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Introduction

In recent years operator theory over white noise functions has been considerably studied
keeping close contacts with infinite dimensional harmonic analysis [5, 7, 13, 17], Cauchy
problems in infinite dimension [6], quantum stochastic differential equations [9, 10, 34], and
so forth. In particular, for its interesting application to quantum white noises and their
nonlinear functions [8, 20, 23, 35, 36], we have started using the term quantum white noise
calculus, see also the forthcoming survey [24].

In the first comprehensive work [33], adopting the framework of Kubo-Takenaka [30], we
developed operator theory on Hida—-Kubo-Takenaka space for which the famous character-
ization theorem for S-transform was first proved [38]. Meanwhile, the framework of white
noise distributions has been generalized by many authors in different ways. Among others,
generalization keeping the characterization theorem for S-transform valid has been made
by Kondratiev-Streit [27], Cochran-Kuo-Sengupta [11] and Asai-Kubo-Kuo [1]. In par-
alell with these works, an almost equivalent but slightly more general construction has been
achieved by Gannoun-Hachaichi-Ouerdiane-Rezgui [14] by means of infinite dimensional
holomorphic functions. In the white noise operator theory a key role has been played by the
characterization theorem for symbols and, in fact, such characterization theorems have been
proved for many variants of white noise function spaces, e.g., see [8]. In order to terminate
this routine a unified aspect is proposed by Ji-Obata [22] on the basis of a CKS-space. It
turns out, however, that further unification is possible along with the approach proposed
by Gannoun-Hachaichi-Ouerdiane-Rezgui [14], since their argument is simply based on a
nuclear triplet N C H C N* and does not require the famous constant p in white noise
theory [18, 31, 33].

In this paper we prove some basic results in white noise operator theory within the
framework of nuclear algebras of entire functions. Analysis of such nuclear algebras, tracing
back to Krée’s pioneering works in the early 70’s, see e.g., [29], has been developed by
Ouerdiane and his collaborators {14, 37] making a close connection with white noise calculus,
see also Berezansky—Kondratiev [2], Kondratiev [26] and Lee [32]. There are some advantages
of this approach; First the characterization theorem of S-transform follows simply by the
combination of Taylor series map 7 and the Laplace transform £, both of which admit
straightforward extensions to the multi-variable case, in this relation see also [25]. The
characterization for operator symbols is obtained from the two-variable extension. Second,
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the standard construction of white noise functions is based on a choice of defining Hilbertian
norms satisfying ||, < p|¢& |,+; with a constant 0 < p < 1. In fact, this constant plays
rather essential roles in convergence of various infinite series appearing in white noise theory.
Nevertheless, in our new approach such a constant p is not required and is replaced by
another constant § independent of the defining norms. Thanks to this replacement many
norm estimates has become more transparent than before. Finally, this new framework
is independent of Gaussian analysis and we expect some interesting applications to non-
Gaussian analysis. This topic is, however, somehow beyond the scope of this paper and we
hope to discuss it elsewhere.

1 Entire Functions with #-Exponential Growth
1.1 Entire function on a locally convex space

Let X be a locally convex space over the complex number field C. A function f : X — C
is called Géteauz-entire if for each £,7 € %, the C-valued function of one complex variable
A — f(€ + An) is holomorphic at every A € C. A Géteaux-entire function f:X—>Cis
called entire if it is continuous on X, or equivalently if it is locally bounded, i.e., every point
of X is contained in a neighborhood on which f is bounded, see e.g., Dineen [12].

Consider a complex Banach space (B, | - |). We classify entire functions on B by means
of their growth rate at the infinity. Let § be a Young function (see Appendix). An entire
function f : B — C is said to be with 8-ezponential growth of finite type 6 >0 if

Il £ llo s = sup |f(2)le™ ) < +o0.
2€B

Let £(B,d) denote the space of all such entire functions, which becomes a Banach space
equipped with the norm || - ||, ;-

1.2 A real nuclear chain and its complexification

We start with a real nuclear Fréchet space E which is continuously and densely imbedded
in a real Hilbert space Hr. The norm of Hy is denoted by |- . It is known that there exists
a sequence of Hilbertian norms {|-|,} determining the topology of E such that

1€l <€, S 1€ <0, §EE. (1.1)

For each p > 0 let E, denote the real Hilbert space obtained by completing E with respect
to |- |,- Equipped with the canonical map 7p 41 : E,+1 — E,, which is continuous and has
a dense image, {E,};2, forms a projective sequence of Hilbert spaces and it holds that

(e ]
E=projlimE, | = n E, as sets | .
p—oo p=0 )

Let E* be the dual space® of E. We recall a standard expression of E*. For each p 2 0
we denote by E_, the dual space of Ej,. By duality the map mp,,, : E_p = E_p41) is a

2) For a locally convex space X the dual space, denoted by X*, is by definition the space of all continuous
linear functions on X. The dual space is assumed to carry the strong dual topology unless otherwise stated.
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continuous injection with a dense image. Thus, {E_,}52, becomes an inductive sequence of
Hilbert spaces and it holds that

E =u:glg°mE_,, (= UE_,, as s_ets) .

p=0

In particular, the strong dual topology and the inductive limit topology coincide.

In the above consideration there is a distinguished Hilbert space Hr = Ey. Identifying
Hg with its dual space Hg by the Riesz theorem, we obtain a chain of Hilbert spaces and
their limits:

Ec---cE,C---CEyCHp=®HgCFE_,C---CE_,C.---CE". (1.2)

The canonical bilinear forms on E* x E and on E_, x E,, and the inner product of Hg are
denoted by the same symbol (-, -) for they are all compatible® .

Now we consider the complexification. For each p € R we set N, = E, + iE,, which
becomes a complex Hilbert space in an obvious manner. In particular, for £ = & + i€ and
7 = 1 + i1 the Hermitian inner product is defined by

(&, 77)1v, = (fl +1i&, m + i’h)N,
= (&1, m)g, + (&, Mg, — i (&2, M)g, + (&2, M), »

where (-, -);_is the inner product of E,. Then (1.2) is extended to a complex nuclear chain:
Nc---cN,c---CMCcH=NCN_,C---CN_,C---CN*.  (L3)

The canonical C-bilinear forms on N* x N and on N_p X Np, p > 0, are denoted by the same
symbol (-, -). It is then noted that |£|> = (¢, ), = (&, &) for £ € H = N,.

