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Abstract

We review the status of the “pathologies” of the Renormalization Group encountered
when one tries to define rigorously the Renormalization Group transformation as amap
between Hamiltonians. We explain their origin and clarify their status by relating them to
the Griffiths’ singularities appearing in disordered systems; moreover, we suggest that the
best way to avoid those pathologies is to use the contour representation rather than the
spin representation for lattice spin models at low temperatures. Finally, we outline how to
implement the Renormalization Group in the contour representation.

1Introduction

The Renormalization Group (RG) has been one of the most useful tools of theoretical physics
during the past decades. It has led to an understanding of universality in the theory of critical
phenomena and of the divergences in quantum field theories. It has also provided anonpertur-
bative calculational framework as well as the basis of arigorous mathematical understanding of
these theories.

Here is a(partial) list of rigorous mathematical results obtained by adirect use of RG ideas:

-Proof that in the lattice field theory $\lambda\phi^{4}$ i $\mathrm{n}$ $d=4$ , with Asmall, the critical exponent $\eta$

takes its mean field value 0[42], [33].

-Construction of arenormalizable, asymtotically free, Quantum Field Theory, the Gross-
Neveu model in two dimensions $[43, 7]$ , [34].

-Construction of aperturbatively non renormalizable Quantum Field Theory, the Gross-
Neveu model in $2+\epsilon$ “dimensions” (i.e. the dimension of spacetime is two but the prop-
agator is made more singular in the ultraviolet) [45] (see also [15]) and the lattice $\lambda\varphi^{4}$

model in $d=4-\epsilon$ , at the critical point [14].

-Construction of pure non Abelian gauge theories in $d=4$ (in finite volume) [1], [81].

-Analysis of the Goldstone picture in $d>2[2]$ .
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Other mathematical results related to statistical mechanics and using the RG include first
order phase transitions in regular [41] and disordered [7] spin systems, which we shall discuss in
this paper, and diffusion in random media [8]. Finally, the application of RG ideas to the theory
of dynamical systems initiated by Feigenbaum [31, ?] is well known; less well known is the
application to the study of large time asymptotics of nonlinear PDE’s pioneered by Goldenfeld
and Oono [49], $[9, ?]^{1}$ .

The textbook explanation of the (Wilsonian) RG goes roughly as follows: consider alattice
system with spins $\sigma$ and Hamiltonian $H$ . Cover the lattice with disjoint boxes $B_{x}$ and associate
with each box avariable $s_{x}$ giving acoarse grained description of the spins in $B_{x}$ , e.g. for the
s0-called block spin transformation, $s_{x}$ is asuitably normalized average of the spins $\sigma$:for $i\in B_{x}$ .
Now define (formally)

$\exp(-\beta H’(s))=\sum_{\sigma}\exp(-\beta H(\sigma))s$ (1.1)

where the sum runs over all configurations $\sigma$ satisfying the constraints defined by $s$ . The
transformation (1.1) is called a RG transformation (RGT) and $H’$ is the effective or renormalized
Hamiltonian. Now it is usual to parametrize Hamiltonians in term of coupling constants $\mathrm{J}$ , i.e.
to write

$H=\Sigma J_{\dot{|}j:}\sigma\sigma_{jjk:}+\Sigma J_{\dot{1}}\sigma\sigma_{j}\sigma_{k}+\cdots$ (1.2)

where the collection of numbers $\mathrm{J}=$ $(J_{\dot{l}j}, J_{\dot{|}jk}, \cdots)$ include the pair couplings, the three-body
couplings, the $n$-body couplings etc. Using this description, the map $\beta Harrow\beta’H’$ defined by
(1.1) gives rise to amap $\beta \mathrm{J}arrow\beta’\mathrm{J}’$ . Now, by studying this map (or, in practice, some truncation
of it), its iteration, its fixed points and its flow around the latter, one obtains useful information
about the original spin system with Hamiltonian $H$ , in particular about its phase diagram and
its critical exponents.

The crucial feature that makes the RG method useful is that, even if $\beta H$ happens to describe
the system close to its critical point, the transformation (1.1) (and its iterations) amount to
studying anon critical spin system and that analysis can be performed with rather standard
tools such as high or low temperature expansions. The reason why that nice property holds is
that critical properties of aspin system come from large scale fluctuations in the system while
the sum (1.1) runs only over its small scale fluctuations. And this, in turn, is because fixing the
$\mathrm{s}$ variables effectively freezes the large scale fluctuations of the $\sigma$ variables.

At least, this is the scenario which is expected to hold and is usually assumed without proof
in most applications. However, before coming to our main point, it should be stressed that the
successful applications of the RG method mentioned above do not follow literally the “texbook”
description, for reasons that will be discussed later.

Be that as it may, it is avery natural mathematical question to ask whether the transforma-
tion (1.1) can be well defined on some space of Hamiltonians and, if so, to study its properties.
However, this program has met some difficulties. Although it can be justified at high temper-
atures [59] and even, in some cases, at any temperature above the critical one [5], it has been
observed in simulations [54] that the RG transformation seems, in some sense, “discontinuous”
as amap between spin Hamiltonians at low temperatures. These observations led subsequently
to arather extensive discussion of the s0-called “pathologies” of the Renormalization Group
Transformations: van Enter, Fernandez and Sokal have shown [24, ?] that, first of all, the RG
transformation is not really discontinuous. But they also show, using results of Griffiths and
Pearce $[51, 52]$ and of Israel [59], that, roughly speaking, there does not exist arenormalized
Hamiltonian for many RGT applied to Ising-like models at low $\mathrm{t}\mathrm{e}\mathrm{m}\mathrm{p}\mathrm{e}\mathrm{r}\mathrm{a}\mathrm{t}\mathrm{u}\mathrm{r}\mathrm{e}\mathrm{s}^{2}$ .

