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Abstract

Anew approach to RG analysis for hierarchical models is proposed by using char-

acteristic functions of single spin distributions. Especially, existence of acritical RG

trajectory for ahierarchical Ising model in 4dimensions is shown and convergence to

a Gaussian distribution is confirmed.

1 Introduction
It is widely believed that the Ising model in four dimensions will be Gaussian in
acontinuum limit (triviality). There have been accumulated anumber of facts
indicating the triviality, but no mathematically rigorous proof has been obtained
so far. In fact, in order to study aRG trajectory starting at the Ising model,
we have to perform aRG analysis in the strong coupling region, since the Ising
model is astrong coupling limit of $\phi^{4}$ model. But indispensable techniques seem
to be left unknown for such an analysis.

In this situation, we found that, for ahierarchical approximation of the Ising
model in $d\geq 4$ dimensions, the RG trajectory can be rigorously studied by means
of the characteristic functions of single spin distributions for effective theories [1].

In this approach, rigorous inequalities due to Newman [2] play an essential role,
and numerical calculations are performed by computer to yield rigorous bounds
on the RG trajectory in the strong coupling region.

This note describes our basic idea to show the triviality of the hierarchical
Ising model in $d\geq 4$ dimensions.

2Hierarchical model
Hierarchical model is defined as follows. Let Abe apositive integer, and consider
the $2^{\Lambda}$ variables (spin variables) $\phi_{\theta}=\phi_{\theta_{\mathrm{A}},\ldots,\theta_{1}}$ labelled by

$\mathit{0}=(\theta_{\Lambda}, \ldots, \theta_{1})\in\{0,1\}^{\Lambda}$, (2.1)
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Let us define the Hamiltonian $H_{\Lambda}$ and the expectation values $\langle\cdot\rangle$ , respectively, by

$H_{\mathrm{A}}(\phi)$ $=$ $- \frac{1}{2}\sum_{n=1}^{\mathrm{A}}(\frac{c}{4})^{n}\sum_{\theta_{\mathrm{A}\prime\cdots\prime}\theta_{n+1}}(,\sum_{\theta_{n\cdots\prime}\theta_{1}}\phi_{\theta_{\mathrm{A}\prime}\ldots,\theta_{1}})^{2}$ , (2.2)

$\langle F\rangle_{\Lambda,h}$ $=$
$\frac{1}{Z_{\mathrm{A},h}}\int d\phi F(\phi)\exp(-\beta H_{\mathrm{A}}(\phi))\prod_{\theta}h(\phi_{\theta})$ , (2.3)

$Z_{\mathrm{A},h}$
$= \int d\phi\exp(-\beta H_{\mathrm{A}}(\phi))\prod_{\theta}h(\phi_{\theta})$ , (2.4)

where $h$ is asingle spin measure density normalized as

$\int_{\mathrm{R}}h(x)dx$ $=1$ . (2.5)

RG transformation

Hierarchical models are so designed that the RG transformation (see (2.11)) has
asimple form [3, 4, 5, 6, 7]. Define the block spins $\phi’$ by

$\phi_{\tau}’=\frac{\sqrt{c}}{2}\sum_{\theta_{1}=0,1}\phi_{\tau\theta_{1}}$ , $\tau=(\tau_{\mathrm{A}-1}, \ldots, \tau_{1})$ . (2.6)

Then, the equality

$\sum_{\theta_{\hslash,\ldots\prime}\theta_{1}}\phi_{\theta_{N},\ldots,\theta_{1}}$

$=$

,
$\sum_{\theta_{\hslash\cdots\prime}\theta_{2}}\frac{\sqrt{c}}{2}\phi_{\theta_{N\prime\cdots\prime}\theta_{2}}’$ (2.7)

implies

$H_{N}(\phi)$ $=$
$H_{N-1}( \phi’)-\frac{1}{2}\sum_{\tau}\phi_{\tau}^{\prime 2}$ . (2.8)

