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ABSTRACT

The holographic renormalization group (RG) is amanifestation of the idea

that the radial direction of a $(d+1)$-dimensional space $M_{d+1}$ with asymptotic

anti-de Sitter $(\mathrm{A}\mathrm{d}\mathrm{S})$ geometry should behave as ascaling parameter of ad-

dimensional field theory whose conformal fixed point exists at the boundary

of $M_{d+1}$ . We give areview of recent developments in this field, and show

that the Hamilton-Jacobi equation for such gravity system describes RG flows

of the field theory in asimple and correct manner. We further investigate

the situation where stringy corrections are taken into account, which turn

Einstein gravity into higher-derivative gravity. We clarify the meaning of these

corrections in terms of the holographic renormalization group, and derive a

Hamilton-Jacobi-like equation that determines the generating functional of the

boundary field theory. Using the expected duality between ahigher-derivative

gravity system and $N$ $=2$ superconformal field theory in four dimensions,

we demonstrate that the resulting Weyl anomaly is consistent with the field

theoretic result.
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1Introduction

The $\mathrm{A}\mathrm{d}\mathrm{S}/\mathrm{C}\mathrm{F}\mathrm{T}$ correspondence [1] states that agravitational theory on the $(d+1)-$

dimensional anti-de Sitter space $(\mathrm{A}\mathrm{d}\mathrm{S}_{d+1})$ has adual description in terms of aconformal
field theory (CFT) on the $d$-dimensional boundary. One of the most significant aspects of
the $\mathrm{A}\mathrm{d}\mathrm{S}/\mathrm{C}\mathrm{F}\mathrm{T}$ correspondence is that it further gives us a framework to study the renor-
malization group (RG) structure of the boundary field theories. In this scheme of the
“holographic $\mathrm{R}\mathrm{G}$ ,” the extra radial coordinate in the bulk is regarded as parametrizing
the RG flow of the dual boundary field theory, and the evolution of bulk fields along the
radial direction is considered as describing the RG flow of the coupling constants in the
boundary field theory.

On the other hand, there have been several attempts to confirm the validity of the
duality beyond the classical Einstein gravity approximation. The $\mathrm{A}\mathrm{d}\mathrm{S}/\mathrm{C}\mathrm{F}\mathrm{T}$ correspon-
dence is believed to be aduality between string theories and acertain class of quantum
field theories. In this sense, the $\mathrm{A}\mathrm{d}\mathrm{S}/\mathrm{C}\mathrm{F}\mathrm{T}$ correspondence, and so the structure of the
holographic $\mathrm{R}\mathrm{G}$ , must exist even when agravity theory is subject to stringy corrections,
which turn the theory into higher-derivative gravity. We discuss that such corrections
correspond to the introduction of coupling constants which are coupled to highly irrele-
vant operators, and show that one can explicitly calculate the fixed-point action in the
presence of these irrelevant operators.

The organization of this proceeding is as follows. In \S 2, we give areview of the flow
equation that is obtained from the Hamilton-Jacobi equation [2]. In fi3, we describe a
prescription for solving the flow equation and make some sample calculations to confirm
the RG interpretation of the flow equation. In \S 4, we review the general theory for a
higher-derivative system, and apply it to higher-derivative gravity. We derive aHamilton-
Jacobi-like equation which is interpreted as aflow equation. \S 5 is devoted to aconclusion.

2Hamilton-Jacobi equation and the flow equation

In this section, we briefly review the formulation of the holographic RG based on the
Hamilton-Jacobi equation [2].
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We consider Einstein gravity with bulk scalars $\phi^{i}(x, r)$ on a $(d+1)$ -dimensional man-

ifold $M_{d+1}$ with boundary $\Sigma_{d}=\partial M_{d+1}$ . The action is given by

$S_{d+1}[G_{MN}(x, r), \phi^{i}(x, r)]$

$= \int_{M_{d+1}}d^{d+1}X\sqrt{G}(V(\phi)-R+\frac{1}{2}L_{ij}(\phi)G^{MN}\partial_{M}\phi^{i}\partial_{N}\phi^{j})-2\int_{\Sigma_{d}}d^{d}x\sqrt{G}K$ .

(2.1)

Here $X^{M}=(x^{\mu}, r)(\mu, \nu=1, 2, \cdots, d;r_{0}\leq r<\infty)$ are local coordinates on $M_{d+1}$ , and

we assume that $M_{d+1}$ has only one boundary $\Sigma_{d}$ at $r=r_{0}$ . To develop aHamiltonian

formalism for this system, it is convenient to introduce the ADM parametrization of the

metric:

$ds^{2}$ $=$ $G_{MN}dX^{M}dX^{N}$

$=\mathrm{N}(\mathrm{x}, r)^{2}dr^{2}+G_{\mu\nu}(x,r)(dx^{\mu}+\lambda^{\mu}(x,r)dr)(dx^{\nu}+\lambda^{\nu}(x,r)dr)$ , (2.2)

where $N$ and $\lambda^{\mu}$ are the lapse and the shift function, respectively. The action is then

expressed as

$S_{d+1}[G_{\mu\nu}(x,r), \phi^{i}(x,r), N(x,r), \lambda^{\mu}(x, r)]$

$= \int_{r\mathrm{o}}^{\infty}dr\int d^{d}x\sqrt{G}[N(V(\phi)-R+K_{\mu\nu}K^{\mu\nu}-K^{2})$

