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1Introduction
This paper is acontinuation of [JW], where we constructed afamily of compact matrix

quantum groups in the sense ofWoronowicz [SLW2]. The construction followed the scheme
provided by Woronowicz in [SLW3], in which the basic role is played by aproperly chosen
function on permutations. In our case the function is related to counting the number of
cycles in permutations. In [JW] we described the$.\mathrm{C}^{*}$-algebraic structure of the constructed
objects. Here we shall concentrate on the “quantum group” structure (Hopf algebra
structure) and unitary representations of the quantum groups.

As defined by Woronowicz in [SLW2], acompact matrix quantum group $(A, u)$ consists
of aC’-algebra $A$ and an $N$ by $N$ matrix $u=(u_{jk})_{j,k=1}^{N}$ , with the elements $Ujk\in A$

generating a $\mathrm{d}\mathrm{e}\mathrm{n}\mathrm{s}\mathrm{e}*$-subalgebraA of $A$ , and with the following additional structure:
1. a $C^{*}$-homomorphism $\Phi$ : $Aarrow A\otimes A$ , called the $\mathrm{c}\mathrm{o}$-multiplication, such that

$\Phi(u_{jk})=\sum_{r=0}^{N}u_{jr}\otimes u_{rk}$ (1.1)

2. alinear anti-multiplicative mapping $\kappa$ : $A$ $arrow A$, called the $\mathrm{c}\mathrm{o}$-inverse, such that
$\kappa(\kappa(a^{*})^{*})=a$ for all elements $a\in A$ , and

$\sum_{r=1}^{N}\kappa(u_{jr})u_{rk}=\delta_{jk}I$ (1.2)

$\sum_{r=1}^{N}u_{jr}\kappa(u_{rk})=\delta_{jk}I$ (1.3)

The notion of unitary representation of aquantum group was introduced by Woronow-
icz in [SLW2]. The definition says that aunitary $\mathrm{n}$-dimensional(c0-)representati0n of a
quantum group $(A, u)$ is aunitary element $v=(v_{jk})\in M_{n}(A)\simeq M_{n}\beta)\otimes A$ , with $v_{jk}\in A$ ,
which satisfies $\Phi(v_{jk})=\Sigma_{r=1}^{n}v_{jr}$ Ci!) $v_{rk}$ .

Another crucial notion for compact quantum groups is that of aHaar measure, AHaar
measure on acompact quantum group $(A, u)$ is astate $h\in A’$ (a linear positive functional
normalized by $h(1)=1)$ such that for every element $a\in A$ one has $(id\otimes h)\Phi(a)=$

(h\otimes id)$(a) $=\mathrm{h}(\mathrm{a})\cdot 1$ . $\mathrm{W}\mathrm{o}\mathrm{r}4\mathrm{o}\mathrm{n}\mathrm{o}\mathrm{w}\mathrm{i}\mathrm{c}\mathrm{z}$ proved in [SLW2] that on every compact quantum
group there is the unique Haar measure.
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2Compact quantum groups associated with cycles in
permutations for $\mathrm{N}=3$ and its structure

In this section we describe the structure of our quantum groups as atwisted product
of its subgroups.

Let us recall that the quantum group $(A, u)$ we consider is generated by three elements
$a$ , ’

$c$ , $v$ , which satisfy the following relations:

(1) $av=va$ (2) $cv=vc$ (3) $ac+tca=0$
(4) $ac^{*}+tc^{*}a=0$ (5) $cc^{*}=c^{*}c$ (6) $vv^{*}=v^{*}v=I$

(7) $aa^{*}+t^{2}cc^{*}=I$ (8) $a^{*}a+c^{*}c=I$

The $\mathrm{c}\mathrm{o}$-multiplication(I in the quantum group $(A, u)$ is given on generators by

$\Phi(a)=a\otimes a+tc^{*}v^{*}(\otimes c, \Phi(c)=c\otimes a+a^{*}v^{*}C\$ $c$ , $\Phi(v)=v\otimes v$ . (2.1)

The $\mathrm{c}\mathrm{o}$-inverse $\kappa$ is defined by:

$\kappa(a)=a^{*}v^{*}$ , $\kappa(a^{*}v^{*})=a$ , $\kappa(c)=tc$ , $\kappa(c’ v^{*})=\frac{1}{t}c^{*}v^{*}$ , $\kappa(v)=v$ (2.2)

We are going to show that this group is atwisted product of its two subgroups. Clearly,
first we have to explain these notions.