Suppose that afunction $F(\phi)$ depends on $\phi$ through $\phi’$ only, namely, there is a
function $F’(\phi’)$ on the block spins such that

$F(\phi)=F’(\phi’)$ . (2.9)

Then it holds that

$\langle F\rangle_{\mathrm{A},h}=(F’)_{\mathrm{A}-1,Rh}$ , (2.10)

where $\mathcal{R}h$ is defined by

$\mathcal{R}h(x)$ $= \mathrm{c}\mathrm{o}\mathrm{n}\mathrm{s}\mathrm{t}.\exp(\frac{\beta}{2}x^{2})\int_{\mathrm{R}}h(\frac{x}{\sqrt{c}}+y)h(\frac{x}{\sqrt{c}}-y)dy$ , $x$ $\in \mathbb{R}$. (2.11)

Note that

$h_{G}(x)$ $=\mathrm{c}\mathrm{o}\mathrm{n}\mathrm{s}\mathrm{t}$ . $\exp(-\frac{1}{4}x^{2})$ (2.10)

194



is afixed point of $\mathcal{R}$ , which we shall refer to as the density function of hierarchical
massless Gaussian measure. By looking into the asymptotics of e.g., susceptibility
for the hierarchical massless Gaussian model defined by (2.12), and comparing
it with that of the standard nearest neighbor massless Gaussian model on d-
dimensional regular lattice, we see that the dimensionality $d$ of the system may
be identified (at least for the Gaussian fixed point) as

$c=2^{1-2/d}$ . (2.13)

We shall extend the correspondence to hierarchical models with non-Gaussian
measures, and use the terminology $d$-dimensional hierarchical models whenever
(2.13) holds.

Hierarchical Ising model

Our concern is the hierarchical Ising model, which is defined by the following
single spin measure density

$h_{\mathrm{I},s}(x)= \frac{1}{2}(\delta(x-s)+\delta(x+s))$ , (2.14)

where $s\geq 0$ . Hierarchical Ising model has an infinite volume limit $\mathrm{A}arrow\infty$ , if
$0<c<2(d>\mathrm{Q})$ , and has aphase transition, if $1<c<2(d>2)[3]$ .

The ‘continuum limit’ of hierarchical Ising model is analyzed through the
asymptotic property of the RG trajectory

$h_{N}=\mathcal{R}^{N}h_{0}$ , $N=0,1,2$ , $\cdots$ , (2.15)

with the initial point $h_{0}=h_{\mathrm{I},s}$ .

RG trajectory

Asymptotic properties of the RG trajectories (2.15) are extensively investigated
in aweak coupling region i.e., in a‘neighborhood’ of $h_{G}[4,5,6]$ . In particular,
it is known that, if $d\geq 4$ , then there are no non-Gaussian fixed points in a
‘neighborhood’ of $h_{G}$ , and that a‘continuum limit’ constructed from acritical
trajectory with an initial function in a‘neighborhood’ of $h_{G}$ is trivial (Gaussian).

However, the density (2.14) is regarded as astrong coupling limit $\lambdaarrow\infty$ of
the $\phi^{4}$ densities

$h_{\mu,\lambda}(x)=\mathrm{c}\mathrm{o}\mathrm{n}\mathrm{s}\mathrm{t}$ . $\exp(-\mu x^{2}-\lambda x^{4})$ , $\mu=-2\lambda s^{2}$ , (2.16)

and an investigation of the RG trajectory for hierarchical Ising model requires an
analysis in the ‘strong coupling region’ far away from the Gaussian fixed point.

This problem is solved for hierarchical models by using characteristic functions
of single spin distributions
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nesulli

The following theorem claims that the continuum limit of hierarchical Ising model
in d $\geq 4$ dimensions is trivial [1].