$+ \frac{1}{2N}L_{j}.\cdot(\phi)((\dot{\phi}^{i}-\lambda^{\mu}\partial_{\mu}\phi^{i})(\dot{\phi}^{j}-\lambda^{\mu}\partial_{\mu}\phi^{j})+N^{2}G^{\mu\nu}\partial_{\mu}\phi^{i}\partial_{\nu}\phi^{j})]$

$\equiv\int_{r_{0}}^{\infty}dr\int d^{d}x\sqrt{G}\mathcal{L}_{d+1}[G, \phi, N, \lambda]$, (2.3)

where . $=\partial/\partial r$ . Here $R$ and $\nabla_{\mu}$ are the scalar curvature and the covariant derivative

with respect to $G_{\mu\nu}$ , respectively, and $K_{\mu\nu}$ is the extrinsic curvature defined by

$K_{\mu\nu}= \frac{1}{2N}(\dot{G}_{\mu\nu}-\nabla_{\mu}\lambda_{\nu}-\nabla_{\nu}\lambda_{\mu})$ , $K=G^{\mu\nu}K_{\mu\nu}$ . (2.4)

Since the conjugate momenta are given by

$\Pi"’=K^{\mu\nu}-G^{\mu\nu}K$, $\Pi_{i}=\frac{1}{N}L_{j}.(|\phi)(\dot{\phi}^{j}-\lambda^{\mu}\partial_{\mu}\phi^{j})$ , (2.5)

the action (2.3) can be rewritten into the first-0rder form by the Legendre transformation,

$S_{d+1}$ [ $G_{\mu\nu}$ , $\phi^{i}$ , $\Pi^{\mu\nu}$ , Yl;, $N$, $\lambda^{\mu}$] $\equiv\int_{r_{0}}^{\infty}dr\int d^{d_{X}}\sqrt{G}[\Pi^{\mu\nu}\dot{G}_{\mu\nu}+\Pi.\cdot\dot{\phi}^{i}-NH$ $-\lambda {}_{\mu}P^{\mu}]$ ,
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H $\equiv$ $\Pi_{\mu\nu}^{2}-\frac{1}{d-1}(\Pi_{\mu}^{\mu})^{2}+\frac{1}{2}L^{ij}(\phi)\Pi:\Pi_{j}-V(\phi)+R-\frac{1}{2}L_{ij}(\phi)G^{\mu\nu}\partial_{\mu}\phi^{i}\partial_{\nu}\phi^{j}$ ,
$\mathcal{P}^{\mu}$

$\equiv$ -2 $\nabla_{\nu}\Pi^{\mu\nu}+\Pi:\nabla^{\mu}\phi^{:}$ . (2.7)

Here $N$ and $\lambda^{\mu}$ simply behave as Lagrange multipliers, giving the Hamiltonian and m0-

mentum constraints:

$\frac{1}{\sqrt{G}}\frac{\delta S_{d+1}}{\delta N}$ $=$ $H$ $=0$ , (2.8)

$\frac{1}{\sqrt{G}}\frac{\delta S_{d+1}}{\delta\lambda_{\mu}}$ $=$ $\mathcal{P}^{\mu}=0$ . (2.9)

Let $\overline{G}_{\mu\nu}(x, r)$ and $\overline{\phi}^{\dot{1}}(x, r)$ be the classical solutions of the bulk action with the bound-
ary $\mathrm{c}\mathrm{o}\mathrm{n}\mathrm{d}\mathrm{i}\mathrm{t}\mathrm{i}\mathrm{o}\mathrm{n}\mathrm{s},1$

$\overline{G}_{\mu\nu}(x, r=r_{0})=G_{\mu\nu}(x)$ , $\overline{\phi}\cdot.(x,r=r_{0})=\phi\cdot.(x)$ . (2.12)

We also define $\overline{\Pi}^{\mu\nu}(x, r)$ and $\overline{\Pi}_{i}(x,r)$ to be the classical solutions of $\Pi^{\mu\nu}(x, r)$ and $\Pi_{:}(x, r)$ ,
respectively. Then, substituting these classical solutions into the bulk action, we obtain
the classical action which is afunctional of the boundary values, $G_{\mu\nu}(x)$ and $\phi^{:}(x)$ :

$S[G_{\mu\nu}(x), \phi(x)]\equiv \mathrm{S}_{d+1}\overline{\lfloor G}_{\mu\nu}(x,r),\overline{\phi}^{}(x,r)$, $\overline{\Pi}^{\mu\nu}(x, r)$ , $\overline{\square }_{\dot{1}}(x,r)$ , $N(x, r)$ , $\lambda^{\mu}(x,r)].(2.11)$

The Hamilton-Jacobi equation shows that the classical conjugate momenta evaluated at
$r=r_{0}$ are given by

$\Pi^{\mu\nu}(x)\equiv\overline{\Pi}^{\mu\nu}(x, r_{0})=\frac{-1}{\sqrt{G}}\frac{\delta S}{\delta G_{\mu\nu}(x)}$, $\Pi:(x)\equiv\overline{\Pi}.\cdot(x,r_{0})=\frac{-1}{\sqrt{G}}\frac{\delta S}{\delta\phi^{i}(x)}$ . (2.12)

Substituting (2.12) into the Hamiltonian constraint (2.8), we thus obtain the fiow equation
$[2]$ :

$\{S, S\}(x)=\mathcal{L}_{d}(x)$ , (2.13)

xOne generally needs two boundary conditions for each field, since the equation of motion is asecond-
order differential equation in $\mathrm{r}$ . Here, one of the two is assumed to be already fixed by demanding the
regular behavior of the classical solutions inside $M_{d+1}$ $(\mathrm{r} arrow+\infty)[1]$ .

