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1. Introduction

In 1940, L.M.Vinogradov[1] considered the distribution of the fractional parts of the
sequence f./p, where p runs over prime numbers and f is a positive constant. This
celebrated work motivated the interests of many authors to investigate the distribution
of p® modulo 1 by various methods.

In 1991, D.I. Tolev[2] studied the simultaneous distribution of the fractional parts of
different powers of primes . Suppose k > 2 is a fixed integer and0<ap<---<a;1<1
are real numbers, I' C R* is defined by

= P(fl;"'lh’ . )Ekank) = {(zl)' o ,.Tk) . Ei <z; < T’i,l S i S k})
where 0 < & <7 < 1,1 <i < k. Let p(T') = [15,(m — &), and let S(z;T’) denote the

number of primes not greater than  and satisfy the condition

({r},--- {(p™} €T,
where {t} means the fractional part of t. Then Tolev proved that
(1) S(;T) = n(z) (W) + O(z~3 log*** x))
with
6 = min(1 — a3, 01 — g, "+ , k-1 — Ok, Ak, 1/4).
We first give the outline of Tolev’s proof. It suffices to establish the inequality

(2) R(Y) « Y™ 10g*?Y
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for all Y € [z'~%, 1], where

T — S(V:T
R(Y) =aup HEEI= I ).
The following Lemma 1 can be used to transform the estimation of R(Y) into an
exponential sum problem.

Lemma 1. If Z, = (Zy4, -+ , Zkn)(n = 1,2,3,---) is a sequence of k-dimensional

vectors and its discrepency is defined by

1
Dy = sup | — 1 — (D).
N = sup| & _Z u(T)

n<N
(Zl,ny"' :Zk,n)er

Then for any H > 0, we have

L
r(h)

-DN<<}“+ Z %

> e(< hyZy>)
H O<|lpll<H

n<N

)

where h = (hy,- -+, hx) denotes the k-dimensional integer vector,

k
I 11= mma 1Al r(h) = 1] mex(lhd, 1),

< .,.> denotes the Euclidean scalar product in R* and e(z) = e?"=,

So for every H > 2, by Lemma 1 one has

1
Y) < H™ —
(3) RY)<H™ + 0<"§M|:SH )

1
@) — (),

Y. e(hap®™ + -+ hyp™)
<p<2Y

1
K H '+ Y og" Y + Y logY Y ——|U(h),
o<ini<a T(R)
where

Uh) = > Ane(V(),

Y<n<2y
V() = hyt®™ + - - - + Ryt

A(n) is the Mangoldt function.
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Now the problem is reduced to estimate the exponential sum U (k). Tolev connected
the sum U(h) with the well-known formula

S An)=z - Z p O(a:log xT+loga:).

n<z lpI<T

Then he obtained his result with the help of the zero-density estimates.

2. Some new results

Tolev’s result can be further improved by different methods.
Let

0, =min(l — oy, 01 — ag, -+, X1 — Ok, Olk/3, 20/177)-
We take H = Y% /logY in (3).
For a fixed h = (hy,--- ,hx) # (0,---,0) with |h;] < H(1 < i < k), consider the

function
V(t) = hyt® + - - - + hyt™,
where Y < t < 2Y. Let d be the first integer with h; # 0, then
V(t) = hat™ + g(t).
Since 8; < ag — @441, we have g(t) = O(|hq|Y*¢/logY).

Now we can write

U)= Y. A(n)e(han™ + g(n)).

Y <n<2Y

So U(h) can be estimated more effectively by using the method of exponential sums

directly and Finally we can prove that
(4) U(h) < Y% log!'?Y,

“which yields the following(see next Section)
Theorem 1. We have

(5) S(z;T) = n(z) (u([‘) + O(z % logh*115 a:))



233

51 = mln(l Q1,0 — Qg Qg1 — Qg ak/31 20/177)

Example 1. Take £k = 2. If 80/177 < a; < 157/177,60/177 < 0y < @7 — 20/177,
then

S(l’, F) = W(m)u(f‘) + 0(1'157/177 logk+12.5 $).