Theorem 2.1. If $d\geq 4(i.e. c\geq\sqrt{2})$ , there exists a critical trajectory converging
to the Gaussian fixed point starting at the hierarchical Ising model. Namely, there
exists a positive real number $s_{\mathrm{c}}$ such that if $h_{N},$ $N=0,1,2$, $\cdots$ , are defined by
(2.15) with $h_{0}=h_{\mathrm{I},s_{\mathrm{c}}}$ , then the sequence of measures $h_{N}(x)dx$ , $N=0,1,2$, $\cdots$ ,
converges weakly to the massless Gaussian measure $h_{G}(x)dx$ .

Our proof is partially computer-aided and shows for $d=4$ that the critical
value $s_{\mathrm{c}}$ lies in the interval

[1.7925671170092624, 1.7925671170092625], (2.17)

where we have fixed the so far arbitrary normalization of the spin variables by

$\beta=\frac{1}{c}-\frac{1}{2}=\frac{1}{2}(2^{2/d}-1)$ . (2.18)

3Strategy
Characteristic function

Main idea of our proof is to use characteristic functions of single spin distributions:

$\hat{h}_{N}(\xi)=\mathcal{F}h_{N}(\xi)=\int_{\mathrm{R}}e^{\xi x}h_{N}(x)dx$ . (3.1)

The RG transformation for $\hat{h}_{N}$ is

$\hat{h}_{N+1}=\mathcal{F}\mathcal{R}\mathcal{F}^{-1}\hat{h}_{N}$ , (3.2)

which has adecomposition

$\mathcal{F}\mathcal{R}\mathcal{F}^{-1}=\mathcal{T}S$ , (3.3)

where

$Sg(\xi)$ $=$ $g( \frac{\sqrt{c}}{2}\xi)^{2}$ , (3.4)

$\mathcal{T}g(\xi)$ $=$ const. $\exp(-\frac{\beta}{2}\triangle)g(\xi)$ , (3.5)

and the constant is so defined that

$\mathcal{T}g(0)=1$ . (3.6)

The transformation (3.2) has the same form as the $N=2$ case of the Gallavotti
hierarchical model [9, 7, 8]. Note that only for $N=2$ the Gallavotti model is
equivalent (by Fourier transform) to the Dyson’s hierarchical model.
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Newman’s inequalities

Let us introduce a‘potential’ $V_{N}$ for the characteristic function $\hat{h}_{N}$ and its Taylor
coefficients $\mu_{n,N}$ , respectively, by

$\hat{h}_{N}(\xi)$ $=$
$e^{-V_{N}(\xi)}$ , (3.7)

$V_{N}(\xi)$ $=$ $\sum_{n=1}^{\infty}\mu_{n,N}\xi^{n}$ . (3.8)

Note that
$\hat{h}_{N}(0)$ $=$ 1, (3.9)

$\mu 2n+1,N$ $=$ 0, $n=0,1,2$ , $\ldots$
(3.10)

hold. The coefficient $\mu n,N$ is called a truncated $n$ point correlation.
The function $V_{N}$ has aremarkable positivity property, that is, the truncated

correlations obey Newman’s inequalities:

$\mu 2n,N$
$\geq$ $0$ , $n\geq 1$ , (3.11)

$\mu 2n,N$
$\leq$ $\frac{1}{n}(2\mu_{4,N})^{n/2}$ , $n\geq 3$ . (3.12)

These bounds follow from the Lee-Yang property for ferromagnetic systems [2].

Newman’s inequalities are extensively used in our proof. We here note the
following facts.

(1) The right hand side of (3.8) has non-zero radius of convergence.

(2) It suffices to prove $\mu_{4,N}arrow 0$ as $Narrow\infty$ in order to show that the trajectory
converges to the Gaussian fixed point.

Weak coupling region

The proof of Theorem 2.1 is decomposed into two parts: analyses in the weak
coupling region and in the strong coupling region.