JSee e.g. [4, 37, 86] for yet other applications of the $\mathrm{R}\mathrm{G}$ .
$2\mathrm{I}\mathrm{n}$ some cases, but for rather special transformations, even at high temperatures in particular in alarge

external field, see $[23, ?]$ .
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More precisely, van Enter, Fernandez and Sokal consider various real-space RGT (block spin,

majority vote, decimation$)^{3}$ that can be easily and rigorously defined as maps acting on measures
(i.e. on probability distributions of the infinite volume spin system): if we start with a Gibbs
measure $\mu$ corresponding to agiven Hamiltonian $H$ , then one can easily define the renormalized
measure $\mu’$ . The problem then is to reconstruct arenormalized Hamiltonian $H’$ (i.e. aset of
interactions, like $\mathrm{J}’$ above) for which $\mu’$ is aGibbs measure. Although this is trivial in finite

volume, it is not so in the thermodynamic limit, and it is shown in [25] that, in many cases at low

temperatures, even if $H$ contains only nearest-neighbour interactions, there is no (uniformly)

absolutely summable interaction (defined in (2.2) below) giving rise to aHamiltonian $H’$ for
which $\mu’$ is aGibbs measure. It has to be emphasized that this not merely aproblem arising

from difficulties in computing $H’$ , but rather that $H’$ is simply not defined, at least according to

astandard and rather general definition (allowing for long range and many body interactions);

therefore, if one devices an approximate scheme for “computing $H’”$ , it is not clear at all, in

view of the results of van Enter, Fernandez and Sokal, what object this scheme is supposed to
approximate.

One should also mention that this issue is related to another one, of independent interest:

when is ameasure Gibbsian for some Hamiltonian? For example, Schonmann showed [87] that,

when one projects aGibbs measure (at low temperatures) to the spins attached to alattice

of lower dimension, the resulting measure is not, in general, Gibbsian. This is also aquestion

arising naturally, for example in the context of interacting particle system, where one would like

to determine whether the stationary measure(s) are Gibbsian or not, see for example [74] for a
discussion of this issue.

What should one think about those pathologies? Basically, the answer is that, by trying to
implement (1.1) at low temperatures, one is following the letter rather than the spirit of the $\mathrm{R}\mathrm{G}$ ,
because one is using the spin variables, which are the wrong variables in that region. The fact

that the usefulness of the RG method depends crucially on choosing the right variables has been

known for along time. The “good” variables should be such that asingle RG transformation,

which can be interpreted as solving the statistical mechanics of the small scale variables with the

large ones kept fixed, should be “noncritical” i.e. should be away from the parameter regions

where phase transitions occur. But, as we shall explain, all the pathologies occur because, even
when the $s$ variables are fixed, the $\sigma$ variables can still undergo aphase transition for some
values of the $s$ variables, i.e. they still have large scale fluctuations; or, in other words, the sum
(1.1) does not amount to summing only over small scale fluctuations of the system, keeping the
large ones fixed, which is what the RG idea is all about. However, such asummation over only

small scale fluctuations can be performed, also at low temperatures, and can yield useful results
there; but for that, one needs to use arepresentation of the system in terms of contours (i.e.

the domain walls that separate the different ground states), instead of the spin representation.
To apply the RG method, one inductively sums over the small scale contours, producing an
effective theory for the larger scale contours [41, ?].

In the next section, we briefly explain what is the most general, but standard, notion of Gibbs
states. Then we define (Section 3) the RG transformations, and the renormalized measures that

can be shown to be not Gibbsian in the sense of the Section 2. Then, after explaining intuitively

why pathologies occur (Section 4) and why this phenomenon is actually similar to the occurence
of Griffiths’ singularities in disordered systems (Section 5), we introduce aweaker notion of

Gibbs state such that one can show that the renormalized measures are Gibbsian in that weaker
sense (Section 6). Next, we explain how the RG works in the contour language (Section 7) and
we end up with some conclusions and open problems (Section 8).

Since detailed proofs of all the results mentioned in this paper exist in the litterature, we shall
not give them here and simply refer the reader to the relevant literature; moreover, our style will

be mostly heuristic and non-mathematical, with some remarks added for the mathematically

$3\mathrm{F}\mathrm{o}\mathrm{r}$ adiscussion of problems arising in the definition of the RG in momentum-space, see [29]
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inclined reader.

2Gibbs States
Since there exist many good references on the theory of Gibbs measures (also called Gibbs
states), (see e.g. [25, ?, ?, ?, ?]) we shall only state the main definition and the basic properties.

To start with aconcrete example, consider the nearest-neighbour Ising model on $\mathrm{Z}^{d}$ . To
each $i\in \mathrm{Z}^{d}$ , we associate avariable $\sigma:\in\{-1, +1\}$ , and the (formal) Hamiltonian is

$- \beta H=\beta J\sum_{\{j\rangle}(\sigma_{\dot{l}}\sigma_{j}-1)$
(2.1)

where $\langle ij\rangle$ denotes anearest-neighbour pair and $\beta$ is the inverse temperature.
Obviously, the sum (2.1) makes sense only when it is restricted to afinite subset of the

lattice. So, one would like to define Gibbs measures through the usual factor $Z^{-1}\exp(-\beta H)$

but using only in that formula restrictions of $H$ to finite subsets of the lattice. One possibility is
to first define Gibbs states in finite volume (with appropriate boundary conditions, and given by
the RHS of (2.7) below) and then take all possible limits of such measures as the volume grows
to infinity; however, there is amore intrinsic way to introduce Gibbs states directly in infinite
volume, which we shall explain now. But, instead of defining the Gibbs measures only for the
Ising Hamiltonian, we shall first introduce amore general framework, which will be needed later
and which defines precisely what it means for aHamiltonian to contain $n$-body potentials for
all $n$ (while the Hamiltonian (2.1) clearly includes only atw0-body potential).

Let us consider spin variables $\sigma$:taking values in adiscrete set 0(equal to $\{-1, +1\}$ above;
everything generalizes to spins taking values in compact spaces which, in applications, are usually
spheres). For asubset $X$ of the lattice, denote the set of spin configurations on that set by $\Omega_{X}$ .
Define an interaction $\Phi=(\Phi\chi)$ , as afamily of functions

$\Phi_{X}$ : $\Omega_{X}arrow \mathrm{R}$,

given for each finite subset $X$ of $\mathrm{Z}^{d}$ . Asume that 4is

a) translation invariant.

b) uniformly absolutely summable:

$|| \Phi||\equiv\sum_{X\ni 0}||\Phi_{X}||<\infty$ (2.2)

where $|| \Phi_{X}||=\sup_{\sigma\in\Omega_{X}}|\Phi_{X}(\sigma)|$ .
$\Phi_{X}$ should be thought of as an $n$-body $\mathrm{i}\mathrm{n}\mathrm{t}\mathrm{e}\mathrm{r}\mathrm{a}\mathrm{c}\mathrm{t}\mathrm{i}\mathrm{o}\mathrm{n}^{4}$ between the spins in $X$ with $n=|X|$ .