The definition of aquantum subgroup of aquantum group is the following (see [P-W]).

Definition 2. 1Let $(A, u, \Phi, e, \kappa)$ and $(A_{1}, u_{1}, \Phi_{1}, e_{1}, \kappa_{1})$ be given quantum groups, with
the explicite notation of their underlying $C$’-algebras, fundamental representations, c0-

multiplications, $co$-units and $co$-inverses. If there exists $a$ an embedding $p_{1}$ : $A_{1}arrow A$ such
that:

$\Phi_{1}p_{1}=p_{1}\Phi$ , $e_{1}p_{1}=p_{1}e$ , $\kappa_{1}p_{1}=p_{1}\kappa$ (2.3)

then we call $(A_{1}, u_{1}, \Phi_{1}, e_{1}, \kappa_{1})$ a quantum subgroup of the quantum group $(A, u, \Phi, e, \kappa)$ .
The above equalities mean that the restrictions of $co$-multiplication, $co$-inverse and cO-unit

from $(A, u, \Phi, e, \kappa)$ agree with those of $(A_{1}, u_{1}, \Phi_{1}, e_{1}, \kappa_{1})$ .

Now, following the work of Podles and Woronowicz on the quantum Lorentz group
[P-W] we shall describe the meaning of twisted product of two quantum groups.

Definition 2. 2Let $(A, u, \Phi, e, \kappa)$ be a given quantum group and let $(A_{1}, u_{1}, \Phi_{1}, e_{1}, \kappa_{1})$

and $(\mathrm{A}, u_{2}, \Phi_{2}, e_{2}, \kappa_{2})$ be its quantum subgroups with the natural embeddings $Pj$ : $A_{j}arrow$

$A_{1}\otimes A_{2}$ , $j=1,2$ , given by $p_{1}$ : $A_{1}\ni a_{1}\mapsto\neq a_{1}\otimes 1_{A_{2}}\in A_{1}\otimes A_{2}$, $p_{2}$ : $A_{2}\ni a_{1}\mapsto*1_{A_{1}}\otimes a_{2}\in$

$A_{1}\otimes A_{2}$ ;we assume that $A=A_{1}\otimes A_{2}$ is the spatial tensor product of the two $C^{*}$-algebras.

If there exists $a*$-algebra isomorphism $\sigma$ : $A_{1}\otimes A_{2}arrow A_{2}\otimes A_{1}$ , such that:

$\Phi=(id_{A_{1}}\otimes\sigma\otimes id_{A_{2}})(\Phi_{1}\otimes\Phi_{2})$ , $\kappa=s(\kappa_{1}\otimes\kappa_{2})\sigma$ (2.4)

there $s$ : A2 @ $A_{1}arrow A_{1}$ @A2 is the flip automorphism $s(a_{2}\otimes a_{1})=a_{1}\otimes a_{2}$ and $id_{A_{\mathrm{j}}}$

is the identity map on $A_{j}$ , $j=1,2$ , then we say that $(A, u)$ is the twisted product of its
subgroups $(A_{1}, u_{1})$ and $(A_{2}, u_{2})$ with the twist $\sigma$ ; this will be denoted by
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A $=A_{1}\otimes_{\sigma}$ $A_{2}$ (2.5)

The relations which defined our quantum group can be split in such away that one
can recover two special quantum subgroups inside it.
Example: Let $(A_{1}, u_{1}, \Phi_{1},e_{1}, \kappa_{1})$ be the quantum group defined in the following way:

$A_{1}=C^{*}(a, c)$ is the $\mathrm{C}^{*}$-algebra generated by the two elements $a$ , $c$ , which satisfy the
relations: $ac+tca=0=ac^{*}+tc^{*}a$, $cc’=c$’ $c$ , $aa^{*}+t^{2}cc’=I=a’ a+c^{*}c=I$ , $u_{1}=$

$(\begin{array}{ll}a tc’c a^{*}\end{array})$ is the fundamental representation, $\Phi_{1}(a)=a\otimes a+tc’\otimes c$, $\Phi_{1}(c)=c\otimes a+a$’@c

is the $\mathrm{c}\mathrm{o}$-multiplication, $\kappa_{1}(a)=a’$ , $\kappa_{1}(c)=tc$ is the $\mathrm{c}\mathrm{o}$-inverse and $e_{1}(a)=e_{1}(a’)=1$ ,
$e_{1}(c)=e_{1}(c^{*})=0$ is the c0-unit.