Firstly we state the result in the weak coupling region.
It is easily seen that the condition

$1\leq\mu 2,N$ $\leq 1+\frac{3}{\sqrt{2}}\mu 4,N$ (3.13)

is necessary for the model to be critical. We then put, for $N=0,1,2$ , $\cdots$ ,

$\underline{s}_{N}$
$= \inf\{s>0|\mu_{2,N}\geq 1\}$ , (3.14)

$\overline{s}_{N}$ $= \inf\{s>0|\mu_{2,N}\geq\min\{1+\frac{3}{\sqrt{2}}\mu_{4,N}, 2+\sqrt{2}\}\}$ . (3.15)

In the following proposition, aRG flow in aweak coupling region is con-
trolled by means of afinite number of truncated correlations, and, in terms of
the truncated correlations, acriterion, aset of sufficient conditions, is given for
the measure to be in adomain of attraction of the Gaussian fixed point.
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Proposition 3.1. Let $h_{0}=h_{I,s}$ and d $=4$ . Assume that there exist integers $N_{0}$

and $N_{1}$ , satisfying $N_{0}\leq N_{1_{J}}$ such that, for s $\in[\underline{s}_{N_{1}},\overline{s}_{N_{1}}]$ , the bounds

0 $\leq$
$\mu_{4,N_{0}}$

$\leq$ 0.0045, (3.16)
$1.6\mu_{4,N_{0}}^{2}\leq$

$\mu_{6,N_{0}}$ $\leq 6.07\mu_{4,N_{0}}^{2}$ , (3.17)
0 $\leq$

$\mu_{8,N_{0}}$ $\leq 48.469\mu_{4,N_{0}}^{3}$ , (3.18)

and

$\mu_{2,N}<2+\sqrt{2}$, $N_{0}\leq N<N_{1}$ , (3.19)

hold. Then there exists an $s_{c}\in[\underline{s}_{N_{1}},\overline{s}_{N_{1}}]$ such that if $s=s_{\mathrm{c}}$ then

$\lim_{Narrow\infty}\mu_{4,N}=0$ , (3.20)
$\lim_{Narrow\infty}\mu_{2,N}=1$ . (3.21)

Figure 1. Aschematic view of trajectories on $(\mu_{2},\mu_{4})$-plane in Proposition 3.1.
Trajectories for $s=\overline{s}_{N_{1}}$ and for $s=\underline{s}_{N_{1}}$ (solid lines) and the critical trajectory
for $s=s_{c}$ (broken line) are shown. The Gaussian fixed point corresponds to the
point (1.0, 0). The region defined by inequalities for $(\mu_{2},\mu_{4})$ analogous to (3.13)
and (3.16) (and (3.19)) is shaded.

Our framework in the weak coupling region is designed especially for acritical
trajectory starting at the strong coupling region so that the criterion of conver-
gence to the Gaussian fixed point can be checked numerically with mathematical
rigor. Note that numerical results are incorporated with the rigorous analysi$\mathrm{s}$
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because the trajectory is controlled by means of finite number of coefficients
$\mu_{2n,N}$ , $n=1,2,3,4$ , of $V_{N}$ that are rigorously estimated by computer.

As aresult, we see that the ‘effective coupling constant’ $\mu 4,N$ of acritical model
decays as $c_{1}/(N+c_{2})$ after $N$ iterations in $d=4$ dimensions (exponentially for
$d>4)$ , which shares the common feature with weakly coupled $\phi^{4}$ model with
nearest neighbor interactions.

Proposition 3.1 is avariant of Bleher-Sinai argument [4]. In fact, the criteria
introduced in the references $[4, 6]$ seem to be difficult to handle when ‘strong
coupling constants’ are present in the model, as in the Ising models.

In addition, while the original Bleher-Sinai argument takes $No=N_{1}$ , we
include the $N_{0}<N_{1}$ case. This generalization makes it possible to complete
our proof by evaluating various quantities only at 2endpoints of the interval in
consideration for Ising parameter $s$ , instead of all values in the interval, as is
implicit in the assumptions of Proposition 3.1.