For the example of the Ising model, we have

$\Phi_{X}(\sigma)=\beta J(\sigma:\sigma j-1)$ if $X=\{i,j\}$ and $i,j$ are nearest-neighbours. (2.3)
$\Phi_{X}(\sigma)=0$ otherwise. (2.4)

Note that, for convenience, we absorb the inverse temperature $\beta$ into $\Phi$ .
Given an interaction $\Phi$ , one may define the Hamiltonian in any finite volume $V$ , i.e. the

energy of aspin configuration $\sigma\in\Omega_{V}$ , provided boundary conditions are specified. Since we
$4\mathrm{T}\mathrm{h}\mathrm{i}\mathrm{s}$ set of interactions obviously forms aBanach space equipped with the norm (2.2) (note that our termi-

nology differs slightly ffom the one of [25]: we add the word “uniformly” to underline the difference with respect
to condition (6.1) below) .
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are allowing arbitarily long range interactions, boundary conditions mean specifying aspin
configuration $\overline{\sigma}$ in the complement of V, i.e. $\overline{\sigma}\in\Omega_{V^{c}}$ . The Hamiltonian is then given by

$H( \sigma|\overline{\sigma})=-\sum_{X\cap V\neq\emptyset}\Phi_{X}(\sigma\vee\overline{\sigma})$
(2.5)

where $\sigma\vee\overline{\sigma}$ denotes the total spin configuration. The sum (2.5) is aprecise version of the formal
sum (1.2) or (2.1).

The quantity $H(\sigma|\overline{\sigma})$ is bounded by :

$|H( \sigma|\overline{\sigma})|\leq\sum_{x\in V}\sum_{X\ni x}||\Phi_{X}||$

$=|V|||\Phi||$ (2.6)

i.e. is finite for all $V$ finite under condition (2.2).

Definition. Aprobability measure $\mu$ on (the Borel sigma-algebra of) $\Omega_{\mathrm{Z}^{d}}$ is aGibbs measure
for $\Phi$ if for all finite subsets $V\in \mathrm{Z}^{d}$ its conditional probabilities satisfy, $\forall\sigma\in\Omega_{V}$ ,

$\mu(\sigma|\overline{\sigma})=Z^{-1}(\overline{\sigma})\exp(-H(\sigma|\overline{\sigma}))$ (2.7)

for $\mu$ almost every $\overline{\sigma}$ (where $Z^{-1}(\overline{\sigma})$ is the obvious normalization factor).

This definition is natural because one expects that if ameasure is an equilibrium measure,
then the conditional expectation of aconfiguration in afinite box, given aconfiguration outside
that box, is given by (2.7). Moreover, under condition (2.2) on the interaction, one may develop
afairly general theory of Gibbs states. In fact, it is rather easy to show that all thermodynamic
limits of Gibbs $\mathrm{m}\mathrm{e}\mathrm{a}\mathrm{s}\mathrm{u}\mathrm{r}\mathrm{e}\mathrm{s}^{5}$ defined in finite volumes satisfy (2.7). Besides, one can show that the
set of Gibbs states is aclosed convex set and every Gibbs state can be decomposed uniquely in
terms of the extreme points of that set. The latter can be interpreted physically as the pure
phases of the system and can always be obtained as limits of finite volume Gibbs measures with
appropriate boundary conditions. Finally, expectations values of functions of the spins in those
extremal Gibbs states are related in anatural way to derivatives of the free energy with respect
to perturbations of the Hamiltonian.

Returning to our example of the Ising model, it is well known that, at low temperatures, for
$d\geq 2$ , there are (exactly) two extremal translation invariant Gibbs measures corresponding to
the Hamiltonian (2.1), $\mu_{+}$ and $\mu-$ (moreover, in $d\geq 3$ , there are also non-translation invariant
Gibbs measures describing interfaces between the two pure phases).

3Renormalization Group transformations

To define our RGT, let $\mathcal{L}=(L\mathrm{Z})^{d}$ , $L\in \mathrm{N}$ , $L\geq 2$ and cove$\mathrm{r}$

$\mathrm{Z}^{d}$ with disjoint $L$ -boxes $B_{x}=B_{0}+x$ ,
$x\in \mathcal{L}$ where $B\circ$ is abox of side $L$ centered around 0. To simplify the notation, we shall write
$\mathrm{x}$ for $B_{x}$ .

The RGT which is simplest to define, even though it is not the most widely used, is the
decimation transformation: fix all the spins $\sigma_{x}$ located at the center of the boxes $B_{x}$ and sum
over all the other spins. Given ameasure $\mu$ , the renormalized measure $\mu’$ is trivial to define :it
is just the $\mathrm{r}\mathrm{e}\mathrm{s}\mathrm{t}\mathrm{r}\mathrm{i}\mathrm{c}\mathrm{t}\mathrm{i}\mathrm{o}\mathrm{n}^{6}$ of $\mu$ to the set of spins $\{\sigma_{x}\}$ , $x\in \mathcal{L}$ .

We can generalize this example as follows: associate to each $x\in \mathcal{L}$ avariable $s_{x}\in\{-1, +1\}$ ,
denote by $\sigma_{\mathrm{x}}=\{\sigma_{i}\}_{i\in \mathrm{x}}$ , and introduce, for $x\in \mathcal{L}$ , the probability kernels

$T_{x}=T(\sigma_{\mathrm{x}}, s_{x})$ ,

$5\mathrm{U}\mathrm{n}\mathrm{d}\mathrm{e}\mathrm{r}$ the following notion of convergence : $\mu_{n}arrow\mu$ if $\mathrm{f}\mathrm{i}(\mathrm{s})arrow\mu(s)\forall V$ finite $\forall s\in\Omega v$ .
6Also called the projection or the marginal distribution of $\mu$ .
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which means that $T_{x}$ satisfies

1) $T(\sigma_{\mathrm{x}}, s_{x})\geq 0$

2)
$\sum_{s_{l}}T(\sigma_{\mathrm{X}}, s_{x})=1$ (3.1)

In the example of the decimation transformation, $T(\sigma_{\mathrm{x}}, s_{x})=\delta(\sigma_{x}-s_{x})$ . Other examples
include the majority transformation, defined when $|B_{x}|$ is odd, where $T(\sigma_{\mathrm{x}}, s_{x})=1$ if and only
if the majority of the signs of the spins in $\mathrm{x}$ coincide with $s_{x}$ . Or the Kadanoff transformation,
defined, for $p\geq 0$ , by

$\exp(ps_{x}\sum\sigma_{\dot{1}})$

$T( \sigma_{\mathrm{x}}, s_{x})=\frac{\dot{l}\in \mathrm{X}}{2\cosh(p\sum_{\dot{l}\in \mathrm{x}}\sigma_{\dot{l}})}$

.