Lemma 1.1 Letp € R be fized. There ezists uniquely an isometric, anti-linear isomorphism
£ & from N, onto N_, such that

(6" 77) = (61 U)N,, f;'l € va
where the right hand side is the Hermitian inner product of the Hilbert space Ny.

PROOF. Given £ € N,, we consider the map n — (£, 7) n,» Where n € Nj. Since
this map is continuous and linear, by definition there exists a unique {* € N_, such that
(&, n) N, = (€*, n). 1t is easy to see that (af + Bn)* = a€* + fn*. Moreover, it is isometric
since

1€*|_, = sup [{€",n)|= sup [{& )y, |=1€l,-
Inl,<1 Inl,<1

Finally, the map £ — &* is surjective, which can be verified by the Riesz theorem. |

b) The right and left arguments of (-, -) are sometimes confused when there is no danger.
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Let {e;} be a complete orthonormal basis of N,. Then the Fourier expansion of £ € N,
is expressed in the form:

§=Z(e’{,€)6i, |§|,2,=Z|(e:-‘,_§)|‘2.

Moreover, as is easily verified, {e;} becomes a complete orthonormal basis of N_,. The
Fourier expansion of f € N_, is expressed in the form:

f=3(fedel,  1fE,=2 I el
Note also that (e}, e;) = d;;.

1.3 Entire functions on nuclear spaces

Let 0 be d fixed Young function. We note that {€9(N_,, )} becomes a projective system
of Banach spaces as p = oo and 6 J 0. We then define

Fo(N*) = proj lim fo(N—pa 4),

p—00;010

which is called the space of entire functions on N* with 0-ezponential growth of minimal
type. Similarly, {£g(Np, )} becomes an inductive system of Banach spaces as p — oo and
d = oo. We define

Go(N) = indlim &(Np,9),
p—r00;6—00
which is called the space of entire functions on N with 0-ezponential growth of finite type.

Proposition 1.2 F3(N*) is identified with the space of all functions f : N* — C such that
fln_, = fom} is entire on N_, for any p > 0 and

f llo~p6 = sup |£(2)|e¢1%1-) < +o00 (1.4)
F4 -

P

for any & > 0. Moreover, such f is entire on N*.

PROOF. By definition an element of the projective limit space is a consistent family
(fos), where fo; € E9(N_p,8). For z € N* we choose some p > 0 such that z € N_, and
define f(z) = fys5(2), which is independent of the choice of p,d. This f satisfies the desired
property. This argument is easily converted and we see that the correspondence (fps) ¢ f is
one-to-one. We shall show now that f is entire on N*. Obviously, f is Gateaux-entire. Since
any (strongly) bounded subset of N* is contained in N_, for some p > 0 and is bounded in
the norm [16, Chap.1.5.3], the local boundedness of f follows from that of f |n_,» which is
already shown in (1.4). Hence f is entire on N*.

Proposition 1.3 Gg(N) is identified with the space of all functions g : N — C for which
there ezists a pair p > 0, § > 0 such that g admits an entire extension g, : Ny — C and

“ 9p ||9,p,6 = sup Igp(z)le—a(ﬂzlp) < +00.
2€N,

Moreover, such a function g is entire on N.
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PROOF. Similar to the proof of Proposition 1.2. |

Both Fy(N*) and Gy(N) are constructed after choosing a sequence of Hilbertian norms
(1.1). We shall show that the construction does not depend on the choice. Let |-|, be a
continuous seminorm on N. Then, in a canonical manner we have a Banach space N, and a
continuous map 7, : N =& N, with a dense image. By duality #, : N} — N* is a continuous
injection. The dual norm is defined by

|fl_a= sup (maf, z)|, fE€EN,.

z|,<1

Proposition 1.4 A function f : N* — C belongs to F¢(N*) if and only if for any continuous
seminorm |- |, of N, f o} is entire on N} and

sup | f(mgz)|e™™l-a) < oo,
zENZ

PROOF. We need only show the “only if” part. Since |-|, is continuous, there exist
p > 0 and ¢ > 0 such that

€l <clél,, E€N.

Then the natural map 7y : N, — N, is continuous and has a dense image. By duality
we have a continuous injection 7}, : N_o = N_ and ¢™!|n},2|_, < |z|_,. Note also the
following commutative diagrams:

N N*
T Na N P P N, ;

N,

ap ap

Now suppose f € Fp(N*). Then
sup |f(m3z)[e=*0%1-2) = sup |f(n3 o m3,2)le~1-=)
zeN; ZEN;
< sup |f(my o w5, z)|e™ 0 %% 10)
ZENZ

< sup |f(mw)le 190 = || £y
we -p

where =} is injective so that N_, is regarded as a subspace of N*. By assumption the last
norm is finite and the proof is completed. |

Similarly, we have the following

Proposition 1.5 A function g : N — C belongs to Gg(N) if and only if thete exist a
continuous seminorm |- |, of N and an entire function g, : N, = C such that g = g, o 7,
and ' '

sup |ga(2)|e"?1%le) < 400.
zZEN,

Propositions 1.4 and 1.5 mean that
Fo(N*) = proj lim E¢(N_,, d), Go(N) = ind lim &4(N,, 6),
;040 a;6—o00

where a runs over all continuous seminorms of N.
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1.4 Equivalent Young functions
We here only mention the following fact, the proof of which is easy, see [14].

Proposition 1.6 If two Young functions 6, and 0, are equivalent at infinity, i.e.,

. Oi(z)

=1,
then .7'-91 (N*) = faz(N') and ggl(N) = ggz(N)

1.5 Multiplication

Proposition 1.7 Fy(N*) is closed under pointwise multiplication. Moreover, the pointwise
multiplication yields a continuous bilinear map from Fo(N*) x Fy(N*) into Fy(N*).

ProoF. For f,g € Fp(N*),
1£(2)9(2)[e~0C@1%1-0) < |f(2)|e~ %1210 |g(2)|e~0(5121-»),

where an obvious inequality 18(z) = 1(8(z) + 6(0)) > 6(3z) was used. Then, taking the

supremum over z € N_,, we obtain

| fg ”o,_p,a <|\f “o,-p,s/z Ilg ”o,_p,.S/z .

