ON THE SIMULTANEOUS DISTRIBUTION OF THE FRACTIONAL PARTS OF DIFFERENT POWERS OF PRIMES

ZHAI WENGUANG

Department of Mathematics, Shandong Teacher's University, China Graduate School of Mathematics, Nagoya university

1. Introduction

In 1940, I.M. Vinogradov[1] considered the distribution of the fractional parts of the sequence $f\sqrt{p}$, where p runs over prime numbers and f is a positive constant. This celebrated work motivated the interests of many authors to investigate the distribution of p^{α} modulo 1 by various methods.

In 1991, D.I. Tolev[2] studied the simultaneous distribution of the fractional parts of different powers of primes . Suppose $k \geq 2$ is a fixed integer and $0 < \alpha_k < \cdots < \alpha_1 < 1$ are real numbers, $\Gamma \subset \mathbb{R}^k$ is defined by

$$\Gamma = \Gamma(\xi_1, \eta_1, \cdots, \xi_k, \eta_k) = \{(x_1, \cdots, x_k) : \xi_i < x_i < \eta_i, 1 \le i \le k\},$$

where $0 < \xi_i < \eta_i \le 1, 1 \le i \le k$. Let $\mu(\Gamma) = \prod_{i=1}^k (\eta_i - \xi_i)$, and let $S(x; \Gamma)$ denote the number of primes not greater than x and satisfy the condition

$$(\{p^{\alpha_1}\},\cdots,\{p^{\alpha_k}\})\in\Gamma,$$

where $\{t\}$ means the fractional part of t. Then Tolev proved that

(1)
$$S(x;\Gamma) = \pi(x) \left(\mu(\Gamma) + O(x^{-\frac{\delta}{3}} \log^{k+9} x) \right)$$

with

$$\delta = \min(1 - \alpha_1, \alpha_1 - \alpha_2, \cdots, \alpha_{k-1} - \alpha_k, \alpha_k, 1/4).$$

We first give the outline of Tolev's proof. It suffices to establish the inequality

(2)
$$R(Y) \ll Y^{-\delta/3} \log^{k+9} Y$$

for all $Y \in [x^{1-\delta}, x]$, where

$$R(Y) = \sup_{\Gamma} \left| \frac{S(2Y; \Gamma) - S(Y; \Gamma)}{\pi(2Y) - \pi(Y)} - \mu(\Gamma) \right|.$$

The following Lemma 1 can be used to transform the estimation of R(Y) into an exponential sum problem.

Lemma 1. If $Z_n = (Z_{1,n}, \dots, Z_{k,n})(n = 1, 2, 3, \dots)$ is a sequence of k-dimensional vectors and its discrepency is defined by

$$D_N = \sup_{\Gamma} \left| \frac{1}{N} \sum_{\substack{n \leq N \\ (Z_{1,n}, \cdots, Z_{k,n}) \in \Gamma}} 1 - \mu(\Gamma) \right|.$$

Then for any H > 0, we have

$$D_N \ll \frac{1}{H} + \sum_{0 < ||h|| < H} \frac{1}{r(h)} \left| \frac{1}{N} \sum_{n \le N} e(\langle h, Z_n \rangle) \right|,$$

where $h = (h_1, \dots, h_k)$ denotes the k-dimensional integer vector,

$$||h|| = \max_{1 \le i \le k} |h_i|, r(h) = \prod_{i=1}^k \max(|h_i|, 1),$$

<.,.> denotes the Euclidean scalar product in \mathbb{R}^k and $e(x)=e^{2\pi ix}$.

So for every H > 2, by Lemma 1 one has

(3)
$$R(Y) \ll H^{-1} + \sum_{0 < ||h|| \le H} \frac{1}{r(h)}$$

$$\times \left| \frac{1}{\pi(2Y) - \pi(Y)} \sum_{Y
$$\ll H^{-1} + Y^{-1/2} \log^{k+2} Y + Y^{-1} \log Y \sum_{0 < ||h|| \le H} \frac{1}{r(h)} |U(h)|,$$$$

where

$$U(h) = \sum_{Y < n \le 2Y} \Lambda(n) e(V(t)),$$

$$V(t) = h_1 t^{\alpha_1} + \dots + h_k t^{\alpha_k},$$

 $\Lambda(n)$ is the Mangoldt function.

