Unitary Representations for Twisted Product of Matrix Quantum Groups＊

Janusz Wysoczański
Institute of Mathematics，Wroclaw University
Pl．Grunwaldzki 2／4，50－384 Wroclaw，Poland
E－mail：jwys＠math．uni．wroc．pl

1 Introduction

This paper is a continuation of［JW］，where we constructed a family of compact matrix quantum groups in the sense of Woronowicz［SLW2］．The construction followed the scheme provided by Woronowicz in［SLW3］，in which the basic role is played by a properly chosen function on permutations．In our case the function is related to counting the number of cycles in permutations．In［JW］we described the C^{*}－algebraic structure of the constructed objects．Here we shall concentrate on the＂quantum group＂structure（Hopf algebra structure）and unitary representations of the quantum groups．

As defined by Woronowicz in［SLW2］，a compact matrix quantum group (A, u) consists of a C^{*}－algebra A and an N by N matrix $u=\left(u_{j k}\right)_{j, k=1}^{N}$ ，with the elements $u_{j k} \in A$ generating a dense $*$－subalgebra \mathcal{A} of A ，and with the following additional structure：

1．a C^{*}－homomorphism $\Phi: A \rightarrow A \otimes A$ ，called the co－multiplication，such that

$$
\begin{equation*}
\Phi\left(u_{j k}\right)=\sum_{r=0}^{N} u_{j r} \otimes u_{r k} \tag{1.1}
\end{equation*}
$$

2．a linear anti－multiplicative mapping $\kappa: \mathcal{A} \rightarrow \mathcal{A}$ ，called the co－inverse，such that $\kappa\left(\kappa\left(a^{*}\right)^{*}\right)=a$ for all elements $a \in \mathcal{A}$ ，and

$$
\begin{align*}
& \sum_{r=1}^{N} \kappa\left(u_{j r}\right) u_{r k}=\delta_{j k} I \tag{1.2}\\
& \sum_{r=1}^{N} u_{j r} \kappa\left(u_{r k}\right)=\delta_{j k} I \tag{1.3}
\end{align*}
$$

The notion of unitary representation of a quantum group was introduced by Woronow－ icz in［SLW2］．The definition says that a unitary n－dimensional（co－）representation of a quantum group (A, u) is a unitary element $v=\left(v_{j k}\right) \in M_{n}(A) \simeq M_{n}(\mathbb{C}) \otimes A$ ，with $v_{j k} \in A$ ， which satisfies $\Phi\left(v_{j k}\right)=\sum_{r=1}^{n} v_{j r} \otimes v_{r k}$ ．

Another crucial notion for compact quantum groups is that of a Haar measure．A Haar measure on a compact quantum group (A, u) is a state $h \in A^{\prime}$（a linear positive functional normalized by $h(1)=1$ ）such that for every element $a \in A$ one has（id $\otimes h) \Phi(a)=$ $(h \otimes i d) \Phi(a)=h(a) \cdot 1$ ．Wor4onowicz proved in［SLW2］that on every compact quantum group there is the unique Haar measure．

[^0]
2 Compact quantum groups associated with cycles in permutations for $\mathrm{N}=3$ and its structure

In this section we describe the structure of our quantum groups as a twisted product of its subgroups.

Let us recall that the quantum group (A, u) we consider is generated by three elements $a,, c, v$, which satisfy the following relations:
(1) $a v=v a$
(2) $c v=v c$
(3) $a c+t c a=0$
(4) $a c^{*}+t c^{*} a=0$
(5) $c c^{*}=c^{*} c$
(6) $v v^{*}=v^{*} v=I$
(7) $a a^{*}+t^{2} c c^{*}=I$
(8) $a^{*} a+c^{*} c=I$

The co-multiplication Φ in the quantum group (A, u) is given on generators by

$$
\begin{equation*}
\Phi(a)=a \otimes a+t c^{*} v^{*} \otimes c, \quad \Phi(c)=c \otimes a+a^{*} v^{*} \otimes c, \quad \Phi(v)=v \otimes v \tag{2.1}
\end{equation*}
$$

The co-inverse κ is defined by:

$$
\begin{equation*}
\kappa(a)=a^{*} v^{*}, \kappa\left(a^{*} v^{*}\right)=a, \kappa(c)=t c, \kappa\left(c^{*} v^{*}\right)=\frac{1}{t} c^{*} v^{*}, \kappa(v)=v \tag{2.2}
\end{equation*}
$$

We are going to show that this group is a twisted product of its two subgroups. Clearly, first we have to explain these notions.