$2\mathrm{T}\mathrm{h}\mathrm{e}$ classical action does not depend on the coordinate $r0$ explicitly. This can be proved also by the
Hamilton-Jacobi equation, since the Hamiltonian is alinear combination of constraints and thus vanishes
for the classical solutions. This reflects the invariance of the gravity system under diffeomorphisms in
the $r$ direction. The momentum constraint (2.9) ensures the invariance of $S$ under a(/-dimensional

diffeomorphism along the fixed time slice $r$ $=\mathrm{r}0$ .
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$\{S, S\}(x)$ $\equiv$ $( \frac{1}{\sqrt{G}})^{2}[-\frac{1}{d-1}(G_{\mu\nu}\frac{\delta S}{\delta G_{\mu\nu}})^{2}+(\frac{\delta S}{\delta G_{\mu\nu}})^{2}+\frac{1}{2}L^{ij}(\phi)\frac{\delta S}{\delta\phi^{i}}\frac{\delta S}{\delta\phi^{j}}]$ ,

(2.14)

$\mathcal{L}_{d}(x)$ $\equiv$ $V( \phi)-R+\frac{1}{2}L_{ij}(\phi)G^{\mu\nu}\partial_{\mu}\phi^{i}\partial_{\nu}\phi^{j}$ . (2.15)

3Solution to the flow equation and its RG interpre-

tation

In this section we give aprescription for solving the flow equation $[2][3]$ , and reveal the

RG structure in the flow equation.

3.1 Solution to the flow equation

In amost naive form of the $\mathrm{A}\mathrm{d}\mathrm{S}/\mathrm{C}\mathrm{F}\mathrm{T}$ correspondence, we take $r_{0}=-\infty$ and assume that

the classical metric $G_{MN}(x, r)$ is $\mathrm{A}\mathrm{d}\mathrm{S}:ds^{2}=G_{MN}dX^{M}dX^{N}=dr^{2}+\exp(-2r/l)(dx^{\mu})^{2}$

( $l$ is called the “radius” of the $\mathrm{A}\mathrm{d}\mathrm{S}$ although the $\mathrm{A}\mathrm{d}\mathrm{S}$ space is noncompact). Then the

scalar fields $\phi^{i}(x)$ are interpreted as the sources coupled to scaling operators $\mathcal{O}.\cdot(x)$ of the

boundary CFT, and the classical action $S[G_{\mu\nu}(x)=\exp(-2r_{0}/l)\delta_{\mu\nu}, \phi\cdot.(x)]$ is regarded as

the generating functional of the CFT: $S= \langle\int d^{d}x\phi^{i}(x)\mathcal{O}_{i}(x)\rangle_{\mathrm{C}\mathrm{F}\mathrm{T}}$ . However, since there

appears divergence in the integration around $r\sim-\infty$ , we need to set $r_{0}$ to be finite, which

turns out to be introducing a UV cutoff into the boundary field theory. Furthermore, if

we take into account back-reactions from the scalar fields to the metric, we still should

leave arbitrariness to the boundary values of the metric, $G_{\mu\nu}(x)$ .

We thus are led to decompose the classical action into two $\mathrm{p}\mathrm{a}\mathrm{r}\mathrm{t}\mathrm{s}$:

$\frac{1}{2\kappa_{d+1}^{2}}S[G(x), \phi(x)]=\frac{1}{2\kappa_{d+1}^{2}}S_{1\mathrm{o}\mathrm{c}}[G(x), \phi(x)]+\Gamma[G(x), \phi(x)]$ . (3.1)

Now $\Gamma[G, \phi]$ is the non-local part of $S[G, \phi]$ , which is interpreted as the generating func-

tional of the $d$-dimensional field theory in the presence of the background metric $G_{\mu\nu}(x)$ ,

$3\mathrm{W}\mathrm{e}$ have recovered the $(d+1)$-dimensional Newton constan$\mathrm{t}$ $2\kappa_{d+1}^{2}$ .
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while $S_{1\mathrm{o}\mathrm{c}}[G, \phi]$ is the local counter term, which can be expressed as an integral of differ-
ential polynomials of $G_{\mu\nu}(x)$ and $\phi\cdot.(x)$ :

$S_{1\mathrm{o}\mathrm{c}}[G(x), \phi(x)]$ $= \int d^{d}x\sqrt{G(x)}\mathcal{L}_{1\mathrm{o}\mathrm{c}}(x)$

$= \int d^{d}x\sqrt{G(x)}\sum_{w=0,2,4},\cdots[\mathcal{L}_{1\mathrm{o}\mathrm{c}}(x)]_{w}$ . (3.2)

Here we have arranged the sum over local terms according to the weight $w$ that is defined
additively from the following rule [3]:

weight
$G_{\mu\nu}(x)$ , $\phi^{:}(x)$ , $\Gamma[G, \phi]$ 0

$\partial_{\mu}$ 1
$R$ , $R_{\mu\nu}$ , $\partial_{\mu}\phi^{1}.\partial_{\nu}\dot{\psi},$ $\cdots$ 2

$\delta\Gamma/\delta G_{\mu\nu}(x)$ , $\delta\Gamma/\delta\phi\cdot.(x)$ $d$

The last line is anatural consequence of the relation $w(\Gamma[G, \phi])=0$ , since $\delta\Gamma=\int d^{d}x$

$(\delta\phi(x)\cross\delta\Gamma/\delta\phi(x)+\cdots)$ . Then, substituting the above equation into the flow equation
(2.13) and comparing terms of the same weight, we obtain asequence of equations that
relate the off-shell bulk action (2.6) to the classical action (3.1). They take the following
form:

1 $\mathcal{L}_{d}$ $=$ $[\{S_{1\mathrm{o}\mathrm{c}}, S_{1\mathrm{o}\mathrm{c}}\}]_{0}+[\{S_{1\propto}, S_{1\mathrm{o}\mathrm{c}}\}]_{2}$ , (3.3)

0 $=$ $[\{S_{1\mathrm{o}\mathrm{c}}, S_{1\mathrm{o}\mathrm{c}}\}]_{w}$ $(w=4,6, \cdots, d-2)$ , (3.4)

0 $=$ 2 $[\{S_{1\mathrm{o}\mathrm{c}}, \Gamma\}]_{d}+[\{S_{1\mathrm{o}\mathrm{c}}, S_{1\mathrm{o}\mathrm{c}}\}]_{d}$ , (3.5)...
Eqs. (3.3) and (3.4) determine $[\mathcal{L}_{1\mathrm{o}\mathrm{c}}]_{w}(w=0,2, \cdots,d-2)$ , which together with eq. (3.5)
in turn determine the non-local functional $\Gamma$ .

By parametrizing $[\mathcal{L}_{1\mathrm{o}\mathrm{c}}]_{0}$ and $[\mathcal{L}_{1\mathrm{o}\mathrm{c}}]_{2}$ as

$[\mathcal{L}_{1\mathrm{o}\mathrm{c}}]_{0}$ $=$ $W(\phi)$ , (3.6)
$[\mathcal{L}_{1\mathrm{o}\mathrm{c}}]_{2}$ $=$ $- \Phi(\phi)R+\frac{1}{2}M_{\dot{|}j}(\phi)G^{\mu\nu}\partial_{\mu}\phi^{:}\partial_{\nu}\phi^{j}$, (3.7)
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one can easily solve (3.3) to obtain4

$V(\phi)$ $=$ $- \frac{d}{4(d-1)}W(\phi)^{2}+\frac{1}{2}L^{ij}(\phi)\partial_{i}W(\phi)\partial_{j}W(\phi)$ , (3.8)

-1 $=$ $\frac{d-2}{2(d-1)}W(\phi)\Phi(\phi)-L^{ij}(\phi)\partial_{i}W(\phi)\partial_{j}\Phi(\phi)$ , (3.9)

$\frac{1}{2}L_{ij}(\phi)$ $=$ $- \frac{d-2}{4(d-1)}W(\phi)M_{j}.\cdot(\phi)-L^{kl}(\phi)\partial_{k}W(\phi)\Gamma_{l\cdot j}^{(M)}.(\phi)$ , (3.10)

0 $=$ $W(\phi)\nabla^{2}\Phi(\phi)+L^{ij}(\phi)\partial_{i}W(\phi)M_{jk}(\phi)\nabla^{2}\phi^{k}$ (3.11)

Here $\partial_{i}=\partial/\partial\phi^{i}$ , and $\Gamma_{ij}^{(M)k}(\phi)\equiv M^{kl}(\phi)\Gamma_{l_{j}ij}^{(M)}(\phi)$ is the Christoffel symbol constructed

From $M_{ij}(\phi)$ .

The equation (3.5) becomes

$\frac{1}{\sqrt{G}}[-2G_{\mu\nu}\frac{\delta\Gamma}{\delta G_{\mu\nu}}+\beta^{i}(\phi)\frac{\delta\Gamma}{\delta\phi^{i}}]=\frac{-2(d-1)}{2\kappa_{d+1}^{2}W(\phi)}[\{S_{1\mathrm{o}\mathrm{c}}, S_{1\mathrm{o}\mathrm{c}}\}]_{d}$ , (3.12)

where

$\beta^{i}(\phi)=\frac{2(d-1)}{W(\phi)}L^{ij}(\phi)\frac{\partial W(\phi)}{\partial\phi^{j}}$. (3.13)

In the following subsections, eq. (3.12) will be shown to describe the RG flow of the

generating functional of the boundary field theory.

We conclude this subsection with acomment on the term $[\mathcal{L}_{1\mathrm{o}\mathrm{c}}]_{d}$ in the expansion (2.1).

From the equation (3.5), this term would add some local terms to the right hand side of

(3.12). However, the contribution from $[\mathcal{L}_{1\mathrm{o}\mathrm{c}}]_{d}$ always takes aform of atotal derivative.

This can be understood by observing that possible contributions from $[\mathcal{L}_{1\mathrm{o}\mathrm{c}}]_{d}$ vanish for

constant dilatations [4]. We have neglected such total derivative in the expression (3.12).

3.2 RG flow and classical trajectory

We consider the classical solution

$\overline{G}_{\mu\nu}(r,x)=\frac{1}{a(r)^{2}}\delta_{\mu\nu}$ , $\tilde{\phi}.(r,x)=\phi\cdot.(a(r))$ , (3.14)

with the boundary condition

$\overline{G}_{\mu\nu}(r=r_{0}, x)=\frac{1}{a^{2}}\delta_{\mu\nu}$ , $\neg\phi.(r=r_{0}, x)=\phi^{:}$ (const.). (3.15)

$4\mathrm{T}\mathrm{h}\mathrm{e}$ expression for $d=4$ can be found in Ref. [2]
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From (2.12), the boundary values of the conjugate momenta are evaluated as

$\square _{\mu\nu}(x)=-\frac{1}{2}a^{-2}W(\phi)\delta_{\mu\nu}$ , $\Pi:(x)=-\frac{\partial W(\phi)}{\partial\phi}.\cdot$ . (3.16)