Now the problem is reduced to estimate the exponential sum U(h). Tolev connected the sum U(h) with the well-known formula

$$\sum_{n \le x} \Lambda(n) = x - \sum_{|\rho| \le T} \frac{x^{\rho}}{\rho} + O(\frac{x \log^2 xT}{T} + \log x).$$

Then he obtained his result with the help of the zero-density estimates.

2. Some new results

Tolev's result can be further improved by different methods.

Let

$$\delta_1 = \min(1 - \alpha_1, \alpha_1 - \alpha_2, \cdots, \alpha_{k-1} - \alpha_k, \alpha_k/3, 20/177).$$

We take $H = Y^{\delta_1}/\log Y$ in (3).

For a fixed $h=(h_1,\cdots,h_k)\neq (0,\cdots,0)$ with $|h_i|\leq H(1\leq i\leq k)$, consider the function

$$V(t) = h_1 t^{\alpha_1} + \cdots + h_k t^{\alpha_k},$$

where $Y < t \le 2Y$. Let d be the first integer with $h_j \ne 0$, then

$$V(t) = h_d t^{\alpha_d} + g(t).$$

Since $\delta_1 \leq \alpha_d - \alpha_{d+1}$, we have $g(t) = O(|h_d|Y^{\alpha_d}/\log Y)$.

Now we can write

$$U(h) = \sum_{Y < n \leq 2Y} \Lambda(n) e(h_d n^{\alpha_d} + g(n)).$$

So U(h) can be estimated more effectively by using the method of exponential sums directly and Finally we can prove that

(4)
$$U(h) \ll Y^{1-\delta_1} \log^{11.5} Y$$
,

which yields the following (see next Section)

Theorem 1. We have

(5)
$$S(x;\Gamma) = \pi(x) \left(\mu(\Gamma) + O(x^{-\delta_1} \log^{k+11.5} x) \right)$$

$$\delta_1 = \min(1 - \alpha_1, \alpha_1 - \alpha_2, \cdots, \alpha_{k-1} - \alpha_k, \alpha_k/3, 20/177).$$

Example 1. Take k = 2. If $80/177 < \alpha_1 < 157/177, <math>60/177 < \alpha_2 < \alpha_1 - 20/177$, then

$$S(x;\Gamma) = \pi(x)\mu(\Gamma) + O(x^{157/177}\log^{k+12.5}x).$$

Similarly we can prove

Theorem 2. We have

(6)
$$S(x;\Gamma) = \pi(x) \left(\mu(\Gamma) + O(x^{-\delta_2} \log^{k+11.5} x) \right)$$

with

$$\delta_2 = \min(\alpha_1 - \alpha_2, \cdots, \alpha_{k-1} - \alpha_k, \alpha_k/3, 40/407).$$

Example 2. Take k = 2. If $160/407 < \alpha_1 < 1$, $120/407 < \alpha_2 < \alpha_1 - 40/407$, then

$$S(x;\Gamma) = \pi(x)\mu(\Gamma) + O(x^{367/407}\log^{k+12.5}x).$$

Both of the above Theorems improve Tolev's result. If α_1 is very close to 1, then Theorem 2 is better.