The definition of a quantum subgroup of a quantum group is the following (see [P-W]).
Definition 2.1 Let (A, u, Φ, e, κ) and $\left(A_{1}, u_{1}, \Phi_{1}, e_{1}, \kappa_{1}\right)$ be given quantum groups, with the explicite notation of their underlying C^{*}-algebras, fundamental representations, comultiplications, co-units and co-inverses. If there exists a an embedding $p_{1}: A_{1} \rightarrow A$ such that:

$$
\begin{equation*}
\Phi_{1} p_{1}=p_{1} \Phi, \quad e_{1} p_{1}=p_{1} e, \quad \kappa_{1} p_{1}=p_{1} \kappa \tag{2.3}
\end{equation*}
$$

then we call $\left(A_{1}, u_{1}, \Phi_{1}, e_{1}, \kappa_{1}\right)$ a quantum subgroup of the quantum group (A, u, Φ, e, κ). The above equalities mean that the restrictions of co-multiplication, co-inverse and co-unit from (A, u, Φ, e, κ) agree with those of $\left(A_{1}, u_{1}, \Phi_{1}, e_{1}, \kappa_{1}\right)$.

Now, following the work of Podleś and Woronowicz on the quantum Lorentz group [P-W] we shall describe the meaning of twisted product of two quantum groups.
Definition 2.2 Let (A, u, Φ, e, κ) be a given quantum group and let $\left(A_{1}, u_{1}, \Phi_{1}, e_{1}, \kappa_{1}\right)$ and $\left(A_{2}, u_{2}, \Phi_{2}, e_{2}, \kappa_{2}\right)$ be its quantum subgroups with the natural embeddings $p_{j}: A_{j} \rightarrow$ $A_{1} \otimes A_{2}, j=1,2$, given by $p_{1}: A_{1} \ni a_{1} \mapsto a_{1} \otimes 1_{A_{2}} \in A_{1} \otimes A_{2}, p_{2}: A_{2} \ni a_{1} \mapsto 1_{A_{1}} \otimes a_{2} \in$ $A_{1} \otimes A_{2}$; we assume that $A=A_{1} \otimes A_{2}$ is the spatial tensor product of the two C^{*}-algebras. If there exists a^{*}-algebra isomorphism $\sigma: A_{1} \otimes A_{2} \rightarrow A_{2} \otimes A_{1}$, such that:

$$
\begin{equation*}
\Phi=\left(i d_{A_{1}} \otimes \sigma \otimes i d_{A_{2}}\right)\left(\Phi_{1} \otimes \Phi_{2}\right), \quad \kappa=s\left(\kappa_{1} \otimes \kappa_{2}\right) \sigma \tag{2.4}
\end{equation*}
$$

where $s: A_{2} \otimes A_{1} \rightarrow A_{1} \otimes A_{2}$ is the flip automorphism $s\left(a_{2} \otimes a_{1}\right)=a_{1} \otimes a_{2}$ and $i d_{A_{j}}$ is the identity map on $A_{j}, j=1,2$, then we say that (A, u) is the twisted product of its subgroups $\left(A_{1}, u_{1}\right)$ and $\left(A_{2}, u_{2}\right)$ with the twist σ; this will be denoted by

$$
\begin{equation*}
A=A_{1} \otimes_{\sigma} A_{2} \tag{2.5}
\end{equation*}
$$

The relations which defined our quantum group can be split in such a way that one can recover two special quantum subgroups inside it.
Example: Let ($A_{1}, u_{1}, \Phi_{1}, e_{1}, \kappa_{1}$) be the quantum group defined in the following way:
$A_{1}=C^{*}(a, c)$ is the C^{*}-algebra generated by the two elements a, c, which satisfy the relations: $a c+t c a=0=a c^{*}+t c^{*} a, c c^{*}=c^{*} c, a a^{*}+t^{2} c c^{*}=I=a^{*} a+c^{*} c=I, u_{1}=$ $\left(\begin{array}{ll}a & t c^{*} \\ c & a^{*},\end{array}\right)$ is the fundamental representation, $\Phi_{1}(a)=a \otimes a+t c^{*} \otimes c, \Phi_{1}(c)=c \otimes a+a^{*} \otimes c$ is the co-multiplication, $\kappa_{1}(a)=a^{*}, \kappa_{1}(c)=t c$ is the co-inverse and $e_{1}(a)=e_{1}\left(a^{*}\right)=1$, $e_{1}(c)=e_{1}\left(c^{*}\right)=0$ is the co-unit.