On the other hand, from (2.5), $\Pi_{\mu\nu}$ and $\Pi_{:}$ are expressed as

$\mathrm{I}\mathrm{I}_{\mu\nu}(x)=(d-1)\frac{\dot{a}}{a^{3}}\delta_{\mu\nu}$ , $\Pi.\cdot(x)=L_{\mathrm{j}}.\cdot\dot{\phi}^{j}$ (3.17)

Combining these equations, we can verify

$a \frac{d}{da}\phi:(a)=\frac{2(d-1)}{W(\phi)}L^{j}(\phi)\frac{\partial W(\phi)}{\partial\phi^{j}}$, (3.18)

which agrees with the function (3.13). Since $a$ gives aunit length of the d-dimensional
space, eq. (3.18) shows that the classical trajectory $\neg\phi.(r,x)$ can be interpreted as the RG
flow of the boundary field theory with the functions $\beta\dot{\cdot}(\phi)$ being the RG beta functions.
One can further show [2] that the Callan-Symanzik equation holds for the correlation
functions defined by $\langle$ $\mathcal{O}_{1}\dot{.}(x_{1})\cdots \mathcal{O}_{i_{n}}(x_{n})\}(a, \phi)\equiv\delta^{n}S/\delta\phi:_{1}(x_{1})\cdots$

$\delta\phi^{n}.\cdot(x_{n})|_{(3.15)}$ .

3.3 Weyl anomaly

Since $\Gamma[G, \phi]$ is regarded as the generating functional of the boundary field theory, the
first term of the equation (3.12) should give the vacuum expectation value of the $\mathrm{t}\mathrm{r}\mathrm{a}\mathrm{c}\mathrm{e}$

of the energy-momentum tensor of the boundary field theory. Thus, for the configuration
$\beta^{:}=0$ , the right hand side of the equation (3.12) expresses the Weyl anomaly of the
boundary field theory:

$- \frac{2}{\sqrt{G}}G_{\mu\nu}\frac{\delta\Gamma}{\delta G_{\mu\nu}}\equiv\langle T_{\mu}^{\mu}\rangle=\frac{-2(d-1)}{2\kappa_{d+1}^{2}W(\phi)}[\{S_{1\mathrm{o}\mathrm{c}}, S_{1\mathrm{o}\mathrm{c}}\}]_{d}$ . (3.19)

As an example, we consider five-dimensional dilatonic gravity $(d=4)$ with asingle
scalar field, setting $V=-d(d-1)/l^{2}=-12/l^{2}$ and $L=1$ :

$\mathcal{L}_{4}=-\frac{12}{l^{2}}-R+\frac{1}{2}G^{\mu\nu}\partial_{\mu}\phi\partial_{\nu}\phi$ . (3.20)

In this case, all the functions $W$ , $M$ and 4do not depend on $\phi$ , and $\mathrm{e}\mathrm{q}\mathrm{s}$. (3.8)-(3.10) are
solved as

$S_{1\mathrm{o}\mathrm{c}}[G, \phi]=\int d^{4}x\sqrt{G}(-\frac{6}{l}-\frac{l}{2}R+\frac{l}{2}G^{\mu\nu}\partial_{\mu}\phi\partial_{\nu}\phi)$ . (3.21)
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We can further calculate $[\{S_{1\mathrm{o}\mathrm{c}}, S_{1\mathrm{o}\mathrm{c}}\}]$

4
easily and find

$\langle T_{\mu}^{\mu}\rangle$ $=$ $- \frac{2l^{3}}{2\kappa_{5}^{2}}(\frac{1}{24}R^{2}-\frac{1}{8}R_{\mu\nu}R^{\mu\nu}-\frac{1}{24}RG^{\mu\nu}\partial_{\mu}\phi\partial_{\nu}\phi$

$+ \frac{1}{8}R^{\mu\nu}\partial_{\mu}\phi\partial_{\nu}\phi-\frac{1}{48}(G^{\mu\nu}\partial_{\mu}\phi\partial_{\nu}\phi)^{2}-\frac{1}{16}(\nabla^{2}\phi)^{2})$ . (3.22)

This is in exact agreement with the result of Ref. [6]. (See also [5].) If we assume $\phi(x)=\phi$

(const.) and take the background of $\mathrm{A}\mathrm{d}\mathrm{S}_{5}\cross S^{5}$ , this also reproduces the correct large $N$

limit of the four-dimension$\mathrm{a}1$ $N$ $=4SU(N)$ supersymmetric Yang-Mills theory.

3.4 Scaling dimension

We assume that the scalars are normalized as $L_{ij}(\phi)=\delta_{ij}$ and that the bulk scalar

potential $V(\phi)$ has the expansion

$V( \phi)=2\Lambda+\frac{1}{2}\sum_{i}m_{i}^{2}\phi^{2}\dot{.}+.\cdot\sum_{jk}g_{ijk}\phi:\phi_{j}\phi_{k}+\cdots$ , (3.23)

with $\mathrm{A}=-d(d-1)/2l^{2}$ . Then it follows from (3.8) that $W$ takes the form

$W=- \frac{2(d-1)}{l}+\frac{1}{2}\sum.\cdot\lambda_{i}\phi_{i}^{2}+\sum_{ijk}\lambda_{ijk}\phi_{i}\phi_{j}\phi_{k}+\cdots$ , (3.24)

with

$l \lambda_{i}=\frac{1}{2}(-d+\sqrt{d^{2}+4m_{i}^{2}l^{2}})$ , (3.25)

$g_{\dot{|}jk}=( \frac{d}{l}+\lambda_{i}+\lambda_{j}+\lambda_{k})\lambda_{\dot{1}jk}$ . (3.26)