Note that, when $parrow\infty$ , the probability kernel of that transformation converges towards the
one of the majority transformation.

For any measure $\mu$ on $\{-1, +1\}^{\mathrm{Z}^{d}}$ , we denote by $\mu(\sigma_{A})$ the probability of the configuration
$\sigma_{A}\in\{-1, +1\}^{A}$ .

Definition. Given ameasure $\mu$ on $\{-1, +1\}^{\mathrm{Z}^{d}}$ , the renomalized measure $\mu’$ on $\Omega=$

$\{-1, +1\}^{\mathcal{L}}$ is defined by:

$\mu’(s_{A})=\sum_{\sigma_{\mathrm{A}}}\mu(\sigma_{\mathrm{A}})\prod_{x\in A}T(\sigma_{\mathrm{x}}, s_{x})$
(3.2)

where $\mathrm{A}=\bigcup_{x\in A}\mathrm{x}$ , $A\subset \mathcal{L}$ , $|A|<\infty$ , and $s_{A}\in\Omega_{A}=\{-1, +1\}^{A}$ .

It is easy to check, using 1) and 2), that $\mu’$ is ameasure. We shall call the spins $\sigma$:the internal
spins and the spins $s_{x}$ the external ones (they are also sometimes called the block spins).

Note that we restrict ourselves here, for simplicity, to transformations that map spin $\frac{1}{2}$

models into other spin $\frac{1}{2}$ models, but this restriction is not essential. In particular, the block
spin transformation fits into our ffamework, defining

$T( \sigma_{\mathrm{x}}, s_{x})=\delta(s_{x}-L^{-\alpha}.\cdot\sum_{\in \mathrm{x}}\sigma:)$

for some $\alpha$ , the only difference being that $s_{x}$ does not belong to $\{-1, +1\}$ anymore.
In order to use the RG it is necessary to iterate those transformations and, for that, it is

convenient to rescale. That is, consider $\mathcal{L}$ as alattice $Z^{d}$ of unit lattice spacing, cover it with
boxes of side $L$ (i.e. of side $L^{2}$ in terms of the original lattice) associate new $s$ spins to each of
those boxes etc. Sometimes the RGT turn out to form semigroups (i.e. applying them $n$ times
amounts to applying them once with $L$ replaced by $L^{n}$ ) : e.g. the decimation or block spin
transformation form semigroups while the majority and the Kadanoff transformations do not.

However, we are not concerned here with the iteration of the transformation but rather with
the mathematical status of asingle transformation. Can one, given an RGT defined by akernel
$T$ , associate to aHamiltonian $H$ arenormalized Hamiltonian $H’$?Anatural scheme would go
as follows (see the diagram below). Given $H$ , we associate to it its Gibbs measure as in Section
2and, given $T$ , we have just defined the renormalized measure $\mu’$ . If it can be shown that such
measures are Gibbs measures for acertain Hamiltonian $H’$ , then the latter could be defined as
the renormalized Hamiltonian corresponding to $H$ :

$H$
$arrow?H’$

$\mu\downarrow$

$arrow$

$\uparrow?\mu$

’
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However, as we said in the Introduction, this simple scheme does not work: The main
result of [25] is that, for avariety of RGT, including decimation, majority rule, the Kadanoff
transformation or the block spin transformation, there is no interaction satisfying a) and b) in
Section 2for which $\mu_{+}’$ or $\mu_{-}’$ are Gibbs measures, hence no renormalized Hamiltonian $H’$ . We
shall now explain intuitively why this is so.

4Origin of the pathologies

In order to understand the origin of the pathologies, consider the simplest example, namely the
decimation transformation (let us emphasize, however, that pathologies occur for many other
RG transformations and that, for those transformations, the origin of the pathologies is basically
the same as in this rather artificial example). Assume that $\mu’$ is aGibbs measure for auniformly
absolutely summable potential $\Phi$ and consider the following consequence of this assumption:

$\lim_{Narrow\infty}\frac{\mathrm{s}}{s}1,2\mathrm{u}\mathrm{p}^{N}|\overline{s},\frac{\mu’(s_{0}|\overline{s}^{1})}{\mu(s_{0}|\overline{s}^{2})}-1|=0$ (4.1)

where $\sup^{N}$ means that we take the $\sup$ over all $\overline{s}^{1},\overline{s}^{2}$ satisfying

$\overline{s}_{x}^{1}=\overline{s}_{x}^{2}$ $\forall x\in V_{N}\equiv[-N, N]^{d}$

So, $\overline{s}^{1},\overline{s}^{2}$ are two “boundary conditions” acting on the spin at the origin (any other fixed site
would do of course) that coincide in abox around the origin, $V_{N}$ , that becomes arbitrarily large
(as $Narrow\infty$), and are free to differ outside $V_{N}$ .

To check (4.1), observe that, for any $\overline{s}^{1},\overline{s}^{2}$ over which the supremum is taken, we have

$|H(s_{0}|\overline{s}^{1})-H(s_{0}|\overline{s}^{2})|$

$\leq$ $\sum_{X}||\Phi_{X}||0,N\equiv \mathcal{E}_{N}$ (4.2)

where $\sum_{X}^{0,N}$ runs over all sets $X$ whose contribution to $H(s0|\overline{s}^{1})$ is not cancelled by the corre-
sponding term in $H(s_{0}|\overline{s}^{2})$ , i.e. containing 0but not contained inside $V_{N}:X\ni \mathrm{O}$, $X\cap V_{N}^{c}\neq\emptyset$ .
The RHS of (4.2) tends to zero, as $Narrow\infty$ , since it is, by assumption, the tail of the convergent
series $($ 2.2 $)^{7}$ .