Strong coupling region

The following proposition is the result in the strong coupling region that is proved
by rigorous computer-aided calculations. In this proposition, it is stated that
there is atrajectory whose initial point is an Ising measure and for which the
criterion in Proposition 3.1 is satisfied after asmall number of iterations.

Proposition 3.2. The assumptions of Proposition 3.1 are satisfied for $N_{0}=70$

and $N_{1}=100$ , where $\underline{s}_{N_{1}}$ and $\overline{s}_{N_{1}}$ satisfy

1.7925671170092624 $\leq\underline{s}_{N_{1}}$ , $\overline{s}_{N_{1}}\leq 1.7925671170092625$ . (3.22)

Proposition 3.2 is proved by basically simple numerical calculations of trun-
cated correlations up to 8points to ensure the criterion. The results are dou-
ble checked by Mathematica and $\mathrm{C}++\mathrm{p}\mathrm{r}\mathrm{o}\mathrm{g}\mathrm{r}\mathrm{a}\mathrm{m}\mathrm{s}$ , and furthermore they are made
mathematically rigorous by means of Newman’s inequalities.

Theorem 2.1 follows from Proposition 3.1 and Proposition 3.2.

4Analysis in the weak coupling region

The operator $S$ acts on $V_{N}$ as follows:

$(\mathrm{S}e^{-V_{N}})(\xi)=e^{-2V_{N}(L_{2}^{c_{\xi)}}}$ . (4.1)

Using (3.8), (3.10), (2.13) we also have

$2V_{N}( \frac{\sqrt{c}}{2}\xi)=\sum_{n=1}^{\infty}\frac{2}{(2\omega)^{n}}\mu_{2n,N}\xi^{2n}$ , (4.2)

where $\omega$
$=2^{2/d}$ .
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Next, write (3.5) as

$\mathcal{T}g$ $=$ const. $g_{\beta/2}$ , (4.3)
$g_{t}$ $=$ $\exp(-t\triangle)g$ , (4.4)

where $\triangle g(\xi)=\frac{d^{2}g}{d\xi^{2}}(\xi)$ , and $\beta=\frac{1}{2}(\sqrt{2}-1)$ for $d=4$ . $g_{t}$ is asolution to

$\frac{\partial g_{t}}{\partial \mathrm{t}}$

$=$ $-\triangle g_{t}$ , (4.5)
$g_{0}$ $=g$ . (4.6)

Hence, if we put

$g_{t}(\xi)=\exp(-V_{t}(\xi))$ , (4.7)

then $V_{t}$ satisfies

$\frac{d}{dt}V_{t}=(\nabla V_{t})^{2}-\triangle V_{t}$ , (4.8)

where $\nabla V_{t}(\xi)=\frac{\partial V_{t}}{\partial\xi}(\xi)$ . In other words, $V_{N+1}$ is given as asolution of (4.8) at
$t=\beta/2$ (modulo constant term), with the initial condition (4.2) at $t$ $=0$ .

Reduction to finite degree of freedoms

If we write

$V_{t}( \xi)=\sum_{n=1}^{\infty}\mu_{2n}(t)\xi^{2n}$ , (4.9)

then (4.8) implies

$\frac{d}{dt}\mu_{2n}(t)$ $=$ $-(2n+2)(2n+1)\mu_{2n+2}(t)$

$+ \sum_{\ell=1}^{n}(2\ell)(2n-2\ell+2)\mu u(t)$ $\mu_{2n-2\ell+2}(t)$ . (4.10)

In particular, we have

$\frac{d}{dt}\mu_{2}(t)$ $=$ $4\mu_{2}(t)^{2}-12\mu_{4}(t)$ , (4.11)

$\frac{d}{dt}\mu_{4}(t)$ $=$ $16\mu_{2}(t)\mu_{4}(t)-30\mu_{6}(t)$ , (4. 2)

$\frac{d}{dt}\mu_{6}(t)$ $=$ $24\mu_{2}(t)\mu_{6}(t)+16\mu_{4}(t)^{2}-56\mu_{8}(t)$ , (4. 3)