It is obvious that Theorem 1 and Theorem 2 are very weak if

$$\delta_0 = \min(\alpha_1 - \alpha_2, \cdots, \alpha_{k-1} - \alpha_k)$$

is very small. We shall use a different approach to study this case. In this approach, we need to estimate exponential sums of the type

$$S_d(M) = \sum_{M < m \le M_1} e(f_d(m)),$$

where

$$f_d(m) = a_1 m^{\gamma_1} + \cdots + a_d m^{\gamma_d},$$

 $d \geq 2$ is a fixed integer, a_1, \dots, a_d are any real numbers such that $a_1 a_2 \cdots a_d \neq 0$, $\gamma_1, \dots, \gamma_d$ are real non-integer constants, M and M_1 are real numbers such that $5 < M < M_1 \leq 2M$.

We shall use the method of van der Corput to estimate $S_d(M)$. For example, we use the second order derivative method. It is possible that for some $t \in (M, M_1]$, $|f''_d(t)|$ is very small. Consider this example:

$$f_2(m) = a_1 m^{\gamma_1} - a_2 m^{\gamma_2}, a_1 > 0, a_2 > 0.$$

Let

$$m_0 = \left(rac{a_2\gamma_2(\gamma_2-1)}{a_1\gamma_1(\gamma_1-1)}
ight)^{rac{1}{\gamma_1-\gamma_2}},$$

and we suppose $m_0 \in (M, M_1]$. Obviously $f''(m_0) = 0$. So we can not use the method of van der Corput in the whole interval $(M, M_1]$ directly (the second order derivative). Suppose $\eta > 0$ is a parameter to be chosen later. We divide the interval $(M, M_1]$ into two parts as follows:

$$I_1 = \{t \in (M, M_1] : |f_d''(t)| \le \eta\},$$

$$I_2 = \{t \in (M, M_1] : |f_d''(t)| > \eta\}.$$

Then

$$S_d(M) = \sum_{m \in I_1} e(f_d(m)) + \sum_{m \in I_2} e(f_d(m)) = S_1 + S_2.$$

 S_2 can be estimated by the method of van der Corput directly, S_1 is bounded by the number of integers in I_1 . Finally we choose an η such that the two estimates are equal.

Set $R = |a_1|M^{\gamma_1} + \cdots + |a_d|M^{\gamma_d}$. Using the idea above we can prove the following two Lemmas, which have been published in Zhai[3].

Lemma 2. If $R \leq \Delta M$, where Δ is a fixed positive constant small enough, then

$$S_d(M) \ll MR^{-1/d}$$
.

Lemma 3. If $R \ll M^2$, then

$$S_d(M) \ll R^{1/2} + MR^{-1/(d+1)}$$
.

Let $\delta_3 = \min(1/(4k+6), \alpha_k/(4k-2))$, take $H = Y^{\delta_3}$ in (3) and then estimate U(h) by the above two Lemmas. Finally we can get the following

Theorem 3. We have

(7)
$$S(x;\Gamma) = \pi(x) \left(\mu(\Gamma) + O(x^{-\delta_3} \log^{k+5.5} x) \right).$$

Example 3. Take k = 2. Suppose $6/14 < \alpha_2 < \alpha_1 < 1, \alpha_1 - \alpha_2 < 1/14$.

From Theorem 1 we have

$$S(x; \Gamma) = \pi(x)\mu(\Gamma) + O(x^{1-\delta_4} \log^{12.5} x)$$

with $\delta_4 = \min(1 - \alpha_1, \alpha_1 - \alpha_2)$.

From Theorem 2 we have

$$S(x;\Gamma) = \pi(x)\mu(\Gamma) + O(x^{1-\delta_5}\log^{12.5}x)$$

with $\delta_5 = \alpha_1 - \alpha_2$.