Now, it is easy to see, using the definition (2.7) of aGibbs state, that (4.2) implies

$e^{-2\mathcal{E}_{N}} \leq,\frac{\mu’(s_{0}|\overline{s}^{1})}{\mu(s_{0}|\overline{s}^{2})}\leq e^{2\mathcal{E}_{N}}$ , (4.3)

so that $\mathcal{E}_{N}arrow 0$ implies (4.1).
So, (4.1) means that, for Gibbs measures defined as above, with the interaction satisfying

the summability condition (2.2), the conditional probability of the spin at the origin does not
depend too much on the value of the boundary conditions $\overline{s}^{1},\overline{s}^{2}$ far away (i.e. outside $V_{N}$ ).

So, to prove that there does not exist auniformly absolutely summable potential, it is enough
to find asequence of pairs of configurations $(\overline{s}_{N}^{1},\overline{s}_{N}^{2})$ , coinciding inside $V_{N}$ and differing outside
$V_{N}$ , such that

$|, \frac{\mu’(s_{0}|\overline{s}_{N}^{1})}{\mu(s_{0}|\overline{s}_{N}^{2})}-1|\geq\delta$ (4.4)

$7\mathrm{N}\mathrm{o}\mathrm{t}\mathrm{e}$ that the bound (4.2) implies that $H$ is acontinuous function of $\overline{s}$ , in the product topology, i.e. for the
following notion of convergence: asequence of configurations $s^{n}arrow s$ if $\forall V$ finite, $\exists nv$ such that $s_{x}^{n}=s_{x}$ , $\forall x\in$
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for some $\delta>0$ independent of N.
The trick is to construct $\overline{s}_{N}^{1},$ s-2N as modifications of $s^{\mathrm{a}1\mathrm{t}}$ , the alternating configuration:

$s_{x}^{\mathrm{a}1\mathrm{t}}=(-1)^{|x|}$ $\forall x\in \mathcal{L}$ (4.5)

where $|x|= \sum_{\dot{l}=1}^{d}|x_{i}|$ , i.e. the configuration equal $\mathrm{t}\mathrm{o}+1$ when $|x|$ is even and $\mathrm{t}\mathrm{o}-1$ when $|x|$ is
odd. Now take $\overline{s}_{N}^{1}=\overline{s}_{N}^{2}=s^{\mathrm{a}1\mathrm{t}}$ inside $V_{N}$ and, outside $V_{N}$ , we take $\overline{s}_{N}^{1}$ everywhere equal $\mathrm{t}\mathrm{o}+1$

and $\overline{s}_{N}^{2}$ everywhere equal $\mathrm{t}\mathrm{o}-1$ , which we shall call the “$\mathrm{a}11+$”and the “all-,, configurations.
To see what this does, let us rewrite the Hamiltonian (2.1) as:

$-H=J \sum_{(\dot{l}j\rangle,i,j\not\in \mathcal{L}}(\sigma:\sigma_{j}-1)+\sum_{x\in \mathcal{L}}\sum_{|:-x|=1}(\sigma_{\dot{l}}s_{x}-1)$
(4.6)

where the first sum runs over the pairs of nearest neighbours contained i$\mathrm{n}$
$\mathrm{Z}^{d}\backslash \mathcal{L}$ and the second

sum contains the couplings between the decimated spins $(\sigma)$ and the “renormalized” ones (s).
In this formulation, $s$ can be thought of as being a(random) external magnetic field acting on
the $\sigma$ spins. One may also write:

$\mu’(s_{0}|\overline{s}_{N}^{1})=\frac{(\exp(s_{0}\sum_{|||=1}\sigma_{1})\rangle(\overline{s}_{N}^{1})}{\sum_{s0=\pm 1}(\exp(s_{0}\sum_{|\dot{l}|=1}\sigma_{\dot{l}})\rangle(\overline{s}_{N}^{1})}.\cdot$ (4.7)

where $\langle\cdot\rangle$ $(\overline{s}_{N}^{1})$ denotes the expectation in the Gibbs measure on the $\sigma$ spins, with aHamiltonian
like (4.6), but with the second sum running only over $x\neq 0$ and with $s=\overline{s}_{N}^{1}\mathrm{f}\mathrm{i}\mathrm{x}\mathrm{e}\mathrm{d}^{8}$ .

Now, it is easy to see that the external field $s^{\mathrm{a}1\mathrm{t}}\mathrm{h}\mathrm{s}$ aneutral effect :on average, it does not
“push” the $\sigma$ spins either up or down. On the other hand, the “$\mathrm{a}11+$”or “all-,, configurations
do tend to align the $\sigma$ spins along their respective directions. Now, think of the effect of $\overline{s}_{N}^{1}$ :
coinciding with the “$\mathrm{a}11+$”configuration, outside of $V_{N}$ , it pushes the $\sigma$ spins up in that region.
But, being neutral inside $V_{N}$ , it does not exert any particular influence there (one can think
of it as being essentially equivalent to azero field inside $V_{N}$ ). However, the $\sigma$ spins live on a
lattice that, although decimated, is nevertheless connected, so that this spin system, considered
on its own, in the absence of any external field, i.e. without the second term in (4.6), has long
range order (LRO) at low temperatures. Now the mechanism should be obvious :The field”

$\overline{s}_{N}^{1}$ pushes the aspins up outside $V_{N}$ , the LRO “propagates” this orientation inside $V_{N}$ (where
$\overline{s}_{N}^{1}$ is neutral and thus essentially equivalent to azero field) and, finally, the Oi, with $|i|=1$ i.e.
the nearest -neighbours of $s_{0}$ , act as external fields on so, see (4.7), and, since they tend to be
up, so does so. Of course $\overline{s}_{N}^{2}$ acts likewise, with up replaced by down; hence the ratio of the
conditional probabilities appearing in (4.4) does not tend to 1as $Narrow\infty$ because, by definition
of LRO the effect described here is independent of $N$ .

As stressed in [25], this is the basic mechanism producing “pathologies”: for afixed value of
the external spins, the internal ones undergo aphase transition. The complete proof ot course
involves aPeierls (or Pirogov-Sinai) type of argument (see [25] for full details as well as for
adiscussion of other RG transformations) but the intuition, outlined above, should make the
result plausible.