The beta functions can be evaluated easily and are found to be

$\beta^{i}=-\sum.\cdot l\lambda_{i}\phi_{i}-3\sum_{jk}\lambda:jk\phi_{j}\phi_{k}+\cdots$
(3.27)

Thus, equating the coefficient of the first term with $d-\Delta.\cdot$ , where $\Delta_{i}$ is the scaling

dimension of the operator coupled to $\phi_{i}$ , we obtain

$\triangle.\cdot=d+l\lambda.\cdot=\frac{1}{2}(d+\sqrt{d^{2}+4m^{2}l^{2}}.\cdot)$ . (3.28)

This exactly reproduces the result given in Ref. [1]
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4 Higher-derivative gravity and the holographic RG

In this section we consider $(d+1)$-dimensional classical higher-derivative gravity and
discuss its RG interpretation [7]. We first review the general theory for classical mechanics
of higher-derivative system and then apply it to the gravity case.

4.1 General theory of higher-derivative system

We consider asystem of point particle with the action

$S[q(r)]= \int_{t’}^{t}drL(q,\dot{q}, \cdots, q^{(N+1)})$ $(q^{(n)}(r)\equiv d^{n}q(r)/dr^{n})$ . (4.1)

The action (4.1) can be rewritten into the first-0rder form by introducing the Lagrange
multipliers $p$ , $P_{1}$ , $\cdots$ , $P_{N-1}$ , so that $q$ , $Q^{1}=\dot{q}$, $\cdots$ , $Q^{N}=q^{(N)}$ can be regarded as indepen-
dent canonical variables:

$S[q, Q^{1}, \cdots, Q^{N};p, P_{1}, \cdots, P_{N}]=\int_{t’}^{t}dr[p\dot{q}+\sum_{a=1}^{N}P_{a}\dot{Q}^{a}-H(q, Q^{a};p, P_{a})]$ . (4.2)

Here we have carried out aLegendre transformation from $(Q^{N},\dot{Q}^{N})$ to $(Q^{N},P_{N})$ through

$P_{N}= \frac{\partial L}{\partial Q^{N}}$ ($q$ , $Q^{1}$ , $\cdots$ , $Q^{N},\dot{Q}^{N}$) (4.3)

The Hamiltonian is given by

$H(q, Q^{a};p, P_{a})$ $=pQ^{1}+P_{1}Q^{2}+\cdots+P_{N-1}Q^{N}+P_{N}\dot{Q}^{N}(q, Q^{a};P_{N})$

$-L$ ($q$ , $Q^{1}$ , $\cdots$ , $Q^{N},\dot{Q}^{N}(q, Q^{a};P_{N})$). (4.4)

The equation of motion consists of the usual Hamilton equations,
.

$= \frac{\partial H}{\partial p}$, $\dot{Q}^{a}=\frac{\partial H}{\partial P_{a}}$ , $\dot{p}=-\frac{\partial H}{\partial q}$ , $\dot{P}_{a}=-\frac{\partial H}{\partial Q^{a}}$ , (4.5)

and of the following constraint which must hold at the boundary, $r=t$ and $r=t’$ :

$p \delta q+\sum_{a}P_{a}\delta Q^{a}=0$ $(r=t, t’)$ . (4.6)

The latter requirement, (4.6), can be satisfied when we take either Dirichlet boundary
conditions or Neumann boundary conditions,

$\underline{\mathrm{D}\mathrm{i}\mathrm{r}\mathrm{i}\mathrm{c}\mathrm{h}\mathrm{l}\mathrm{e}\mathrm{t}}$ : $\delta q=0$ , $\delta Q^{a}=0$ $(r=t,t’)$ , (4.7)

Neumann : $p=0$ , $P_{a}=0$ $(r=t, t’)$ , (4.1)
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for each variable $q$ and $Q^{a}(a=1, \cdots, N)$ .

Although there are various choices of boundary conditions when solving (4.5), we

adopt the following mixed boundary conditions:

$\delta q=P_{a}=0$ $(r=t, t’)$ . (4.9)

The reason why we choose this condition is explained in the next subsection.

Under the condition (4.9), the classical solution is afunction of the boundary value of

$q$ :

$\overline{q}=\overline{q}(r, x;q,t;q’, t’)$ $(q=.\overline{q}(r=t, x),$ $q’=\overline{q}(r=t’,x))$ , (4.10)

and thus the classical action becomes afunction only of the boundary value of $q$ ;

$S(t, q;t’, q’)\equiv S[\overline{q}(r, x;q, t;q’,t’)]$ . (4.11)

We will call $S(t, q;t’, q’)$ the “reduced classical action ”

Since we took the mixed boundary conditions, the reduced classical action does not

obey the Hamilton-Jacobi equation in the usual form. However, one can prove the fol-

lowing theorem for any Lagrangian of the form

$L(q.\cdot,\dot{q}^{i},\dot{q}^{i})=L_{0}(q^{i},\dot{q}\dot{.})+cL_{1}(q^{i},\dot{q}^{i},\dot{q}.\cdot)$ . (4.12)

Theorem [7]

Let Ho(q, p) be the Hamiltonian corresponding to $L_{0}(q,\dot{q})$ . Then the reduced classical

action $S(t, q;t’, q’)=\mathrm{S}\mathrm{O}(\mathrm{t}\mathrm{y}q;t’, q’)+cS_{1}(t, q;t’, q’)+\mathcal{O}(c^{2})$ satisfies the following equation

up to $\mathcal{O}(c^{2})$ :