$\frac{d}{dt}\mu_{8}(t)$ $=$ $32\mu_{2}(t)\mu_{8}(t)+48\mu_{4}(t)\mu_{6}(t)-90\mu_{10}(t)$ . (4. 4)
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Thus, $\mu 2n,N$ and $\mu 2n,N+1$ are related by

$\mu_{2}(0)=\frac{1}{\omega}\mu_{2,N}$ , $\mu_{4}(0)=\frac{1}{2\omega^{2}}\mu_{4,N}$ , $\mu_{6}(0)=\frac{1}{4\omega^{3}}\mu_{6,N}$ , $\mu_{8}(0)=\frac{1}{8\omega^{4}}\mu_{8,N}$ ,

$\mu_{2,N+1}=\mu_{2}(\frac{\beta}{2})$ , $\mu_{4,N+1}=\mu_{4}(\frac{\beta}{2})$ , $\mu_{6,N+1}=\mu_{6}(\frac{\beta}{2})$ , $\mu_{8,N+1}=\mu_{8}(\frac{\beta}{2})$ .

Note that the quantities $\mu_{n}(t)$ obey Newman’s inequalities: by comparing (3.5)

and (4.4) we see that the correspondence $V_{N}\mapsto V(t)$ is obtained by a replacement
$\beta\mapsto 2t$ in (2.11). Therefore $\mu_{n}(t)$ also is atruncated $n$ point correlation of a
measure to which arguments in [2] apply, hence analogues of (3.11) and (3.12)

hold:

$\mu_{2n}(t)$ $\geq$ $0$ , $n\geq 1$ , (4.15)

$\mu_{2n}(t)$ $\leq$ $\frac{1}{n}(2\mu_{4}(t))^{n/2}$ , $n\geq 3$ . (4.16)

The positivity of $\mu_{2n}(t)$ implies that if we throw out the last terms of the

right hand sides of (4.11)-(4.14), we have upper bounds for $\mu_{2n}(t)$ , $n=1,2,3,4$ .
Furthermore, replacing the last terms by the corresponding upper bounds, we
have lower bounds, and so on.

Integral equations

Proposition 3.1 follows from the bounds described above, and actual calculations
are performed in the form of integral equations.

Let us write the solution

$g_{t}(\xi)$ $=$ $\exp(-14(\xi))=\exp(-\sum_{n=1}^{\infty}\mu_{2n}(t)\xi^{2n})$ (4.17)

to (4.5),(4.6) as

$g_{t}(\xi)$ $=$ $\sqrt{\frac{\sigma(t)}{\mu}}\exp(-\sigma(t)\xi^{2})\psi_{z}(\eta)$ , (4.18)

where $\mu$ is apositive constant and

$\sigma(t)$ $=$ $\frac{\mu}{1-4\mu t}$ (4.19)

$z$ $=$

$\underline{\sigma(t)t}$ (4.20)
$\mu$

$\eta$ $=$

$\underline{\sigma(t)\xi}$ . (4.21)
$\mu$

Then, $\psi_{z}(\eta)$ obeys

$\frac{\partial\psi_{z}(\eta)}{\partial z}$ $=$ $- \frac{\partial^{2}}{\partial\eta^{2}}\psi_{z}(\eta)$ , (4.22)

$\psi_{0}(\eta)$ $=$ $\exp(\mu\eta^{2}-V_{0}(\eta))$ . (4.23)
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In particular, by taking the constant $\mu$ as

$\mu=\mu_{2}(0)=\frac{1}{\omega}\mu_{2,N}$ , (4.24)

the ‘mass term’ is separated from the initial potential $V_{0}(\xi)$ .
Let us introduce a‘potential’ for $\psi_{z}(\eta)$ by

$\psi_{z}(\eta)$ $= \exp(-U_{z}(\eta))=\exp(-\sum_{n=1}^{\infty}\nu_{2n}(z)\eta^{2n})$. (4.25)