5Connection with the Griffiths singularities

In [50], Griffiths showed that the ffee energy of dilute $\mathrm{f}\mathrm{e}\mathrm{r}\mathrm{r}\mathrm{o}\mathrm{m}\mathrm{a}\mathrm{g}\mathrm{n}\mathrm{e}\mathrm{t}\mathrm{s}^{9}$ is not analytic, as afunction
of the magnetic field $h$ , at low temperatures and at $h=0$, even below the percolation treshold
for occupied bonds (i.e. with $J\neq 0$). The mechanism is, here too, easy to understand intuitively

$8\mathrm{T}\mathrm{o}$ be precise, the expectation in (4.7) is obtained by taking the infinite volume limit of expectations in finite
volumes, $\mathrm{w}\mathrm{i}\mathrm{t}\mathrm{h}+\mathrm{b}\mathrm{o}\mathrm{u}\mathrm{n}\mathrm{d}\mathrm{a}\mathrm{r}\mathrm{y}$ conditions.

$9\mathrm{M}\mathrm{e}\mathrm{a}\mathrm{n}\mathrm{i}\mathrm{n}\mathrm{g}$ that the coupling constant for anearest-neighbour bond is equal to $J$ with probability $\mathrm{P}$, with
$0\leq p\leq 1$ , and to 0with probability $1-p$.
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:for any given, arbitrarily large, but finite region of the lattice, there is anon zero probability
that the bonds in that region will all be occupied; since the system is at low temperatures, this
produces singularities of the free energy arbitrarily close to $h=0$ . Of course, if the size of
the region increases, the probability of this event decreases (very fast). But, if one considers
an infinite lattice such events occur with probability one with anon-zero frequency and this is
sufficient to spoil analyticity.

Arelated phenomenon concerns the decay of the pair correlation function which, if we
consider arandom ferromagnet and denote by $\mathrm{J}$ arealization of the random couplings, satisfies
the $\mathrm{b}\mathrm{o}\mathrm{u}\mathrm{n}\mathrm{d}^{10}$ :

$\langle s_{0}s_{x}\rangle(\mathrm{J})\leq C(\mathrm{J})\exp(-m|x|)$ (5.1)

where $\sup_{\mathrm{J}}C(\mathrm{J})=\mathrm{o}\mathrm{o}$
(if the distribution of the couplings is not of compact support), although

$C(\mathrm{J})<\infty$ with probability one at high temperatures. So, the pair correlation function decays,
but not uniformly in J. This reflects again the fact that, with some small but non zero proba-
bility, the couplings may be arbitrarily large but finite in an arbitrarily large but finite region
around the origin and then, in this case, the correlation functions decays only $\mathrm{i}\mathrm{f}|x|$ is sufficiently
large so that $x$ is far away from that region.

Since the probability of having large couplings over alarge region is small, one can understand
why the probability of alarge $C(\mathrm{J})$ is small and why $C(\mathrm{J})<\infty$ with probability one.

To understand the connection with the RG pathologies, start with an untypical $\mathrm{J}$ (e.g. a
coupling that is everywhere large), i.e. of probability strictly equal to zero, and construct an
event of small but non zero probability by restricting that configuration to alarge but finite
box, in such away that this event destroys some property of the non-random system such as
analyticity or uniform decay of correlations .

Now, think of (4.1) as expressing aform of decay of correlations for the $\sigma$ spins given some
(random) configuration of the $s\mathrm{s}\mathrm{p}\mathrm{i}\mathrm{n}\mathrm{s}^{12}$ . Of course, the expression in (4.1) is not of the form
of adecay of apair correlation function but, if the distribution of the spins $\sigma i$ with $|i|=1$

became independent of the one of the spins outside $V_{N}$ when $Narrow\infty$ , then one would expect
the distribution of $s_{0}$ (on which the $\sigma_{i}$ with $|i|=1$ act as external fields) to become independent
of the value of $\overline{s}_{x}$ for $x\not\in V_{N}$ and, hence, (4.1) to hold. However, if the configuration of the $s$

spin was equal to $s^{\mathrm{a}1\mathrm{t}}$ over the whole lattice, then one would expect the $\sigma$ spins to have LRO
(since, without any external field, they have LRO and the effect of $s^{\mathrm{a}1\mathrm{t}}$ i$\mathrm{s}$ similar to having no
external field). So, what happens with the $\overline{s}_{N}^{1}$ and $\overline{s}_{N}^{2}$ chosen above, is that putting $\overline{s}_{N}^{1},$ $s-2N$

equal to $s^{\mathrm{a}1\mathrm{t}}$ over alarge region, one can make the decay of correlation arbitrarily slow, hence
show that (4.1) does not hold.

When thinking of $\overline{s}$ as arandom field acting on the $\sigma$ variables, one should keep in mind
that the distribution of this random field is nothing but pl or $\mu_{-}’$ . Now, at low temperatures,
typical configurations with respect to pl (or $\mu_{-}’$ ) are just typical configurations of the Ising
model, i.e. a“sea” $\mathrm{o}\mathrm{f}+\mathrm{s}\mathrm{p}\mathrm{i}\mathrm{n}\mathrm{s}$ with some islands of -spins (and islands $\mathrm{o}\mathrm{f}+\mathrm{s}\mathrm{p}\mathrm{i}\mathrm{n}\mathrm{s}$ within the
islands of -spins, etc), with the role $\mathrm{o}\mathrm{f}+\mathrm{a}\mathrm{n}\mathrm{d}$ –interchanged for $\mu_{-}’$ . Hence the configuration
$s^{alt}$ i $\mathrm{s}$ untypical both with respect to $\mu_{+}’$ and pl (just like $\mathrm{J}$ large for the random system).

What this suggests is that one might want to prove aweaker property for the renormalized
Hamiltonian which, following the analogy with random systems, would be similar to showing
that $C(\mathrm{J})<\infty$ with probability one. The analogous property will be asummability property
of the interaction, but not auniform one, as we had in (2.2). We shall now state this property
explicitly.

$10\mathrm{A}\mathrm{t}$ high temperatures, (so)(J) $=0$ with probability one, so we do not need to truncate the expectation which,
besides, is positive for ferromagnetic couplings.