Then one can easily recognize that $\left(A_{1}, u_{1}\right)$ is the famous quantum $S U_{q}(2)$ group defined by Woronowicz in [SLW1] for $q=-t$.

Example: Let $\left(A_{2}, u_{2}, \Phi_{2}, \kappa_{2}, e_{2}\right)$ be defined in the following way:
$A_{2}=C^{*}(v)$ is the commutative C^{*}-algebra generated by a unitary $v, u_{2}=\left(\begin{array}{cc}1 & 0 \\ 0 & v^{*}\end{array}\right)$ is the fundamental representation, $\Phi_{2}(v)=v \otimes v$, is the co-multiplication, $\kappa_{2}(v)=v^{*}$ is the co-inverse and $e_{2}(v)=1$ is the co-unit.

Then this definition provides the quantum group $U(1)$.
A simple computation shows that this two quantum groups are quantum subgroups of our quantum group (A, u) with the natural embeddings. We are going to show that in fact (A, u) is the twisted product of these two subgroups, for a proper choice of the twist σ. For this purpose we need the following:

Definition 2.3 Let $\sigma: A_{1} \otimes A_{2} \rightarrow A_{2} \times A_{1}$ be a^{*}-algebra homomorphism defined by putting:

$$
\begin{equation*}
\sigma\left(a \otimes v^{k}\right)=v^{k} \otimes a, \quad \sigma\left(c \otimes v^{k}\right)=v^{k-1} \otimes c \tag{2.6}
\end{equation*}
$$

with $v^{-1}=v^{*}$.
Then we have
Theorem 2.4 The quantum group $A=A_{1} \otimes_{\sigma} A_{2}$ is the twisted product of the two quantum subgroups with the twist σ.

Proof: We should check that the co-multiplications and co-inverses satisfy the definition 2.2. Keeping in mind the identification $a v^{k} \leftrightarrow a \otimes v^{k}$ and $c v^{k} \leftrightarrow c \otimes v^{k}$, given by the natural embeddings, we obtain for the co-multiplications: $s\left(\kappa_{2} \otimes \kappa_{1}\right) \sigma\left(a \otimes v^{k}\right)=s\left(\kappa_{2}\left(v^{k}\right) \otimes \kappa_{1}(a)\right)=$ $a^{*} \otimes v^{* k}$ and $s\left(\kappa_{2} \otimes \kappa_{1}\right) \sigma\left(c \otimes v^{k}\right)=s\left(\kappa_{2}\left(v^{k-1}\right) \otimes \kappa_{1}(c)\right)=t c \otimes v^{*(k-1)}$ which agrees with the corresponding action of κ. Since a co-inverse is linear and anti-multiplicative, the above formulas can be extended to the ${ }^{*}$-subalgebra of A generated by a, c, v.