$- \frac{\partial S}{\partial t}=\tilde{H}(q,p)$ , $p_{i}= \frac{\partial S}{\partial q^{i}}$ , and $+ \frac{\partial S}{\partial t’}=\tilde{H}(q’,p’)$ , $p’ \dot{.}=-\frac{\partial S}{\partial q’}\dot{.}$ , (4.13)

there

$\tilde{H}(q,p)\overline{=}H_{0}(q,p)-cL_{1}(q, f_{1}(q,p), f_{2}(q,p))$ ,

$fi(q, p) \equiv\{H_{0}, q.\cdot\}=\frac{\partial H_{0}}{\partial p_{i}}$ ,

$f_{2}.(q,p) \equiv\{H_{0}, \{H_{0},q.\cdot\}\}=\frac{\partial^{2}H_{0}}{\partial p.\partial q^{j}}.\frac{\partial H_{0}}{\partial p_{j}}-\frac{\partial^{2}H_{0}}{\partial p.\partial p_{j}}.\frac{\partial H_{0}}{\partial q^{j}}$ .

$( \{F(q,p), G(q,p)\}\equiv\frac{\partial F}{\partial p_{i}}\frac{\partial G}{\partial q}.\cdot-\frac{\partial G}{\partial p_{i}}\frac{\partial F}{\partial q}.\cdot)$ (4.14)
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4.2 RG interpretation of the mixed boundary conditions

The mixed boundary conditions we took in the preceding subsection, can be understood
in terms of the holographic renormalization group. To explain this, we consider atoy
model that has the Lagrangian of the form (4.12):

$L= \frac{1}{2}\dot{q}^{2}+\frac{1}{2}\mu^{2}q^{2}+\frac{c}{2}\dot{q}^{2}$ (4.15)

Its first-0rder form reads

$L=p\dot{q}+P\dot{Q}-H(q, Q;p,P)$ , (4.16)

with

$H(q, Q;p, P)=- \frac{1}{2}\mu^{2}q^{2}-\frac{1}{2}Q^{2}+Qp+\frac{1}{2c}P^{2}$ . (4.17)

By performing an almost diagonal canonical transformation, the Lagrangian can be rewrit-
ten.into the following form with anormalized kinetic term:

$L=p’\dot{q}’+P’\dot{Q}’-H’(q’,p’;Q’, P’)$ , (4.18)

where

$H’(q’, Q’;p’,P’)= \frac{1}{2}p^{\rho}+\frac{1}{2}P^{\rho}-\frac{1}{2}m^{2}q^{\rho}-\frac{1}{2}M^{2}Q^{O}$ , (4.19)

with

$m^{2}= \frac{1-\sqrt{1-4c\mu^{2}}\prime}{2c}=\mu^{2}(1+\mathcal{O}(c))$ ,

$M^{2}= \frac{1+\sqrt{1-4c\mu^{2}}}{2c}=\frac{1}{c}(1+\mathcal{O}(c))$ . (4.20)

Since abulk scalar mode with mass $M$ is coupled to ascaling operator with scaling
dimension $\Delta=\frac{1}{2}$ the relation (4.20) shows that the mode $Q’\sim Q$ is
coupled to ahighly irrelevant operator with large scaling dimension when $c\ll 1$ . Thus,
even if we take the boundary value of $Q$ arbitrarily, the flow of $(q, Q)$ converges rapidly to
the renormalized trajectory. This implies that in order to take acontinuum limit, we only
need to consider the flow on the renormalized trajectory. This can be achieved by taking
the boundary value which realizes the condition that the $\beta$ function for the very massive
mode vanishes, but this is nothing but our mixed boundary condition since $P\sim\dot{Q}$ .
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4.3 Application to higher-derivative gravity

We apply the formalism developed in the preceding subsections, to higher-derivative grav-

ity that has the Lagrangian of the form (4.12). Since higher-derivative terms stem from

integrating over string excitation mode with mass of order $\alpha’$ , eq. (4.12) implies that we

are taking account of stringy corrections up to $c\sim\alpha’$ .

We consider classical pure gravity on $M_{d+1}$ whose action takes generically the form

$S=S_{B}+S_{b}$ . (4.21)

Here $S_{B}$ is the bulk action and $S_{b}$ is the boundary $\mathrm{a}\mathrm{c}\mathrm{t}\mathrm{i}\mathrm{o}\mathrm{n}$:

$S_{B}= \int_{M_{d+1}}d^{d+1}X\sqrt{\hat{G}}[2\Lambda-\hat{R}-a\hat{R}^{2}-b\hat{R}_{MN}^{2}-c\hat{R}_{MNPQ}^{2}]$ , (4.22)

$S_{b}= \int_{\Sigma_{d}}d^{d}x\sqrt{G}[2K+x_{1}RK+x_{2}R_{\mu\nu}K^{\mu\nu}+x_{3}K^{3}+x_{4}KK_{\mu\nu}^{2}+x_{5}K_{\mu\nu}^{3}]$ . (4.23)

Using the ADM parametrization, we can express the action in the form:

$S= \int_{M_{d+1}}d^{d+1}X\sqrt{G}[\mathcal{L}_{d+1}^{(0)}(g, j;N, \lambda^{\mu})+\mathcal{L}_{d+1}^{(1)}(g, j, j.;N, \lambda^{\mu})]$ . (4.24)

Applying Theorem to this system, we obtain the flow equation of the form

$\{S, S\}+\{S, S, S, S\}=\mathcal{L}_{d}$ , (4.25)

where $\{S, S\}\sim(\delta S/\delta g)^{2}$ and $\{S, S, S, S\}\sim(\delta S/\delta g)^{4}$ , and their explicit form can be

found in [7].