Then, the coefficients $\mathrm{v}2\mathrm{n}[\mathrm{z}$) obey the same type of equations as (4.11)-(4.14) and
they are related with $\mu_{2n}(t)$ by

$\mu_{2n}(t)$ $=$ $( \frac{\sigma(t)}{\mu_{2,N}})^{2}\nu_{2n}(z)+\sigma(t)\delta_{n,1}$ . (4.26)

Note that $\nu_{2}(z)$ is $\mathcal{O}(\mu_{4,N})$ , since the initial value of $\nu_{2}$ vanishes under (4.24).
Thus, we can obtain necessary bounds by using the following integral equa-

tions:

$\nu_{2}(z)=\int_{0}^{z}(4\nu_{2}(z)^{2}-12\nu_{4}(z))dz$, (4.27)

$\nu_{4}(z)=\frac{2}{(2\omega)^{2}}\mu_{4,N}+\int_{0}^{z}(16\nu_{2}(z)\nu_{4}(z)-30\nu_{6}(z))dz$, (4.28)

$\nu_{6}(z)=\frac{2}{(2\omega)^{3}}\mu_{6,N}+\int_{0}^{z}(24\nu_{2}(z)\nu_{6}(z)+16\nu_{4}(z)^{2}-56\nu_{8}(z))dz$, (4.29)

$\nu_{8}(z)=\frac{2}{(2\omega)^{4}}\mu_{8,N}+\int_{0}^{z}(32\nu_{2}(z)\nu_{8}(z)+48\nu_{4}(z)\nu_{6}(z)-90\nu_{10}(z))dz$ . (4.30)

5 Numerical bounds in the strong coupling re-
gion

Proposition 3.2 is shown by estimating Taylor coefficients of $\hat{h}_{N}(\xi)$ instead of
$V_{N}(\xi)$ .

Taylor coefficients

Define the Taylor coefficients $a_{n,N}$ , n $\geq 0$ , of $\hat{h}_{N}$ by

$\hat{h}_{N}(\xi)=\sum_{n=0}^{\infty}(-1)^{n}\frac{1}{n!}a_{n,N}\xi^{2n}$ . (5.1)

In particular, $a_{0,N}=\hat{h}_{N}(0)=1$ . Obviously $a_{n,N}\geq 0$ holds for $n\geq 0$ . Further-
more, they satisfy inequalities of Newman’s type (or the Gaussian inequalities)
[1, appendix]:

$a_{n+m,N}\leq a_{n,N}a_{m,N}$ , n, m $\geq 0$ . (5.2)
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Note that coefficients $\mu_{n,N}$ and $a_{n,N}$ are related, e.g., as

(5.3)
$\mu_{2,N}$ $=$ $a_{1,N}$ ,

$\mu_{4,N}$ $=$
$\frac{a_{1,N}^{2}-a_{2,N}}{2}$ , (5.4)

$\mu_{6,N}$ $=$
$\frac{a_{1,N}^{3}}{3}-\frac{a_{1,N}a_{2,N}}{2}+\frac{a_{3,N}}{6}$ , (5.5)

$\mu 8,N$ $=$
$\frac{a_{1,N}^{4}}{4}-\frac{a_{1,N}^{2}a_{2,N}}{2}+\frac{a_{2,N}^{2}}{8}+\frac{a_{1,N}+a_{3,N}}{6}-\frac{a_{4,N}}{24}$ . (5.6)

For Ising measure $h_{0}=h_{I,s}$ , we have, for $n\geq 0$ ,

$a_{n,0}=(-1)^{n} \frac{n!}{(2n)!}\frac{d^{2n}\hat{h}_{0}}{d\xi^{2n}}(0)$

$=$ $\frac{n!}{(2n)!}\int x^{2n}h_{I,s}(x)dx$

$=$ $\frac{n!}{(2n)!}s^{2n}$ (5.7)