This proves the assertion. |

Proposition 1.8 G4(N) is closed under pointwise multiplication. Moreover, the pointwise
multiplication yields a separately continuous bilinear map from Go(N) x Go(N) into Go(N).

PROOF. Suppose f,g € Go(N). Then, by definition there exist p > 0, 6 > 0 and an
entire function f, : N, — C which extends f such that

£ llgps = sup |fo(2)le™?C*1 < co.
zENp

Similarly, for g we have ¢ > 0, &' > 0 and an entire function g, : Ng — C which extends g
such that

9 llggs = sup lgq(2)le™1*l) < co.
2€N,

We may assume that p < g. Then we have N C N, C Np. Set f, = fo| Ny Then, it is
obvious that f, is Gateaux-entire on N,. Moreover, since | 2|, < |z|;, we have

Fo@) = 1o 11 £ llops €% <11 fllgpse®@?l,  2€ N

Hence f, is locally bounded on N,, and hence f is entire on N,. Now, f,g, extends fg and
is entire on N,. Moreover,

|£4(2)g4(2)| S NI £ llgp6 21D || gl 5 21210 < || fllgps 11 9 1lo g H2E+) 21,).
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Consequently,

| fg "0,qu,2(6+6’) <If “0,p,6 g ||o,q,6"
which ompletes the proof. |

Remark 1.9 It is plausible that the above éeparately continuous bilinear map from Gy(N) x
Go(NN) into Gy(N) is, in fact, continuous.

2 Taylor Series Map
2.1 Symmetric tensor powers and Taylor expansion

For two locally convex spaces X,2) we denote by X ®a; 2) the algebraic tensor product.
The completion of X ®,; P with respect to the m-topology is called the w-tensor product
and is denoted by X ® 9 for simplicity. If both X = H, 9 = K are Hilbert spaces, H ® K
stands for the Hilbert space tensor product though it is different from the w-tensor product.

For a locally convex space X the n-fold symmetric tensor power X®" is the closed subspace
of X®" spanned by the elements of the form £®", where £ € X. Similar deﬁmtlon is adopted
for the n-fold symmetric tensor power of a Hilbert space.

Lemma 2.1 For a nuclear Fréchet space N we have (N*)®n = (N8n)+,

By Propositions 1.2 and 1.3 f € F»(N*) and g € Go(N) admit the Taylor expansions:

FR) =S f,  zeN', faeNO", (2.1)
n=0

96) = (9,,€%"), EEN, g, (N,
n=0

where we used the common symbol (-, -) for the canonical bilinear form on (N®?)* x N&»
for all n. _

Here is a just notation. A sequence ® = (F,), where F,, € (N®")* is called a formal
power series on N. With a formal power series ® = (F,,) we associate a function Fy on N
defined by

Fb(§)==:£:<}au €®n>’ é.e ﬁL

n=0

though the convergence is not taken into consideration here.

2.2 Nuclear spaces of power series

We shall characterize F3(N*) and Gy(N) in terms of the Taylor expansions. First we
define a sequence {6,} by
ef(r)

0, = inf , n=0,1,2,---.
>0 rn
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Suppose a pair p > 0, § > 0 is given. Then, for ¢ = (fr)s%, With fn € N;;é" we put

2 —-2¢c—n
181105 =Y 62267 | fuly,

n=0

and for ¢ = (F,)32, with F,, € N?’;',

[o o]
@I, =D (n16a)26" | Ful2,.
n=0

Accordingly, we put

FO(Npa(S) = {¢ = (fn); fn € N,;én» ” ¢”+;p,5 < OO} ’ 7
Go(N_p,8) = {® = (Fu); Fa € N, | @ |_ps < o0}

These are sometimes referred to as weighted Fock spaces too. Finally, we define

Fg(N) = proj lim Fo(Np, 5), Go(N*) = 1_1)1d%1_r+n GQ(N_,,,(S). (2.2)
P—00;0—00

p—00;610

It is easily verified that Fy(NN) becomes a nuclear Fréchet space. By definition, Fp(/N) and
Gy(N*) are dual each other, namely, the strong dual of Fy(N) is identified with Go(N*)

through the canonical bilinear form:

(@, o) =D _nl(Fn, fu), (2.3)

n=0

and we have the Schwartz inequality:
162, oM < @ ll_psll S llips> B EGs(NY), &€ Fo(N).

2.3 Taylor series map

With each entire function the sequence of Taylor coefficients is associated by the Taylor
series map T (at zero). For example, if the Taylor expansion of f € Fy(N*) is given as in

(2.1), the Taylor series map is defined by 7f = f = (fa). Then we come to the following
fundamental result due to Gannoun-Hachaichi-Ouerdiane-Rezgui [14).

Theorem 2.2 The Taylor series map T yields topological isomorphisms Fo(N*) = Fy(N)
and Gg-(N) = G¢(N*), where 6* is the polar function of 6.

2.4 Exponential vector and exponential function

For £ € N we define

n!

®2 ®n
PR (WS < ]



138

Then ¢§ € Fg(N) In fact,

2n 00
e I35 = 20-26-"'“ 2 @' €™ < oo,

(n!)? 1)2
n=0 n—O
for all p > 0 and 4 > 0, see Lemma A.10 in Appendix. On the other hand, we define
ef(z) = &9, zZ€N". (2.4)

Obviously, ef € Fy(N*). We see from the obvious relations:
—1 - ®n EQ" (z,6) £ *
Te9t) =3 (s, 57 ) = et =),z

that Te® = @¢. Both ¢, and ¢ are called an ezponential function or an ezponential vector
or a coherent vector.

Lemma 2.3 The set of exponential vectors {¢¢; & € N} is linearly independent and spans
a dense subspace of Fy(N). Hence so is {€¢; £ € N} in Fo(N*).
2.5 Laplace transform

Let Fo(N*)* denote the dual space of Fy(N*). Noting that e € Fy(N*) for all £ € N,
we define the Laplace transform of ® € Fo(N*)* by

LOE) = (B, ¢f), E€N.

The following result, due to Gannoun-Hachaichi-Ouerdiane-Rezgui [14], is now immediate
from Theorem 2.2 and the fact that Fy(/N)* and G¢(N*) are identified through the bilinear
form (2.3).