Similarly we can prove
Theorem 2. We have

(6) S(z;T) = n(z) ((T) + O(z~% 1ogh* 113 1))
with
02 = min(a; — o, -+ , a1 — ak, /3, 40/407).
Example 2. Take k = 2. If 160/407 < a; < 1,120/407 < s < a1 — 40/407, then

S(z;T) = m(z)u(T) + O(x7/47 1ogF+125 1),

Both of the above Theorems improve Tolev’s result. If o is very close to 1, then
Theorem 2 is better.

It is obvious that Theorem 1 and Theorem 2 are very weak if
0o = min(oy — o, -+ , g1 — )

is very small. We shall use a different approach to study this case. In this approach,

we need to estimate exponential sums of the type

Sa(M)=>"  e(fs(m)),

M<m<M,
where
fa(m) = aym™ + - 4+ agm™,
d > 2 is a fixed integer, a;,---,aq are any real numbers such that aja,-- -aqg # 0,
1, - ,%Yq are real non-integer constants, M and M, are real numbers such that 5 <

M < M, <2M.
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We shall use the method of van der Corput to estimate Sy(M). For example, we use
the second order derivative method. It is possible that for some t € (M, M), | fi(t)] is
very small. Consider this example:

fa(m) = aym™ — agm™,a; > 0,02 > 0.

Let

-1
_ (am('rz - 1)) G

ani(n—1)
and we suppose mg € (M, M;]. Obviously f"(mg) = 0. So we can not use the method
of van der Corput in the whole interval (M, M;] directly (the second order derivative).
Suppose 7 > 0 is a parameter to be chosen later. We divide the interval (M, M,] into

two parts as follows:

L ={te(MM]:|f;¢) <n},
I = {t € (M, My] : | f3(t)] > n}.

Then
SaM) =Y e(fa(m)) + Y e(fa(m)) = S1+ S

mel melz
S, can be estimated by the method of van der Corput directly, S is bounded by the
number of integers in I;. Finally we choose an 7 such that the two estimates are equal.
Set R = |ay|M™ + - - - + |ag|M™. Using the idea above we can prove the following
two Lemmas, which have been published in Zhai[3].
Lemma 2. If R < AM, where A is a fixed positive constant small enough, then

Si(M) <« MR™'/4,
Lemma 3. If R « M2, then
Sa(M) <« RY? + MR™Y/@+D),

Let 65 = min(1/(4k + 6), ax/ (4k — 2)) , take H = Y in (3) and then estimate U(h)

by the above two Lemmas. Finally we can get the following
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Theorem 3. We have
(7) S(z;T) = m(x) (u(I‘) + O(z~% logF+5® z)) .

Example 3. Take k = 2. Suppose 6/ld <oy <a;<lyo—ay<1/14.

From Theorem 1 we have
S(z;T) = 7(z)u(T) + O(zl—&: log'?® 1)

with 04 = min(1 — oy, o — ).

From Theorem 2 we have
S(2;T) = n(z)u(T) + O(z*~% 10g!?3 z)

with (55. =01 — Q9.

However Theorem 3 yields
S(z;T) = w(z)u(T) + O(z'~% log®® )
with §¢ = 1/14..

3. Proofs of Theorems 1 and 2

From Section 2 we know that in order to prove Theorems 1 and 2, we should estimate
exponential sums of the form
S(Y;h,a)= > A(m)e(hgm® + g(m)),
Y<m<2Y
where Y is a large positive real number, 0 < 2 < 1,0< § < 1 /3 is a function of a, h

is an integer such that 1 < h < T%, and g(m) is a real function on [Y, 2Y] of the form
g(m) = uym™ + - .. + uyym™

such that |g¥)(m)| < ehY*i(j = 0,1,2,--- ,6) for some fixed integer ! > 1 and
7, -+, real constants. According to Vaughen'’s identity, S(Y'; h,a) can be written
as sums of so-called Type I and Type II sums. Both of Type I and Type II sums can
be estimated by the method of van der Corput. And finally we can get the féﬂowing

Propositions.
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Proposition 3.1. Suppose 340/351 < a < 1, § = 4(a) = min(1l — &, 20/177),
0 < A < 6. Then, for h € Y?, we have

S(Y;h,a) € Y72 10g"?Y.