However Theorem 3 yields

$$S(x;\Gamma) = \pi(x)\mu(\Gamma) + O(x^{1-\delta_6}\log^{6.5}x)$$

with $\delta_6 = 1/14...$

3. Proofs of Theorems 1 and 2

From Section 2 we know that in order to prove Theorems 1 and 2, we should estimate exponential sums of the form

$$S(Y; h, \alpha) = \sum_{Y < m \le 2Y} \Lambda(m) e(h_d m^{\alpha} + g(m)),$$

where Y is a large positive real number, $0 < \alpha < 1$, $0 < \delta < 1/3$ is a function of α , h is an integer such that $1 \le h \ll T^{\delta}$, and g(m) is a real function on [Y, 2Y] of the form

$$g(m) = u_1 m^{\gamma_1} + \cdots + u_l m^{\gamma_l}$$

such that $|g^{(j)}(m)| \leq \varepsilon h Y^{\alpha-j} (j=0,1,2,\cdots,6)$ for some fixed integer $l\geq 1$ and γ_1,\cdots,γ_l real constants. According to Vaughen's identity, $S(Y;h,\alpha)$ can be written as sums of so-called Type I and Type II sums. Both of Type I and Type II sums can be estimated by the method of van der Corput. And finally we can get the following Propositions.

Proposition 3.1. Suppose $340/351 < \alpha < 1$, $\delta = \delta(\alpha) = \min(1 - \alpha, 20/177)$, $0 < \Delta \le \delta$. Then, for $h \ll Y^{\delta}$, we have

$$S(Y; h, \alpha) \ll Y^{1-\Delta} \log^{11.5} Y$$
.

Proposition 3.2. Suppose $340/351 < \alpha < 1$, $\delta = 40/407$, $0 < \Delta \le \delta$. Then, for $h \ll Y^{\delta}$, we have

$$S(Y; h, \alpha) \ll Y^{1-\Delta} \log^{11.5} Y$$
.

Proposition 3.3. Suppose $0 < \alpha < 4/5$, $\delta = \min((1-\alpha)/3, \alpha/4)$, $0 < \Delta \le \delta$. Then, for $h \ll Y^{\delta}$, we have

$$S(Y; h, \alpha) \ll Y^{1-\Delta} \log^{5.5} Y$$
.

Proposition 3.4. Suppose $0 < \alpha < 2/3$, $\delta = \min((1-\alpha)/3, \alpha/2, 1/6)$. Then, for $h \ll Y^{\delta}$, we have

$$\sum_{m \sim M} \Lambda(m) e(hm^{\alpha}) \ll Y^{1-\delta} \log^{4.5} Y.$$

Proof of Theorem 1: Let $h = (h_1, \dots, h_k)$ satisfy $0 < ||h|| \le H$ and d be the first integer j with $h_i \ne 0$, then $V(t) = h_d t^{\alpha_d} + g(t)$.

If $\alpha_d > 340/351$, we use Proposition 3.1 to estimate U(h). We take $\Delta = \alpha_d - \alpha_{d+1}$ if $\alpha_d - \alpha_{d+1} \leq \min(1 - \alpha_d, 20/177)$, and $\Delta = \min(1 - \alpha_d, 20/177)$. We get

$$U(h) \ll Y^{1-\min(1-\alpha_d,\alpha_d-\alpha_{d+1},20/177)} \log^{11.5} Y$$

$$\ll Y^{1-\min(1-\alpha_1,\alpha_d-\alpha_{d+1},20/177)} \log^{11.5} Y$$

$$\ll Y^{1-\delta_1} \log^{11.5} Y.$$

Now suppose $\alpha_d \leq 340/351$. If $h_{d+1} = \cdots = h_k = 0$, then by Proposition 3.4 we get

$$U(h) \ll Y^{1-\min((1-\alpha_d)/3,\alpha_d/2,1/6)} \log^{4.5} Y$$

$$\ll Y^{1-\min(\alpha_k/2,191/1593)} \log^{4.5} Y$$

$$\ll Y^{1-\delta_1} \log^{11.5} Y.$$

If there is at least one $h_j \neq 0 (j > d)$, then $d \leq k - 1$. By Proposition 3.3 we have

$$U(h) \ll Y^{1-\min((1-\alpha_d)/3,\alpha_d-\alpha_{d+1},\alpha_d/4)} \log^{5.5} Y.$$

