atotal body clearance rate constant. The individual-specific

constant, $k_{\epsilon i}$, $VD_{\mathrm{j}}$ and $CL_{\mathrm{j}}$, can be defined as lognormal random variables. The normal

random variables, ZCLi, $Z_{VDj}$ and $Z_{kg\mathrm{j}}$, which define $CL_{\mathrm{j}}$, $VD_{i}$ and $k_{sj}$ , are assumed to be

independent with mean zero and variances, CVCLy $CV_{VD}$ and $CV_{ka}$ , respectively. The

residual errors $e_{j},\cdot$ are assumed to be lognormally distributed and be independent $\mathrm{o}\mathrm{f}Z_{CIr}$

$Z_{VD\mathrm{j}}$ and $Z_{kg\mathrm{j}}$ with mean zero and variance $CV_{CP}$ Therefore, the variance parameters of

interest are $CV_{CL}$, CVVDi $CV_{*\iota}$ and $CV_{CP}$

We focus on the results derived from the $1^{\mathrm{s}\mathrm{t}}$ order Taylor expansion around $\hat{b}_{i}$ in this

paper. The results derived from the $1^{s\mathrm{t}}$ order Taylor expansion around the expected values, 0,

can be found in Minami, 2002. Table 3-1 shows the parameter values for each simulation

study on 15 scenarios. We perform simulations uP to “100” to obtain optimal

parameter estimates.

Table 3-1: Simulation Data Sets
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Equation (12) defines bias (%) for evaluation of the estimated fixed parameters from

the simulated data sets.

$Bias(^{0}/\mathit{0})$ $= \frac{\hat{\beta}-\beta_{0}}{\beta_{0}}\mathrm{x}1W$ (%) (12)

$\hat{\beta}$ :Parameter estimate of fixed effects
$\beta_{0}$ :True values of fixed effects

Table 3-2 and Figure 4-1 show results of the bias$(^{\mathrm{o}/\Phi})$ of $CL$ from 100 simulations

derived from the $1^{\epsilon \mathrm{t}}$ order Taylor expansion around $\hat{b}_{i}$ . In Figure 3-1, the symbol $(\blacksquare)$

denotes amean of the estimated parameters, $\hat{\beta}$ . The symbol (A) of atop or abottom

denotes amaximum or aminimum value of the bias(%) of $CL$ from 100 simulations,

and the symbol (X) of abottom or atop denotes 1% or 99% quantile, respectively. The

bottom and top edges of the box plots denote 25% and 75% quantiles. The line in an

interior of the box denotes amedian (50% quantile)
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Table 3-2: Results from the $1^{\mathrm{s}\mathrm{t}}$ order Taylor Expansion $\mathrm{a}\mathrm{r}\mathrm{o}\mathrm{u}\mathrm{n}\mathrm{d}\hat{b}_{i}$

Figure 3-1: Results from the $1^{\mathrm{s}\mathrm{t}}$ order Taylor expansion around $\hat{b}_{i}$

$N=25$ $N=50$ $N=100$

$\Leftrightarrow n_{j}=2$ , cal $n,=3$ , $\infty$ $n_{j}=4,$ $\subset\supset n_{j}=5,\tilde{\tilde{\mathrm{a}}}_{\tilde{\overline{\acute{m}}}}"/?,=6$

4. Conclusion

We investigate possible effects of required conditions regarding atotal sample size , $N$,
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and anumber observations per subject, $I\mathrm{J}_{j}$ on the estimated population parameters,

$\hat{\beta}$ , in an application of the two approximation approaches to the marginal distribution,

the $1^{\epsilon \mathrm{t}}$ order Taylor expansion around the expected values, 0, and around the

estimated random effects, $\hat{b}_{i}$ , in population pharmacokinetics studies.

Table 3-2 and Figure 3-1 show the effects of the approximation derived by the $1^{\epsilon \mathrm{t}}$

order Taylor expansion around the estimated random effects, $\hat{b}_{i}$ , on the estimated

population parameters, 7, by changing atotal sample size ($N=25,50$, and 100), and

anumber of observations per subject ($\mathrm{n}_{j}=2,3,4,5$ , to 6). On the condition that we

observe variability in the fitted curve, Varf$[b_{i}]$ , among subjects, Figure 3-1 indicates

that this approximation method produces unbiased population estimators. As the

number of observations per subject increase, the confidence interval decreases

accordingly. In comparison of the results from $N=25$ and from $N=\mathrm{I}\mathrm{O}\mathrm{O}$, the precision of

the estimated population parameters on anumber of observations per subject $\mathrm{w}\mathrm{i}\mathrm{U}$

depend on atotal number of subjects. For example, in the case of $N=25$, the

confidence interval decreases beyond $\mathrm{n}_{\mathrm{j}}=4$ . On the other hand, in the case of $N=1\mathrm{O}\mathrm{O}$ ,

the size of the confidence interval does not depend on anumber of observations per

subject. Equation (10) suggests these relationships. That is, the precision of the

estimated parameters will depend on aratio of the number of observations per subject

to the total number of subjects.

Minami, 2002 discussed the results derived from the approximation by the $1^{\epsilon \mathrm{t}}$ order

Taylor expansion around the expected values, 0when we can not ignore the variations

among subjects. The approximation produces biased estimators. The observed bias

does not depend on the number of observations per subject. But the confidence interval

of the estimators decrease as the total number of subjects increase within the same

number of observations per subject. The results suggest that for afixed total number

of observations, say, 200, it would be better that 2observations per subject are taken

from 100 subjects, instead, 4observations per subject are taken from 50 subjects to

produce asmaler confidence interval
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This paper investigated the characteristics of the two types of approximation

approaches to the marginal distribution of the observed data by the $1^{\mathrm{s}\mathrm{t}}$ order Taylor

expansion when we observe the variability among subjects. The approximation

method by the $1^{\mathrm{s}\mathrm{t}}$ order Taylor expansion around the expected values, 0, produces

biased population parameter estimates, whose size of the confidence interval is subject

to anumber of subjects. On the other hand, the approximation method by the $1^{\mathrm{s}\mathrm{t}}$ order

Taylor expansion around the estimated random effects produces unbiased estimators,

whose size of the confidence interval depends on aratio of anumber of observations

per subject to atotal number of subjects. In actual clinical practice, it is very difficult

to take many observations per subject, especially in phase III studies with possible

heterogeneity of study subjects, indicating the variability of responses among the

subjects. Therefore we have to deal with the problem by astudy design of population

pharmacokinetics studies. When we expect the variations, we should confine a

homogeneous population, for which we can sample data from the population by afew

number of observations per subject from many subjects. Otherwise many observations

per subject have to be sampled according to an appropriate total number of subjects

derived from equation (10).

We investigate agoodness of fit test to the observed data for the two types of the

approximation methods because actual clinical trial settings mostly will not allow the

conditions by either ignorable variation among subjects or the conditions by equation

(10).
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