Proposition 3.2.. Suppose 340/351 < a < 1, § = 40/407, 0 < A < 4. Then, for
h < Y?, we have

S(Y;h,a) € Y12 10g'?Y.

Proposition 3.3. Suppose 0 < a < 4/5, § = min((1—a)/3,a/4),0 < A < 4. Then,
for h < Y?, we have
S(Y;h,a) € Y "2log>®Y.

Proposition 3.4. Suppose 0 < a < 2/3, § = min((1 — @)/3,/2,1/6). Then, for
h < Y?, we have
3 A(m)e(hm®) < Y’ log"*Y.
m~M

Proof of Theorem 1 : Let h = (hy, - - , hi) satisfy 0 < ||h]| < H and d be the first
integer j with h; # 0, then V(&) = hqt*¢ + g(t).

If ag > 340/351, we use Proposition 3.1 to estimate U(h). We take A = ag — a.,;l
if ¢g — ag41 < min(1 — ag,20/177), and A = min(1 — ag, 20/177). We get

U(h) < Yl—min(l—ad,ad—ad.n,20/177) logll.5 Y

& Yl-min(l-01,04-0441,20/177) | o115
& Y1—61 10g11.5 Y.
Now suppose ag < 340/351. If hgyy = - - - = by = 0, then by Proposition 3.4 we get

Ukh) < y1-min((1-c4)/3,04/21/6) |5 45 y
& Yl—min(ak/2,191/1593) log"s Y

& Y1—51 log11.5 Y.
If there is at least one h; # 0(j > d), then d < k — 1. By Proposition 3.3 we have

U(h) < Yl—min((1—-aa)/3.aa—a4+1,a¢/4) log5‘5 Y.
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If ag — o441 < ag/4, then
min((1 — aq)/3, g — @441, @a/4) = min((1 — a4)/3, g — agy).
| If oy — @441 > a4/4, then
g4 > gy /3 > ar/3.
So we have

U(h) <« Yl-min((i-ad)/3.0-0ut1,04/4) |05 5 y

< y 1-min((1-aq)/3,a4-ad+1,0k/3) 10g5~5 Y

< Y1—61 log5.5 Y.

This copletes the proof of (4) and hence Theorem 1.

Using Proposition 3.2 instead of Proposition 3.1 we can Theorem 2.

4. Proof of Theorem 3

Suppose | > 2 is a fixed integer, 1 > v, > 73 > --- > 7 > 0 are real numbers, Y is a
large positive number, 0 < § = §(y1) < 1/2 is a constant depending only on 7;. Let

: l
S(Y1 hla" : ’hl:'YIa' v ,71) = Z Ae (Zh{)n%) ’

Y<n<2Y j=1

where h; are real numbers such that 1 < |hj] < Y4 j = 1,---,l. From Section 2

we know that in order to prove Theorem 3 , we should estimate the exponential sum

S(Y;hls e 1hl,717 e 77l)~
By Lemma 2 and Lemma 3 we can prove the following
Proposition 4.1. Let § = min(y,/(4! — 2),1/(4l + 6)). Then we have

S(Y’ hla" : ,hl,')'l,' o )71) < Y1—610g5.5K

Proof of Theorem 3. Following the proof of Theorem 1, we only need to estimate
U(h) for fixed h = (hy,--- ,ht) # (0,---,0). We take H = Y% in (3).
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Let no(h) denote the number of h; such that h; # 0, and let d denote the first integer
j with h; # 0. If ng(h) > 2, then by Proposition 4.1 we have

U(h) & Y1—min(1/(4ﬂo(h)+6),a¢/(4no(h)—2)) log5'5 Y

& Yl—min(l/(4k+6),ak/(4k—2)) log5.5 Y.

Now suppose nio(h) = 1. If a4 > 340/531, then by Propositopn 3.2 we have
U(h) < Y -4/ j0g!15 Y « Y-8 1og53 Y, '
If ag < 340/531, then by Proposition 3.4 we get
U(h) & y(l—aa)/3,1/6.aa/2 10g4‘5 y
< Y% 10g5%Y.
This completes the proof of Theorem 3.
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