If $\alpha_d - \alpha_{d+1} \leq \alpha_d/4$, then

$$\min((1-\alpha_d)/3, \alpha_d - \alpha_{d+1}, \alpha_d/4) = \min((1-\alpha_d)/3, \alpha_d - \alpha_{d+1}).$$

If $\alpha_d - \alpha_{d+1} > \alpha_d/4$, then

$$\alpha_d/4 \ge \alpha_{d+1}/3 \ge \alpha_k/3.$$

So we have

$$U(h) \ll Y^{1-\min((1-\alpha_d)/3,\alpha_d-\alpha_{d+1},\alpha_d/4)} \log^{5.5} Y$$

$$\ll Y^{1-\min((1-\alpha_d)/3,\alpha_d-\alpha_{d+1},\alpha_k/3)} \log^{5.5} Y$$

$$\ll Y^{1-\delta_1} \log^{5.5} Y.$$

This copletes the proof of (4) and hence Theorem 1.

Using Proposition 3.2 instead of Proposition 3.1 we can Theorem 2.

4. Proof of Theorem 3

Suppose $l \ge 2$ is a fixed integer, $1 > \gamma_1 > \gamma_2 > \cdots > \gamma_l > 0$ are real numbers, Y is a large positive number, $0 < \delta = \delta(\gamma_1) < 1/2$ is a constant depending only on γ_1 . Let

$$S(Y; h_1, \cdots, h_l, \gamma_1, \cdots, \gamma_l) = \sum_{Y < n \leq 2Y} \Lambda e \left(\sum_{j=1}^l h_j n^{\gamma_j} \right),$$

where h_j are real numbers such that $1 \leq |h_j| \leq Y^{\delta}, j = 1, \dots, l$. From Section 2 we know that in order to prove Theorem 3, we should estimate the exponential sum $S(Y; h_1, \dots, h_l, \gamma_1, \dots, \gamma_l)$.

By Lemma 2 and Lemma 3 we can prove the following

Proposition 4.1. Let $\delta = \min(\gamma_1/(4l-2), 1/(4l+6))$. Then we have

$$S(Y; h_1, \cdots, h_l, \gamma_1, \cdots, \gamma_l) \ll Y^{1-\delta} \log^{5.5} Y.$$

Proof of Theorem 3. Following the proof of Theorem 1, we only need to estimate U(h) for fixed $h = (h_1, \dots, h_k) \neq (0, \dots, 0)$. We take $H = Y^{\delta_3}$ in (3).

Let $n_0(h)$ denote the number of h_j such that $h_j \neq 0$, and let d denote the first integer j with $h_j \neq 0$. If $n_0(h) \geq 2$, then by Proposition 4.1 we have

$$U(h) \ll Y^{1-\min(1/(4n_0(h)+6),\alpha_d/(4n_0(h)-2))} \log^{5.5} Y$$

$$\ll Y^{1-\min(1/(4k+6),\alpha_k/(4k-2))} \log^{5.5} Y.$$

Now suppose $n_0(h) = 1$. If $\alpha_d \ge 340/531$, then by Propositopn 3.2 we have

$$U(h) \ll Y^{1-40/407} \log^{11.5} Y \ll Y^{1-\delta_3} \log^{5.5} Y$$
.

If $\alpha_d < 340/531$, then by Proposition 3.4 we get

$$U(h) \ll Y^{(1-\alpha_d)/3,1/6,\alpha_d/2} \log^{4.5} Y$$
$$\ll Y^{1-\delta_3} \log^{5.5} Y.$$

This completes the proof of Theorem 3.

REFERENCES

- [1] I.M.Vinogradov, Special variants of the method of trigonometric sums, Izda. Nauka, Moscow, (1976)(In Russian).
- [2] D.I.Tolev, On the simultaneous distribution of the fractional parts of different powers of primes, J.Number Theory37(1991),298-306.
- [3] W.G.Zhai,On the k-dimensional Piatetski-Shapiro prime number theorem, Sci. in China(Ser. A)29(1999),787-806.