This equation can be solved in away similar to that in section 3. The local part of

the reduced classical action is

$S_{1\mathrm{o}\mathrm{c}}= \int d^{d_{X}}\sqrt{G}[W-\Phi R+\cdots]$ , (4.26)

with

$W=- \frac{2(d-1)}{l}-\frac{4(d+3)}{3l^{3}}[d(d+1)a+db+2c]$ ,

$\Phi=\frac{l}{d-2}+\frac{2}{(d-2)l}[d(d-5)a-2b-2c]$ , (4.27)

$5\mathrm{W}\mathrm{e}$ require the geometry to be asymptotically $\mathrm{A}\mathrm{d}\mathrm{S}$ near the boundary. To satisfy this condition,

$x_{1}$ , $\cdots.x_{5}$ must satisfy the condition $x_{1}=4a$ , $x_{2}=2b$ , $d^{2}x_{3}+dx_{4}+x_{5}=-(4/3)(d(d+1)a+db+2c)$

and also $\mathrm{A}=-d(d-1)/2l^{2}+d(d-3)(d(d+1)a+db+2c)/2l^{4}[7]$ .
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and the Weyl anomaly is

$\langle T.\cdot.\cdot\rangle_{G}=\frac{2l^{3}}{2\kappa_{5}^{2}}[(\frac{-1}{24}+\frac{5a}{3l^{2}}+\frac{b}{3l^{2}}+\frac{c}{3l^{2}})R^{2}+(\frac{1}{8}-\frac{5a}{l^{2}}-\frac{b}{l^{2}}-\frac{3c}{2l^{2}})R_{j}^{2}.\cdot+\frac{c}{2l^{2}}R_{jkl}^{2}\dot{.}]$ .

(4.28)

As acheck, we consider $N=2$ superconformal $USp(N)$ gauge theory in four dimensions
which is thought of as the $\mathrm{A}\mathrm{d}\mathrm{S}/\mathrm{C}\mathrm{F}\mathrm{T}$ dual of type IIB string theory on $AdS_{5}\cross S^{5}/Z_{2}[8]$ .
In this case, we set the values $a=b=0$ and $c/2l^{2}=1/32N+\mathcal{O}(1/N^{2})$ , as determined in
[9]. 1and $1/2\kappa_{5}^{2}$ are

$\mathit{1}=(8\pi g_{\delta}N)^{1/4}(1+\frac{\xi}{N})$ , $\frac{1}{2\kappa_{5}^{2}}=\frac{\mathrm{V}\mathrm{o}\mathrm{l}(S^{5}/Z_{2})(8\pi g_{s}N)^{5/4}}{2\kappa^{2}}(1+\frac{\eta}{N})$ , (4.29)

where 4and $\eta$ represent possible but unknown corrections due to D7-07 background [9].
Thus the Weyl anomaly (4.28) becomes

$\langle T.!.\rangle_{g}=\frac{N^{2}}{2\pi^{2}}(1+\frac{3\xi+\eta}{N})[(\frac{-1}{24}+\frac{1}{48N})R^{2}+(\frac{1}{8}-\frac{3}{32N})R_{j}^{2}.\cdot+\frac{1}{32N}R_{jkl}^{2}]$

$+\mathcal{O}(N^{0})$ . (4.30)

If $3\xi+\eta=5/4$ , our calculation reproduces the field theoretical result [10],

$\langle T.\cdot.\cdot\rangle_{g}=\frac{N^{2}}{2\pi^{2}}[(\frac{-1}{24}-\frac{1}{32N})R^{2}+(\frac{1}{8}+\frac{1}{16N})R_{j}^{2}.\cdot+\frac{1}{32N}R_{jkl}^{2}]+\mathcal{O}(N^{0})$ . (4.31)

5Conclusion

In this article, we discussed several aspects of the holographic $\mathrm{R}\mathrm{G}$ . We found that the
Hamilton-Jacobi equation for agravity system is quite useful for exploring the structure
of the holographic $\mathrm{R}\mathrm{G}$ . From the flow equation, we derived the Weyl anomaly of the
boundary field theory and also the scaling dimension of ascaling operator which is dual
to abulk scalar field. We also showed that the classical trajectory of abulk field can
actually be interpreted as the RG flow of the corresponding scaling operator.

We further discussed how higher-derivative gravity systems can be interpreted in the
context of the $\mathrm{A}\mathrm{d}\mathrm{S}/\mathrm{C}\mathrm{F}\mathrm{T}$ correspondence. Although higher-derivative gravity requires
more boundary conditions for each bulk field than those in Einstein gravity, we pointed
out that by choosing the Neumann boundary conditions for higher-derivative modes, the
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classical trajectory is interpreted as the renormalized trajectory in the presence of highly

irrelevant operators. We further derived aHamilton-Jacobi-like equation that determines

the fixed-point action. Using this equation, we computed the $1/N$ correction to the Weyl

anomaly of $N$ $=2USp(N)$ superconformal field theory in four dimensions, on the basis

of the holographic description in terms of type IIB string theory on $AdS_{5}\cross S^{5}/Z_{2}[8]$ .

In spite of the developments described here, deep understanding is still lacking about

what kind of continuum field theories can be described in the scheme of the holographic
$\mathrm{R}\mathrm{G}$ , although it is widely believed that such field theories should have some kind of

supersymmetry and also should include variables that have redundancy in their degrees

of freedom (like gauge variables). Some developments in this direction are expected to be

made in the near future.
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