Theorem 2.4 The Laplace transform induces a topological isomorphism L : Fe(N*)* —
go- (N ) .

By Theorem 2.2 we have
LO(E) = (@, ) = (T, Tet) = (T, o) - (2.5)
In the context of white noise theory, for ¥ € Fp(N)*
SU(§) = (¥, ¢, E€N,
is called the S-transform. Hence (2.5) implies that LP(§) = ST®(&), that is,
L=SoT.

Since 7 is an isomorphism, the images of £ and S coinside, and we obtain the famous
characterization theorem of S-transform® .

Theorem 2.5 The S-transform S is a topological isomorphism from Fg(N)* onto Go(N).

©) The statement in the present theorem is more general than that in the usual context of white noise
theory. Because we do not assume that Fy(N) is a subspace of I'(H) = L?(E*, u), see also §4.
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3 Operator Theory

We are interested in a continuous operator from Fy(N) into Fy(N)*. The space of such
operators is denoted by L(Fy(N), Fp(N)*) and is assumed to carry the bounded convergence
topology.

3.1 Symbols and kernels

There is an isomorphism: L(Fp(N), Fy(N)*) =2 (Fp(N) ® Fy(N))* which follows from the
famous kernel theorem. If = € L(Fy(N), Fo(N)*) and =K € (Fyp(N) ® Fp(N))* are related
under this isomorphism, we have

(Eo, ¥) = (E, 0@,  ¢,¥ € Fp(N).
We call ZX the kernel of Z. The symbol of = € L(Fy(N), Fy(N)*) is defined by

2(&,n) = (Sd¢, o) = (EX, e @ ),  EMEN. (3.1)

Since the exponential vectors {¢¢; £ € N} span a dense subspace of Fy(N), an operator
Z € L(Fy(N), Fy(N)*) is uniquely specified by the symbol. We shall discuss an analytic
characterization of the symbols in terms of the Laplace transform.

3.2 Holomorphic functions in two-variables

Let M and N be two nuclear Fréchet spaces with defining Hilbertian norms {| - |x,} and
{|- |np}, respectively. Let M, @ N, be the Hilbert space direct sum®. Then the direct sum
M & N is by definition

M @ N = projlim M, & N,,

p—0oo
Similarly,

(M®&N)*=M*®N*=indlimM_, ® N_,.
p—o0

Consider a function f : M x N — C such that (i) z — f(z,w) is entire for any fixed
w € N;and (ii) w — f(2,w) is entire for any fixed z € M. Such a function is called an entire
function in two variables. On the other hand, a function f: M X N — C is in one-to-one
correspondence to a function f : M@ N — C in an obvious manner. Since M & N is another
nuclear space, we can consider an entire function on it. It is known (e.g., [12]), however,
that f is entire in two-variables if and only if f is entire on M @& N. Therefore, we do not
need make distinction.

Proposition 3.1 A function f : (M & N)* — C belongs to Fo((M & N)*) if and only if

sup | f(w @ z)|e 0™ Wlm-p)=0mlzInp) < o0 (3.2)
weM,zeéN

for any pair p > 0 and m > 0.

9) In general, forztwo Hilber; spaceszH , K we dénote by H & K the Hilbert space direct sum. The norm is
defined by | ® n|yex = €|y + 1|k for £ € H and n € K.
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PRroOOF. First note that

1
2500l +121n) S [0 @2 o,y
= (l w Ii{,-p + I z l?v,—p)l/z S lw IM,—p + I z lN,—p :

Since 0 is an increasing function,

m
0(% (jw IM,—p + |2 |N,-—p)) < 9(7" lwe z |M$N,—p)
<O(m|wly_,+m|z|y_,) (3.3)
Note that any Young function satisfies the following inequality:

8(2s) + 6(2t)
2

0(%) + 0(%) <O(s+t) < < 6(2s) + 0(2t), s,t > 0.

Then (3.3) becomes

6 (-2% | |M,_,,) +6 (2% P |N,_,) <O(m|w® 2 |ye,_p)

SO02m|wly,_p) +0(2m |2y _,)
This shows that (3.2) is equivalent to that f € Fp((M & N)*). |

Similarly we have

Proposition 3.2 A function f : M @ N — C belongs to Go(M & N) if and only if there
ezist a pair p > 0 and m > 0 such that

sup |f(w @ 2)|e~ 0 wlap)=00mlzln,) < oo,
weEM,zeN

Proposition 3.3 There is a unique topological isomorphism Fo((M & N)*) = Fo(M*) ®
Fo(N*) which eztends the correspondence e£®" « et ® e”.

PRrROOF. For f; € Fo(M*) and f, € Fp(N*) we define f; ® f> as usual:

f1® fo(w & z) = fi(w) fa(2).

Then (f1, f2) — fi ® f, is a bilinear map from Fy(M*) x Fp(N*) into Fp((M & N)*), and
hence we have h : Fo(M*) ®ag Fo(N*) = Fo((M & N)*). It follows from Proposition 3.1 that
h is continuous so that h is extended to a continuous map Fy(M*)@Fp(N*) — Fe((MBN)*).
Moreover, we see from

e (w @ 2) = WO = WO HE) — of(y)eT(2)

that h(ef ® €7) = €t®". Recall that {e‘®"} spans a dense subspace of Fp((M @ N)*), see
Lemma 2.3. By a standard argument with the Taylor expansion we conclude that h is
extended to an isomorphism from Fp(M*) ® F¢(N*) onto Fp((M & N)*). |
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Corollary 3.4 There is a unique topological isomorphism Fg(N @& M) = F3(N) ® Fy(M)
which extends the correspondence deqy ¢ ¢£’ ® ¢£” , where the exponential vectors in Fy(N)
and Fy(M) are denoted by ¢£’ and ¢>,1;" , respectively.

We now come to the characterization of operator symbols.

Theorem 3.5 A function © : N x N — C is the symbol of some Z € L(Fy(N), Fo(N)*) if
and only if © € Gg- (N & N).