This is expected to be ageneral feature of (non trivial) random systems (random magnetic fields, spin glasses,
Anderson localization, etc.) although it is often not easy to prove.

$12\mathrm{S}\mathrm{e}\mathrm{e}[75]$ and [76] for aprecise formulation of this idea
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6The renormalized measures as weak Gibbs measures

The basic observation, going back to Dobrushin ([20], see also [21]), which leads to ageneral-
ization of the notion of Gibbs measure, is that, in order to define $H(sV|\overline{s}V^{\mathrm{c}})$ , it is not necessary
to assume (2.2) ;it is enough to assume the existence of a(suitable) set $\overline{\Omega}\subset\Omega$ on which the
following pointwise bounds hold:

$\mathrm{b}’)\Phi$ is $\overline{\Omega}$-pointwise absolutely summable:

$\sum_{X\ni x}|\Phi_{X}(sx)|<\infty\forall x\in \mathcal{L},\forall s\in\overline{\Omega}$
. (6.1)

We shall therefore enlarge the class of “allowed” interactions by dropping the condition (2.2)
and assuming (6.1) instead.

However, since we want to define (2.5) for arbitrary volumes $V$ , the set $\overline{\Omega}$ must be defined by
conditions that are, in some sense, “at infinity” (this is what we meant by “suitabl\"e). This can
be defined precisely by saying that the fact that aconfiguration $s$ belongs or does not belong
to $\overline{\Omega}$ is not affected if we change the values of that configuration on finitely many sites. Sets of
configurations having this property are called tail $sets^{13}$ .

Definition. Given atail set $\overline{\Omega}\subset\Omega$ , $\mu$ is aGibbs measure for the pair $(\Phi, \overline{\Omega})$ if $\mu(\overline{\Omega})=1$ , and
there exists aversion of the conditional probabilities that satisfy, $\forall V\subset \mathcal{L}$ , $|V|$ finite, $\forall sv\in\Omega_{V}$ ,

$\mu(s_{V}|\overline{s}_{V^{\mathrm{c}}})=Z^{-1}(\overline{s}_{V^{\mathrm{c}}})\exp(.-H(s_{V}|\overline{s}_{V^{e}}))$ (6.2)

$\forall\overline{s}\in\Omega$ .

Since conditional probabilities are defined almost everywhere, this definition looks very simi-
lar to the usual $\mathrm{o}\mathrm{n}\mathrm{e}^{14}$ , given 1n Section 2. However, the introduction of the set $\overline{\Omega}$ has some subtle
consequences. To see why, consider the (trivial) case, where $L=1$ , and $T=\delta(\sigma:-s_{x})$ with
$i=x$ , i.e. the “renormalized” system is identical to the original $\mathrm{o}\mathrm{n}\mathrm{e}^{15}$ . Take $\overline{\Omega}$ to be the set of
configurations such that all the (usual) Ising contours are finite and each site is surrounded by
at most afinite number of contours. Thus configurations in $\overline{\Omega}$ consist of a“sea” of plus or minus
spins with small islands of opposite spins, and even smaller islands within islands. Clearly, $\overline{\Omega}$ is
atail set. When $X=\mathrm{a}$ contour $\gamma$ (considered as aset of sites), we let

$\Phi_{X}(s_{X})=-2\beta|\gamma|$ (6.3)

for $sx=\mathrm{a}$ configuration making $\gamma$ acontour, and $\Phi_{X}(sx)=0$ otherwise. Obviously, this $\Phi$

satisfies (6.1) but not (2.2). One can write $\overline{\Omega}=\overline{\Omega}_{+}\cup\overline{\Omega}_{-}$, according to the values of the spins in
the infinite connected component of the complement of the contours. It is easy to see that $\mu^{+}$ ,
$\mu^{-}$ are indeed, at low temperatures, Gibbs measures (in the sense considered here) for this new
interaction: aPeierls argument shows that $\mu^{+}(\overline{\Omega}_{+})=\mu^{-}(\Omega_{-})$ $=1$ , and for $s\in\overline{\Omega}$ the (formal)
Hamiltonian (2.1) is $\beta H=2\beta\sum_{\gamma}|\gamma|$ . Actually, the proof of Theorem 1below is constructed
by using akind of perturbative analysis around this example. Of course, in this example one
could alternatively take $\overline{\Omega}=\Omega$ and $\=$ the original nearest-neighbor interaction; this shows
the nonuniqueness of the pair $($$, $\overline{\Omega})$ , associated to asingle measure, in our generalized Gibbs-
measure $\mathrm{f}\mathrm{f}\mathrm{f}\mathrm{a}\mathrm{m}\mathrm{e}\mathrm{w}\mathrm{o}\mathrm{r}\mathrm{k}^{16}$. This will be important when we discuss the significance of the result
below for the implementation of the $\mathrm{R}\mathrm{G}$ .

$13\mathrm{A}$ (trivial) example of atail set is the set of configurations such that there exists afinite volume $V$ , outside
of which the configuration coincides with agiven configuration (e.g. all plus).

$14\mathrm{H}\mathrm{o}\mathrm{w}\mathrm{e}\mathrm{v}\mathrm{e}\mathrm{r}$, when condition (2.2) holds, the conditional probabilities can be extended everywhere, and are
continuous, in the product topology (see note 6), which is not the case here.

$15\mathrm{T}\mathrm{h}\mathrm{i}\mathrm{s}$ example was suggested to us by A. Sokal.
$16\mathrm{W}\mathrm{h}\mathrm{i}\mathrm{l}\mathrm{e}$ in the usual framework, one can define anotion of “physical equivalence” of interactions so that a

measure can be aGibbs measure for at most one interaction (up to physical equivalence), see [25]

10



Before stating our main result we need to detail some conditions on the kernel T.We assume
that T is symmetric:

$T(\sigma_{\mathrm{x}}, s_{x})=T(-\sigma_{\mathrm{x}}, -s_{x})$ (6.4)

and that

$0\leq T(\sigma_{\mathrm{x}}, s_{x})\leq e^{-\beta}$ (6.5)

if $\sigma_{i}$ I $s_{x}$ , $\forall i\in \mathrm{x}$ .
Note that (3.1, 6.4, 6.5) imply that

$\overline{T}\equiv T(\{\sigma i=+1\}_{i\in \mathrm{x}}, +1)=\mathrm{T}(\{\mathrm{a}\mathrm{i}=-1\}_{i\in \mathrm{x}}, -1)$ $\geq 1-e^{-\beta}$ (6.6)

So, condition (6.5) means that there is acoupling which tends to align $s_{x}$ and the spins in the
block $B_{x}$ ;this condition is satisfied for the majority, decimation and Kadanoff (with $p$ large)
$\mathrm{t}\mathrm{r}\mathrm{a}\mathrm{n}\mathrm{s}\mathrm{f}\mathrm{o}\mathrm{r}\mathrm{m}\mathrm{a}\mathrm{t}\mathrm{i}\mathrm{o}\mathrm{n}\mathrm{s}^{17}$.