Recursions

Define $b_{n,N}$ , $n\geq 0$ , by

$( \mathrm{S}\hat{h}_{N})(\xi)=\hat{h}_{N}(\frac{\sqrt{c}}{2}\xi)^{2}=\sum_{n=0}^{\infty}(-1)^{n}\frac{1}{n!}b_{n,N}\xi^{2n}$ , (5.8)

namely,

$b_{n,N}=( \frac{c}{4})^{n}\sum_{\ell=0}^{n}$
$(\begin{array}{l}n\ell\end{array})$ $a_{\ell,N}a_{n-t,N}$ , $n\geq 0$ . (5.9)

Next, expand the exponential

$\exp(-\frac{\beta}{2}\triangle)=\sum_{m=0}^{\infty}\frac{1}{m!}(-\frac{\beta}{2})^{m}\frac{d^{2m}}{d\xi^{2m}}$ (5.10)

and define $\tilde{a}_{n,N}$ , $n\geq 0$ , by

$\sum_{m=0}^{\infty}\frac{1}{m!}(-\frac{\beta}{2})^{m}\frac{d^{2m}}{d\xi^{2m}}\mathrm{S}\hat{h}_{N}(\xi)=\sum_{n=0}^{\infty}(-1)^{n}\frac{1}{n!}\tilde{a}_{n,N}\xi^{2n}$, (5.11)

namely,

$\tilde{a}_{n,N}=\sum_{m=0}^{\infty}(\frac{\beta}{2})^{m}b_{m+n,N^{\frac{(2m+2n)!n!}{m!(m+n)!(2n)!}}}$ , $n\geq 0$ . (5.12)
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Then, (3.5) implies

$\hat{h}_{N+1}(\xi)=\frac{1}{\tilde{a}_{0,N}}\sum_{n=0}^{\infty}(-1)^{n}\frac{1}{n!}\tilde{a}_{n,N}\xi^{2n}$ , (5.13)

where we fixed the constant in the definition of T by $\hat{h}_{N+1}(0)=1$ . Comparing
this with (5.1) we obtain arecursion relation in N for $a_{n,N}$ :

$a_{n,N+1}= \frac{\tilde{a}_{n,N}}{\tilde{a}_{0,N}}$ , n $\geq 0$ , N $\geq 0$ . (5.14)

Bounds

We have to bound $a_{n,N}’ \mathrm{s}$ inductively by using (5.9), (5.12), (5.14) with initial
data (5.7). This part of our proof is computer-aided.

Note that every coefficient is nonnegative and no cancelation occurs in (5.9)
and (5.12). Hence, lower bounds on $b_{n,N}$ are obtained by using lower bounds on
$an,N$ for $n\leq n_{*}$ and by putting $a_{n,N}=0$ for $n>n*\mathrm{i}\mathrm{n}$ the right hand side of
(5.9), where $n_{*}$ is apreviously fixed positive integer. Furthermore, lower bounds
on $b_{n,N}$ in turn yield lower bounds on $\tilde{a}_{n,N}$ by using (5.12).

On the other hand, upper bounds are obtained as follows. Firstly, we have
to append theoretically upper bounds on $a_{n,N}$ for $n>n_{*}$ from those on $a_{n,N}$ for
$n\leq n_{*}$ by means of (5.2). Next, we derive upper bounds on $b_{n,N}$ and $an,N$ from
(5.9) and (5.12), respectively.

As aresult, lower and upper bounds on $a_{n,N+1}$ for $n\leq n_{*}$ are obtained by
(5.14).

Finally, we note that (3.16)-(3.19) must hold for all $s\in[\underline{s}_{N_{1}},\overline{s}_{N_{1}}]$ . Numerical
calculations, however, can be done for afinite number of $s$ , of course. In fact,
$a_{n,N}$ is monotone with respect to $s$ for each $n$ and $N$ . Then, using (5.3)-(5.6),
we can bound $\mu_{2n,N}$ from above and below for all $s$ in some interval by quatities
(obtained by computer) for the endpoints of the interval. Thus, Proposition 3.2
is shown.
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