PROOF. In view of (3.1) we have
E(f,ﬂ) = «EK, ¢£ ® ¢17» = «EK’ ¢£®7)» = ‘CEK(f @ 77)
By Theorem 2.4 we see that L= € g;,. (N @ N), which proves the assertion. | [

3.3 Chaotic expansion of operators

~

r—
ot

(=]

Given = € L(Fy(N),Fy(N)*), we consider the Taylor expansion of the symbol

BEm =D um 1™ ®E™),  Mym € (VO

I,m=0

It is obvious by Theorem 3.5 that there exists Z;,, € L(Fp(IN), Fg(N)*) such that

él,m(&v 77) = <Al,m1 "7®l ® £®m> :

Thus we come to

(1
{11

l,m»

l,m=0
which is called the chaotic expansion of Z € L(Fy(N), Fo(N)*).

4 Quantum White Noise Calculus

4.1 Gaussian space

In white noise analysis the Gaussian space (E*, u) plays a central role, where u is the
standard Gaussian measure uniquely specified by

r;uwz=/"ga@“w@, ¢cE.

The famous Wiener-It6-Segal theorem says that there is a unique unitary isomorphism
between L?(E*, u) and the Boson Fock space I'(H) which is uniquely specified by the corre-
spondence between the exponential vectors:

¢ (2,8) S
e(x):ex’ H ¢E=(17€’T,""F)-“))



142

where £ runs over N = F + iE. Recall that the Boson Fock space® is defined by

I(H) = {¢= (fa); fa € H®, |l =D n!|fa |§}.

n=0
From now on we assume an additional condition on the Young function 6:
0
(G) limsup _(a?:'_) < o0.
z300 T

An equivalent condition is mentioned in Proposition A.4.
Lemma 4.1 If a Young function 0 satisfies condition (G), there ezist constant numbers
a> 0 and b > 0 such that
2be ﬂ/ 2
0,. S a(_) .
n
PROOF. By condition (G) there exist constant numbers a > 0 and b > 0 such that
e’ < ae"'z, r>0.

Then, by an elementary calculus we obtain

0, = inf <inf
0 rn r>0 rn

ef(r) aet’ —y (2be) n/2

n

as desired. [

Proposition 4.2 If the Young function 0 satisfies condition (G), then Fo(N) C I'(H), where
the inclusion is continuous and has a dense image.
PROOF. For ¢ = (f,) we have
[o o 00
lgllo=D_n!ll falls =2 _626"n! x 626" || fu . (4.1)
n=0 n=0
where we have by Lemma 4.1

en!

626™n! 5a2(%) 5*n! = a?(2b5)"/n

]
n*v/n’

With the help of the Stirling formula, the last fraction tends to /27 as n — oo. Therefore,
for § < (2b)~! we have

M? = sup§26™n! < oo.
n>0

©) In the definition of norm || ¢ ||, we put the factor n! due to white noise convention.
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Thus (4.1) becomes

Ills < MY 0:%67" | fullo = M1 11304

n=0

which means that Fy(N) C I'(H) and the inclusion is continuous. It is obvious that Fy(N) C
['(H) is a dense subspace. |

In that case we have a nuclear triple:
Fo(N) - F(H) C Fo(N)‘. (4.2)

Moreover, L(Fy(N), F(N)) and L(Fy(N)*, Fy(N)*) are subspaces of L(Fy(N), Fo(N)*). The
bounded operators on I'(H) form also a subspace of L(Fy(N),Fy(N)*). A member of
L(Fy(N), Fo(N)*) is called a white noise operator.

4.2 Contraction of tensor product
Consider a 4-linear map L : (N*)® x (N*)®™ x N® x N®™ — (N*)® ® N®" defined by

L(Rla Kmy fns fm) = <K'm, fm) Kt ® fa.

Since L is continuous, there is a continuous bilinear map L : (N*)®(+m) x x N®r+m)
(N*)® ® N®" such that

L(ki ® Km fn ® fm) = L(Kt, &my frr fm) = (Km, fin) 61 ® fo-
For Kipm € (N*)®¢+™) and f,,m € N®+™) we put
Kirm ®m foim = L(Kipms fatm),

which is called the right contraction of degree m.
Lemma 4.3 For kium € N?,SH'") and foim € N2,

| Kttm ®m fatm |_p < | Kiam |_p | Frtm |p - (4.3)
For kiom € N¥™ and foym € NS (ntm)

| Ktrm ®m frim |y < | Ktem |y | fatm | - (4.4)

PROOF. Let {e;} be a complete orthonormal basis of N,. Recall that {e}} be a complete
orthonormal basis of N_,. Moreover, '

e;=¢€i €, ® Qe

form a complete orthonormal basis of Nf’". Now, consider the Fourier expansions:

* * * *
Ki4m = E <'€l+m, e® e;) e; ® e, fatm = E <€,; R €3, fn+m> e; ® e;.

g

] k.
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Then the right m-contraction is given by

*
Kitvm ®m fntm = Z <'Cl+ma e® ej> <e;- ® e}, fn+m> e; ®e;.

- -

77k
Hence
2

2
| Ki4m ®m frtm I_p = E E : <K'l+m, e ® ej’> <6% ® e;’v fn+m> <e,: Qep €@ eq’)
T i3k

= Z Z <K.H.m, e ® e;> <6;~:- ® e}, fn+m> <e,;, e,;)

T AET

2

Fixing p, we continue computation:

oI (kisms 5@ e;-) (e,‘; ® e}, fn+m> (ex, €q)
Z <<Kz+m, e ® 6;> <ei- ® e, fn+m> € ei>

7 5k
3k

=2
= Z <I€[+m, eﬁ@ e"> <e;'c' ® 6;1, fn+m> €t

T R

q

» *
E <fs¢+m, e ® e;-> (e,; ® €, fn+m> eg
—

2.k

2
* t 3
= E I <K'l+m7 e ® e_-',-‘) <e,; ® e, fn+m> |
—

3.k

< Z Z [{kt4m, €5 ® ej’)|2 Z I(ei' ® e;', farm)]®-
EJ j

2

2

2

IA

Summing up over j, we come to
| Ki4m ®m fot+m l2—p < Z [{Kt+m, €5 ® ej")lz Z I(e;; ® e;-‘v farm)?
pi kg

2
= | Kiym '_plfn+m |:

This completes the proof of (4.3). In a similar way (4.4) is proved. |

4.3 Integral kernel operators

Lemma 4.4 For each k € (N®W™)* there erists an operator = ,,(k) € L(Fy(N), Fy(N)*)
whose symbol is given by

Eim(K) (6,1) = (Eim(K)be, 8) = (K, 1P @ 8™ &M, gneN.  (45)
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PROOF. We write ©(&,n) for the righthand side of (4.5). It is sufficient to show that
© € Go-(N & N) by Theorem 3.5. Since (k, n® ® £®™) is of polynomial growth, it belongs
to Gg- (N @ N). From the nuclear triplet (4.2) we see that the identity operator I on Fy(N)

is a member of L(Fy(N), Fp(N)*), and hence T € Go-(N & N). Note that
I(€,n) = (¢, &) = 7.