Theorem 1Under assumptions (6.47 6.5) on $T$ , and for $\beta$ large enough, there exist disjoint
tail sets $\overline{\Omega}_{+}$ , $\overline{\Omega}_{-}\subset\Omega$ such that $\mu_{+}’(\overline{\Omega}_{+})=\mu_{-}’(\overline{\Omega}_{-})=1$ and a translation invariant interaction $\Phi$

satisfying $b$ ’) utith $\overline{\Omega}=\overline{\Omega}_{+}\cup\overline{\Omega}_{-}$ such that $\mu_{+}’$ and p7 are Gibbs measures for the pair $(\Phi, \overline{\Omega})$ .

Remarks.
1. This result was recently extended in [76] to general projections and to the general frame-

work covered by the Pirogov-Sinai theory $[85, 89]$ (see Section 7below for abrief discussion
of that theory), using percolation techniques. However, our approach also shows that the two
renormalized states are Gibbsian with respect to the same interaction 4(while this question is
left open in [76] $)$ .

2. The analogy with the random systems discussed in the previous section is that instead of
having $C(\mathrm{J})<\infty$ with probability one, we have (6.1) holding with probability one, with respect
to the renormalized measure.

3. Note that in the theory of “unbounded spins” with long range interactions, aset $\overline{\Omega}$ of
“allowed” configurations has to be introduced, where abound like (6.1) holds [48, 64, 66]. Here,
of course, contrary to the unbounded spins models, each $||\Phi_{X}||$ is finite. Still, one can think of
the size of the regions of alternating signs in the configuration as being analogous to the value
of unbounded spins. The analogy with unbounded spins systems was made more precise and
used in [79] and [68] to study the thermodynamic properties of the potential above.

4. The set $\overline{\Omega}=\overline{\Omega}_{+}\cup\overline{\Omega}_{-}$ is not “nice” topologically: e.g. it has an empty interior (in the
usual product topology, defined in footnote 6). Besides, our effective potentials do not belong
to anatural Banach space like the one defined by (2.2). However, this underlines the fact that
the concept of Gibbs measure is ameasure -theoretic notion and the latter often do not match
with topological notions.

5. There has been an extensive investigation of this problem of pathologies and Gibbsian-
ness. Martinelli and Olivieri [82, ?] have shown that, in anon-zero external field, the pathologies
disappear after sufficiently many decimations. Fernandez and Pfister [35] study the set of con-
figurations that are responsible for those pathologies. They give criteria which hold in particular
in anon-zero external field, and which imply that this set is of zero measure with respect to
the renormalized measures. Following the work of Kennedy [60], several authors $[$53, ?, ?, $?]$

analyze the absence of pathologies near the critical point. Also, if one combines projection with
enough decimation, as in [70], then one knows that each of the resulting states is Gibbsian (in

$17\mathrm{I}\mathrm{t}$ would be more natural to have, instead of (6.5), $0\leq T\leq\epsilon$ (with $\epsilon$ independent of $\beta$ but small enough).
However, assuming (6.5) simplifies the proofs. $\lambda$
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the strongest sense, i.e. with interactions satisfying (2.2)), but for different interactions. This in
turn implies that non-trivial convex combinations of these states are not quasilocal everywhere,
see [27], where other examples of “robust” non-Gibbsianness can be found.

The main remark to be made, however, is that this Theorem, although it clarifies the nature of
the pathologies, does not in itself suffices to define the RGT as anice map between Hamiltonians.
Indeed, as we observed above, the pair $(\Phi, \overline{\Omega})$ is not unique, even in the simple case of the nearest-
neighbour Ising model. One might try to impose further conditions that might select aunique
pair, but that has not been done. Thus, in terms of the diagram at the end of Section 3, the
problem has changed: with the approach based on the usual notion of Gibbs state, there was
no interaction with respect to which the renormalized measures were Gibbsian. But, with our
extended notion, the interaction exists but is not unique and the map ffom $H$ to $H’$ is still not
well defined.

In order to have anice set of RG transformations, it seems that one has to give up the spin
representation of the model and use instead the contour representation. This is actually how the
proof of theorem 1is carried out in [11]. For an introduction on how the RG can implemented
in the contours formalism, see [12].

7Conclusions

Although at low temperatures the pathologies can be understood as explained above, their
existence leaves open some questions (like the possibility of aglobal RG analysis for all the values
of the parameters of the model) and indicates some new interesting problems. For example, one
expects to find many natural occurences of weak Gibbs states, in particular in some probabilistic
cellular automata, where the stationary measures can be seen as projections of Gibbs measures
[65], see also [80, 30, ?, 77] for further concrete examples. Therefore, from atheoretical point
of view, it would be interesting to develop the theory of weak Gibbs states and to see which
properties following from the usual definition extend to that larger framework. For adiscussion
of possible extensions of the standard theory, see [78, 79, 80, 28, 67, 68].

In many rigorous applications of the RG method (some of which were mentioned in the
Introduction) one encounters as0-called “large field problem”. These are regions of the lattice
where the fields are large and where the renormalized Hamiltonian is not easy to control, because
$H$ tends to be large also; however, these large field regions can be controlled because they are
very unprobable (since $\exp(-H)$ is small). Thus, the people who actually used the RG to prove
theorems encountered aproblems quite similar to the pathologies (and to the large random fields
in the random field Ising model), and treated them in away similar to the way the pathologies
are treated here.

Maybe the last word of the (long) discussion about the pathologies is that the RG is a
powerful tool, and agreat source of inspiration, both for heuristic and rigorous ideas. But that
does not mean that it should be taken too literally.
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