For the co-multiplications we have:
$\left(i d_{A_{1}} \otimes \sigma \otimes i d_{A_{2}}\right)\left(\Phi_{1} \otimes \Phi_{2}\right)\left(a \otimes v^{k}\right)=\left(i d_{A_{1}} \otimes \sigma \otimes i d_{A_{2}}\right)\left(a \otimes a \otimes v^{k} \otimes v^{k}+t c^{*} \otimes c \otimes v^{k} \otimes v^{k}\right)=$ $a \otimes v^{k} \otimes a \otimes v^{k}+t c^{*} \otimes v^{k-1} \otimes c \otimes v^{k}$
which agrees with
$\Phi\left(a v^{k}\right)=\left(a \otimes a+t c^{*} v^{*} \otimes c\right)\left(v^{k} \otimes v^{k}\right)=a v^{k} \otimes a v^{k}+t c^{*} v^{k-1} \otimes c v^{k}$
and
$\left(i d_{A_{1}} \otimes \sigma \otimes i d_{A_{2}}\right)\left(\Phi_{1} \otimes \Phi_{2}\right)\left(c \otimes v^{k}\right)=\left(i d_{A_{1}} \otimes \sigma \otimes i d_{A_{2}}\right)\left(c \otimes a \otimes v^{k} \otimes v^{k}+a^{*} \otimes c \otimes v^{k} \otimes v^{k}\right)=$ $c \otimes v^{k} \otimes a \otimes v^{k}+a^{*} \otimes v^{k-1} \otimes c \otimes v^{k}$
which agrees with
$\Phi\left(c v^{k}\right)=\left(c \otimes a+a^{*} v^{*} \otimes c\right)\left(v^{k} \otimes v^{k}\right)=c v^{k} \otimes a v^{k}+a^{*} v^{k-1} \otimes c v^{k}$.
Since both $\left(i d_{A_{1}} \otimes \sigma \otimes i d_{A_{2}}\right)\left(\Phi_{1} \otimes \Phi_{2}\right)$ and Φ are C^{*}-algebra homomorphisms, and agree on generators, they satisfy the equation 2.7 .

3 Unitary representations of the quantum group

Our description of the unitary representations of the quantum group (A, u) we base on the work by Podleś and Woronowicz [$\mathrm{P}-\mathrm{W}$], where a general theorem shows how to construct representations of a quantum group which is twisted product of its quantum subgroups. First we recall this

Theorem 3. 1 Let the quantum group $A=A_{1} \otimes_{\sigma} A_{2}$ be the twisted product of its quantum subgroups A_{1} and A_{2}, with the natural embeddings denoted by p_{1} and p_{2}. Let $v \in B(K) \otimes A$ be matrix with entries from A for a finite dimensional complex vector space K. Then the following holds:

1. If w is a (unitary) representation of A on K, then $w^{1}:=\left(i d \otimes p_{1}\right) w$ is a (unitary) representation of A_{1} on K and $w^{2}:=\left(i d \otimes p_{2}\right) w$ is a (unitary) representation of A_{2} on K, and the following conditions hold:

$$
\begin{gather*}
w=w^{1} \oplus w^{2} \\
w^{2} \oplus w^{1}=(i d \otimes \sigma)\left(w^{1} \oplus w^{2}\right) \tag{3.1}
\end{gather*}
$$

where

$$
w^{1}(\oplus) w^{2}=\sum_{j, k} m_{j}^{1} m_{k}^{2} \otimes w_{j}^{1} \otimes w_{k}^{2}
$$

for $w^{i}=\sum_{j} m_{j}^{i} \otimes w_{j}^{i} \in B(K) \otimes A_{i}$
2. If w^{1} and w^{2} are (unitary) representations of A_{1} and A_{2} respectively, which are of the same dimension and satisfy the compatibility condition 3.10, then $w=w^{1} \oplus w^{2}$ is a (unitary) representation of A on K.

We shall apply this result to our situation to describe the unitary representations of the quantum group (A, u). We will use the theory of irreducible unitary representations of the quantum group $S U_{q}(2)$, which was described by Woronowicz. The representations $\left\{u^{s}\right\}_{s \in \frac{1}{2} N}$ are indexed by the set $\frac{1}{2} N=\left\{0, \frac{1}{2}, 1, \frac{3}{2}, 2, \frac{5}{2}, 3, \ldots\right\}$, and each u^{s} act on a $(2 s+1)$
-dimensional Hilbert space. Explicit formulas for matrix elements of these representations are given in [Pu-W], B.19, p. 1616.