Since Go-(N @ N) is closed under pointwise multiplication (Proposition 1.8), we conclude

that © € Gy (N @& N).

It is noteworthy that the above proof is much simpler than the original proof, see e.g.,
[33], where the norm of =, ,,(k)4 is estimated directly. Below we record the norm estimate.

Let ¢ = (f) € Fy(N). Consider a formal power series ® = (g,), where

(n—1+4+m)!
= < . -—_—
=0, 0<n<l gn =)

Let us calculate the norm:

[e ]

I@12,5 = (n16n)%6" | gn |2,

n=0

= Z(n!on)z‘sn (M) | K ®m fa—t4m |2_p

m~ (n=10)"

00 2
= 3+ 0?6 (LR ) @ fuan

n=0

Since | & ®m fatm|_p < el | fa4m |, by Lemma 4.3, (4.6) becomes

> n n+m)\?
112 s € (@t Dt (L) 1 |

n=0
00 n+m)! 2
= 6™ |k Iip Z((n + 1) 410n1m)?8*" (( n! ) )

n=0
- - 2
X ‘91:-42—m‘s (ntm) | f n+m Ip )

Suppose that

I
M= Ml,m((s) = sup (n + l)!0n+10n+m5" (n_+'21l < oo
n20 n!
Then (4.7) becomes
3 2
@12, 5 < 8™ k2, Mim(@) 3 022m6™ ™™ | frpm 2,
n=0

that is,
@15 < 6™/ k|, Mim(0) ||l 95

K Qm fn-l+rm n >l

(4.6)

(4.7)
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This imples that El,m(""d,m) € L:(Fa(N), Fa(N)‘)
We shall prove that M;,,(d) < oo for small § > 0. Take constant numbers a > 0 and
b > 0 as in Lemma 4.1. Then,

n+l S G ntl ’ n+m = n+m )

and

(n+m)!
n!

< a? (2be)(l+m)/2(2be6)n

(1 + )10, 4100 110"

(n+ ) m+m) 1
(n + 1)(+D/2 (n 4 m)(n+m)/2 n!

(4.8)

Using the Stirling formula, we see that the right hand side of (4.8) is equivalent?) to

(n + 1)!(n +m)! }‘/2

\/i;a2(2b)(l+m)/2(2b6)n{(n + l)(n + m)}l/4{ o

which goes to 0 as n — oo whenever 0 < § < (2b)~'. Consequently, M;,,(6) < oo for all
0<d<(20)71.

4.4 Fock expansion

Theorem 4.5 For each operator = € L(Fy(N), Fy(N)*) there erist an integral kernel oper-
ators Eym(kim) with kim € (N®H™)* such that

oo
E= Z El,m("l,m)’
l

,m=0
which converges in L(Fg(N), Fo(N)*).
PROOF. Set ¥(£,1) = Z(&,m)e . Since I(£,7) = e belongs to Gg- (N @ N), so
does e~ Hence ¥ € Gy-(N & N) and admits the Taylor expansion:

(s <]

VEm) = Y (um, 1% @ EO™).

i,m=0

With these coefficients we define integral kernel operators Eim(Kim).- These are what we
looked for. The rest of the proof is just a routine. |

f) Two positive sequences {a,} and {b,} are called equivalent if limp_,o0 a, Jbp = 1.
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5 Applications
5.1 D. M. Chung’s new products of white noise functions

Let B : Fy(N) x Fy(N) — F4(N) be a bilinear map assume that for any pair {,n € N
there exists ©(£,7n) € C such that

B(¢¢, $n) = O, Mbesn,  EMEN,
The following result® is due to Chung [3].
Theorem 5.1 (1) B is continuous if and only if © € Gg.(N & N).
(2) B 1is associative if and only if
O MO +mn¢) =06En+)em(), &mceN. (5.1)
We shall give examples of such ©(§, 7).

Lemma 5.2 For a polynomial H(u) define

9(z,y) = /oy(H(x +u) — H(u))du. - (5.2)

Then g(z,y) is a polynomial satisfying
9(z,y) + 9(z +y,2) = g(z,y + 2) + 9(y, 2)- (5.3)

PROOF. It is sufficient to prove the assertion for H(u) = u™. In that case we have

— n+l _ . n+l _ ,n+l .
9(@,y) = —5 1z +y) z y"*'}
Then, by a direct computaion we see that both sides of (5.3) become

—{x+y+2z n+l _ $n+1 _ gt _ zn+1 .
—qle+y+2) y }

This completes the proof. |

Remark 5.3 The above g(z,y) is symmetric. In fact, suppose x < y. Then
] z+y y
o(z,9) = / (H(z + 1) — H(u))du = / H (u)du — / H(u)du
0 T 0
T+yY T T T
- / H(u)du — / H(u)du = / Hy + w)du — / H(u)du
y 0 0 0

= ‘/OI(H(y + u) — H(u)) du = g(y, 7).

Similar argumant is valid also for z > y.

&) In fact, Chung presented the result within the standard framework of white noise calculus. Adaptation
to our framework is straightforward.
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For a polynomial g(z,y) = Ej’k cjxz’y* we shall define §(£,n) for £, € N. We first
decompose g into a sum of homogeneous polynomials:

9=,9) =Y gm(z,¥),  gm(zmy)= D curiyt.

m=0 Jt+k=m

We then define

dm&m) = ) ;x>0
j+k=m

which is a member of N&m, Finally, we set §(&,7) = > Gm(€,m). Then for a formal power
series ® = (F,,) on N, i.e., F, € (N®™)*, m =0,1,2,..., we have
(®,8) = (Fm, im)-
m=0

Proposition 5.4 Let ® = (F,) be a formal power series on N and g be a polynomial given
as in (5.2). Then,

e(¢,n) = e(‘b,ﬁ(em)), &,m €N, (5.4)

satisfies (5.1).

Chung and Chung [4] introduced the y-product of white noise functions, which is uniquely
determined by

¢€ 0‘7 ¢7l = e7(£:ﬂ)¢€+m 67 77 € N1 (5.5)

where v € C. The product o, is reduced to the pointwise multiplication for v = 1 and the
Wick product for 4 = 0. In this case, the function ©(&,7) in (5.4) is given as

O(¢,n) = €76 = lrmedn)

hence ® = y7 and g(z,y) = zy, where 7 € (N ® N)* is the trace. The y-product is related
with the so-called G, g-transform (generalized Gauss transform) and plays an interesting
role in Cauchy problems for white noise functions.

Remark 5.5 The converse to Lemma 5.2 is valid in the following sense. Let g: RxR = R

be a C'-function satisfying (5.3). Then there exist a continuous function H : R - R and a
constact ¢ € R such that

]
9(z,y)=c+ / (H(z + u) — H(u))du.
0
In fact, we first see from (5.3) that

9(z,0) = g(0,y) = ¢
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is a constant for all z,y € R. Then, we have
9(z,y +2) — g(z,y) = g(z +y,2) — 9(y, 2) |
= (g(a:+y,z) ——g(.’l:+y,0)) - (g(yaz) —g(y,O)) (56)
Put

h(z,y) = ggu, y).

Then in (5.6), dividing by z and letting 2 tend to zero, we come to
h(z,y) = h(z +y,0) — h(y,0).
Define H(u) = h(u,0). Then h(z,y) = H(z +y) — H(y) and

g(z,y) = g(z,0) + /Oy h(x,ﬂ)du =c+ /oy(H(:c + u) — H(u))du.

5.2 Wick product of white noise operators

By Theorem 3.5 we easily obtain the following

Lemma 5.6 For two white noise operators Z1,Z2 € L(Fp(N), Fo(N)*) there ezists a unique
operator = € L(Fy(N), Fo(N)*) such that '

§(£7 77) = é1(&1 n)§2(€a 7))3_(5’"), 61 n € N. v (57)
The operator = defined in (5.7) is called the Wick product or normal-ordered product of

— —

=, and =5, and is denoted by E = E; 0 Z;. We note some simple properties:

JIoE=S0l=E5, (5,05)0Z3=2E;0(E205Es),

(El 052)* =5§<>EI, 51052‘-:52051.

Thus, equipped with the Wick product, L(Fy(N), Fg(N)*) becomes a commutative x-algebra.

5.3 Normal-ordered white noise differential equations

A continuous map t — L, € L(Fp(N), Fo(N)*) defined on a time interval is called a
quantum stochastic process in the sense of white noise theory. Given a quantum stochastic
process {L;} defined on an interval containing 0, a linear equation for unknown quantum
stochastic process {Z;} is formulated as follows:

p—
-

= = LS, E(0) = 1. (5.8)
The above equation is generally called a normal-ordered white noise differential equation.
Since the equation (5.8) is linear and L(Fy(N), Fp(N)*) is a commutative algebra with the
Wick product, the formal solution to (5.8) is obtained by the Wick exponential:

=i = wexp (/otL,ds)=i$(/othds)m. - (5.9)

n=0



150

A serious question is to show convergence of the above infinite series with respect to a certain
topology and has been answered to some extent, see e.g., [9, 10, 34].

Now nonlinear extension is of great interest. We end this paper with a very simple
example.

Lemma 5.7 Let £, be the set of Wick invertible elements. Then L, is an open subset of
L(Fy(N), Fo(N)*).

PROOF. We first show that
L, = {E € L(Fy(N), Fy(N)*); £ has no zero}. (5.10)
We note a straightforward equivalence:
108 =1 <= E(£n)Eu(¢, n) = 6.

If £, has no zero, e/ /Z1(€,7) is entire. By using the division theorem due to Gannoun—
Hachaichi-Krée-Ouerdiane [15], we see that

e(fy n)

1(5’ 7))

belongs to Gg-(IV @ N). Hence there exists Z; € L(Fy(N), Fo(N)*) whose symbol is (5.11).
This =, is the Wick inverse of Z; and hence =, € £,. The converse is readily clear and
(5.10) is shown. Since £, C Go-(N @ N) is open, so is £, in L(Fy(N), Fy(N)*). |

Let {L:} be a quantum stochastic process in L(Fp(N), Fg(N)*). Then,
=
dt

has a unique solution in L(Fp(N), Fo(N)*). In fact,

t o(-1)
=, = (53“" - / L, ds) ,
0

which is defined in a neighborhood of ¢. Note that =; € £,.

(5.11)

(n

=L;0Z0F, E|t=o=.:‘.o€£1,

Appendix: Young Function

For the sake of the readers’ convenience we assemble some basic properties of a Young
function. For more details see e.g., Krasnosel’skii-Rutickii [28].
A.1 Definition and integral representation

A function 6 : [0,00) — [0, 00) is called a Young function if the following five conditions
are satisfied:

(i) continuous;
(ii) convex, i.e., 8(tz; + (1 — t)z2) < t(z1) + (1 — t)8(x3) for 0 < t < 1, 7, > 0, 2, > 0;



(iii) increasing, i.e., 8(z1) < 0(x2) for 0 < 21 < 25
(iv) 6(0) = 0;
0(z)

(v) lim == =00
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Theorem A.1 A function 6 : [0,00) = [0,00) is a Young function if and only if it admits

an erpression

0(z) = /Oxp(s) ds, z >0,

where p : [0,00) — [0,00) satisfies
(i) right continuous;
(i) ncreasing;

(iii) p(0) > 0;

(iv) 811’12’ p(s) = oo.

In that case p is uniquely determined.

The proof is a slight modification of the argument in [28].

A.2 Polar function

For a Young function @ the polar function is defined by

6*(z) = sup{t > 0; zt — 6(t)}.