Now let us assume that $w^{1}=u^{s}$, for some $s \in \frac{1}{2} N$, and w^{2} is a unitary representation of A_{2} of the dimension $2 s+1$, and that they satisfy the compatibility condition 3.10. This condition implies that, for some positive integer $r, w^{2}=\operatorname{diag}\left\{v^{r}, v^{r-1}, \ldots, v^{r-2 s}\right\}$ has a diagonal matrix with the decreasing (or, equivalently, increasing) integral powers of the unitary v on the main diagonal. It follows that then the representation $w=w^{1} \oplus w^{2}$ is unitary and irreducible representation of A. This can be seen by using the Haar measure $h=h_{1} \otimes h_{2}$ on A, which is the tensor product of the Haar measure on $S U_{q}(2), q=-t$, and the Lebesgue measure on the unit circle, which is the Haar measure on A_{2}. Let us recall that the non-trivial action of h_{1} is given by $h_{1}\left((c c *)^{m}\right)=\frac{1-t^{2}}{1-t^{2(m+1)}}$. Then irreducibility of w is equivalent to $h\left(\chi_{w}^{*} \chi_{w}\right)=1$, where $\chi_{w}=\sum_{j} w_{j j}$ is the character of the representation w. It follows from the form of w^{2} and from the formulas (B.19) of $[\mathrm{Pu}-\mathrm{W}]$ that the value $h\left(\chi_{w}^{*} \chi_{w}\right)$ is the same as $h_{1}\left(\chi_{w^{1}}^{*} \chi_{w^{1}}\right)$, which is 1 , by the irreducibility of w^{1}.

We shall finish our considerations with the following observation regarding the structure of the irreducible representations of (A, u). There is a sequence $\left\{v^{r}\right\}_{r \in Z}$ - integral powers of v - of irreducible one-dimensional representations of (A, u). There representation $w=\left(\begin{array}{cc}a & t c^{*} v^{*} \\ c & a^{*} v^{*}\end{array}\right)=u^{\frac{1}{2}} \oplus\left(\begin{array}{cc}1 & 0 \\ 0 & v^{*}\end{array}\right)$ is the fundamental representation of (A, u), so we can write $(A, u)=(A, w)$. Its conjugate is the representation $\bar{w}=\left(\begin{array}{cc}a^{*} & t c v \\ c^{*} & a v\end{array}\right)=u^{\frac{1}{2}} \oplus\left(\begin{array}{cc}1 & 0 \\ 0 & v\end{array}\right)$. These two-dimensional representations are not equivalent since they have different characters: $\chi_{w}=a+a^{*} v^{*} \neq a^{*}+a v=\chi_{\bar{w}}$. The following is the decomposition of their tensor products into irreducible sub-representations:

$$
\begin{align*}
& w \oplus(\mathbb{C})=v^{*} \oplus\left(u^{1} \oplus\left(\begin{array}{ccc}
1 & 0 & 0 \\
0 & v^{*} & 0 \\
0 & 0 & v^{* 2}
\end{array}\right)\right) \tag{3.2}\\
& w \oplus\left(\bar{w}=1 \oplus\left(u^{1} \oplus\left(\begin{array}{ccc}
v & 0 & 0 \\
0 & 1 & 0 \\
0 & 0 & v^{*}
\end{array}\right)\right)\right. \tag{3.3}\\
& \bar{w} \oplus\left(\bar{w}=v \oplus\left(u^{1} \oplus\left(\begin{array}{ccc}
v^{2} & 0 & 0 \\
0 & v & 0 \\
0 & 0 & 1
\end{array}\right)\right)\right. \tag{3.4}
\end{align*}
$$

References

[P-W] P. Podleś, S.L. Woronowicz Quantum deformation of Lorentz group, Commun. Math. Phys. 130 (1990), 381-431.
[Pu-W] W. Pusz, S. L. Woronowicz, Representations of quantum Lorentz group on Gelfand spaces, Rev. Math. Phys. vol. 12, No. 12 (2000), 1551-1625.
[WPu] W. PuSz, Irreducible unitary representations of quantum Lorentz group, Commun. Math. Phys. 152 (1993), 591 - 626.
[SLW1] S.L. Woronowicz, Twisted SU(2) group. An example of non-commutative differential calculus, Publ. RIMS, Kyoto Univ. 23 (1987), 117-181.
[SLW2] S.L. Woronowicz, Compact Matrix Pseudogroups, Commun. Math. Phys. 111 (1987), 613-665
[SLW3] S.L. Woronowicz, Tannaka-Krein duality for compact matrix pseudogroups. Twisted $S U(N)$ groups, Invent. Math. (1988), 35-76.
[JW] J. WYSOCZAŃSKI, A construction of compact matrix quantum groups and description of the related C^{*}-algebras, in "Infinite Dimensional Analysis and Quantum Probability Theory", (ed. Nobuaki Obata), RIMS Kokyuroku 1227 (2001), 209217.

[^0]: ＊Research partially supported by KBN grant 2P03A05415