ATV
11110

(A1)

"/

P
i
X

Tt is shown that 6* is again a Young function and (6*)* = 8 holds. In fact, if 6 is given as in

(A.1), then

6*(z) = /Ow q(s) ds, z 20,

where

q(s) =sup{t > 0; p(t) < s}, s=>p(0);  q(s)
This g(s) is called a generalized inverse function of p(s).

Theorem A.2 It holds that

st < 6%(s) +6(t), s,t > 0.

The equality holds only when t = g(s).

0 < s < p(0).

(A.2)

The proof is obvious from graphical consideration. (A.2) is referred to as the Young

inequality.
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Theorem A.3 Let 0,,0; be two Young functions. If there exists ug > 0 such that 6,(u) <
02(u) for all u > ug, there exists vg > 0 such that 0} (v) > 03(v) for all v > v.

- /0 “m(t)dt,  83v) = fo " ga(s)ds

be the integral representations of 6, and of its polar function 63, respectively. We set vy =
p2(uo) and let v > vy. Then, go(v) > up and

PROOF. Let

22(v)v = 02(g2(v)) + 63(v). | (A.3)
Moreover, by assumption we have 6,(g2(v)) < 62(g2(v)). Hence (A.3) becomes

2(v)v 2 61(g2(v)) + 65(v). (A.4)
On the cher hand, by Young’s inequality we have

22(v)v < 61(gz2(v)) + 01 (v). (A.5)
The assertion follows immediately by combining (A.4) and (A.5). ]

Proposition A.4 Let 6 be a Young function. Then

lim sup —~ ( ) <00 <= liminfo (,f)
00 300 T

> 0.

PROOF. Assume that liminf, ,., 8*(z)/z> > 0. Then there exist zo > 0 and € > 0
such that ez? < 6*(z) for £ > zp. Note that 6;(z) = ex? is a Young function and its polar
function is given by 6;(z) = z2/4e. Then, by Theorem A.3 there exists yo > 0 such that
y2/4e > 6(y) for y > yo. Hence

< 00.

lim sup (g) 4

y—oo Y

The converse is proved in a similar manner. ]

A.3 Some properties of Young function

Let 8 be a Young function.
Lemma A.5 (1) af(z) > 0(az) for0<a<1andz > 0.
(2) BO(z) < 0(Bz) for B> 1 and z > 0.
PROOF. (1) Since @ is convex,
6(az + (1 — a)0) < afd(z) + (1 — a)8(0) = af(z).

Hence af(z) > 0(ax). (2) is immediate from (1) by variable change. [



Lemma A.6 0(-;—) + 0(%) <0(s+t) for s,t > 0.

PrOOF. For any s,t > 0 we have s < s+t and 6(s) < 0(s +t). Hence

0(s) + 6(t) < 20(s +1t) < 0(2s + 2t),

where Lemma 5.10 is taken into account.

Lemma A.7 For 0 < z <y we have

@) _ o)
T ~ y

ProoF. Consider the integral representation:

8(z) = /0 " p(u)du.

Since p(u) is increasing, for 0 < u < z we have p(u) < p(z). Hence

[ pwdu < p(@)

and for z < v we have

9) < pia) < p00)

Then, integrating by v over an interval [z, y] we have

0(z)

w-2"2 < [ ’ p(v)dv = f " p(w)dv — / " p(w)dv = 6(y) - 6(z),

z z

from which (A.6) follows.

A.4 Properties of {6,}

For a Young function @ we define a positive sequence {6} by

o(r)
9, = inf <

inf —-, =012

Lemma A.8 limsup8y/™ = 0.
n—oo

PROOF. Since by definition 8, < e /r" for r > 0, we have

n—oo n—>00 n—o00

)\ 1/m )/
lim sup /" < lim sup( — ) = limsup — =

Since r > 0 is arbitrary, we have the desired assertion.

[ | =
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(A.6)
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e\"n
Lemma A.9 0,0, = (1—1) forn > 1.

PRroOOF. By the Young inequality we have
et - £9(8) 0" (2)

shn — gn tn

s,t> 0.

The minimum of the left hand side, where (s,t) runs over the region {s > 0,t > 0}, is easily
obtained and is (e/n)". Hence

n 0(s) .0°(t)
(5) < inf S5 =¢,0. (A7)

= 80,t>0 g" tn

On the other hand, by definition,

8(s) 0°(t)  oB(s)+0°(2)
0.0 < e e e
st tr (st)»
Consider a pair s, t satisfying 8(s) + 8*(t) = st. This occurs only when s = ¢(t), where ¢(t)
is an intgrand in the integral expression of 6*. Then,

eq(t)t

0.0, < ———, t>0.
" (g
Since ¢(t)t — oo as t — 0o, we see that
8,07 < inf = = (f) . (A.8)
r>0 n
The assertion follows from (A.7) and (A.8). ‘ |

A.5 Generating function

Lemma A.10 The power series

@=3 o
Y%(T) =) =

£ (Bun!)?
has an infinite radius of convergence.

PROOF. In view of Lemma A.9 we have

()= {(2)" )" () o

Using the Stirling formula: nle™ ~ +/27nn", we see that

1 l/ﬂ . 1 llﬂ 9 ) 9
lim sup ((0,,11_')2) = limsup (m) o, /™ — lim sup o, /n,

n—00 n—o00 n—00

The assertion follows by Lemma A.8. [
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Lemma A.11 (1) 6,6, < 2™™0,,4p.
(2) Opyn < 2™170,,.0,.

PROOF. (1) By definition

ea(r) eo("')
Om < m O, < o r>0
Hence
20(r) o(2r) o(2r)
eman < ¢ < ¢ = 2mtn e y
rm+n pmtn (2T)m+"

from which the assertion follows.
(2) Applying the above result (1) to the polar function, we come to
6:.0; < 2mte;

m+n’

which is by Lemma A.9 equivalent to

em+n ) ) + em+n 1
00 <2mMt e .
nomm ™ = (m + n)mtn “mEn
That is,
mmn"
Opin < 2™ —— 9,0, < 2™*"0,.0,.
+n = (m+n)m+n = mUn
This completes the proof. |
Proposition A.12 v, (%)'yo(%) < v(z +y) < v9(4z)ve(4y) for z,y > 0.
PRrROOF. This is immediate from Lemma A.11 and (Z) < on- 1, |
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