Then one can easily recognize that $(A_{1}, u_{1})$ is the famous quantum $SU_{q}(2)$ group de-
fined by Woronowicz in [SLWI] for $q=-t$. $\square$

Example: Let (A2, $u_{2}$ , $\Phi_{2}$ , $\kappa_{2}$ , e2) be defined in the following way:

$A_{2}=C’(v)$ is the commutative $\mathrm{C}^{*}$-algebra generated by aunitary $v$ , $u_{2}=(\begin{array}{lll}1 0 0 v ’\end{array})$

is the fundamental representation, $\Phi_{2}(v)=v\otimes v$ , is the $\mathrm{c}\mathrm{o}$-multiplication, $\kappa_{2}(v)=v$’is
the $\mathrm{c}\mathrm{o}$-inverse and $e_{2}(v)=1$ is the c0-unit.

Then this definition provides the quantum group $U(1)$ . [1

Asimple computation shows that this two quantum groups are quantum subgroups
of our quantum group $(A,u)$ with the natural embeddings. We are going to show that in
fact $(A, u)$ is the twisted product of these two subgroups, for aproper choice of the twist
$\sigma$ . For this purpose we need the following:

Definition 2. 3Let $\sigma$ : $A_{1}\otimes A_{2}arrow A_{2}\cross A_{1}$ be $a*$-algebra homomorphism defined by
putting:

$\sigma(a\otimes v^{k})=v^{k}\otimes a$ , $\sigma(c\otimes v^{k})=v^{k-1}\otimes c$ (2.6)

with $v^{-1}=v’$ .

Then we have

Theorem 2. 4The quantum group A $=A_{1}\otimes_{\sigma}$ A2 is the twisted product of the two
quantum subgroups with the twist $\sigma$ .

Proof: We should check that the $\mathrm{c}\mathrm{o}$-multiplications and $\mathrm{c}\mathrm{o}$-inverses satisfy the definition
2.2. Keeping in mind the identification $av^{k}rightarrow a\otimes v^{k}$ and $cv^{k}rightarrow c\otimes v^{k}$ , given by the natural
embeddings, we obtain for the $\mathrm{c}\mathrm{o}$-multiplications: $s(\kappa_{2}\otimes\kappa_{1})\sigma(a\otimes v^{k})=s(\kappa_{2}(v^{k})\otimes\kappa_{1}(a))=$

$a^{*}\otimes v’ k$ and $s(\kappa_{2}\otimes\kappa_{1})\sigma(c\otimes v^{k})=s(\kappa_{2}(v^{k-1})\otimes\kappa_{1}(c))=tc\otimes v’(k-1)$ which agrees with the
corresponding action of $\kappa$ . Since a $\mathrm{c}\mathrm{o}$-inverse is linear and anti-multiplicative, the above
formulas can be extended to the ’-subalgebra of $A$ generated by $a$ , $c$ , $v$ .

For the $\mathrm{c}\mathrm{o}$-multiplications we have
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$(id_{A_{1}}\otimes\sigma\otimes id_{A_{2}})(\Phi_{1}\otimes\Phi_{2})(a\otimes v^{k})=(id_{A_{1}}\otimes\sigma\otimes id_{A_{2}})(a\otimes a\otimes v^{k}\otimes v^{k}+tc^{*}\otimes c\otimes v^{k}\otimes v^{k})=$

$a\otimes v^{k}\otimes a\otimes v^{k}+tc^{*}\otimes v^{k-1}\otimes c\otimes v^{k}$

which agrees with
$\Phi(av^{k})=(a\otimes a+tc^{*}v^{*}\otimes c)(v^{k}\otimes v^{k})=av^{k}\otimes av^{k}+tc^{*}v^{k-1}\otimes cv^{k}$

and
$(id_{A_{1}}\otimes\sigma\otimes id_{A_{2}})(\Phi_{1}\otimes\Phi_{2})(c\otimes v^{k})=(id_{A_{1}}\otimes\sigma\otimes id_{A_{2}})(c(\otimes a\otimes v^{k} \otimes v^{k}+a^{*} C\otimes c\otimes v^{k} \otimes v^{k})$ $=$

$c\otimes v^{k}$ $C\otimes a\otimes v^{k}$ $+a^{*}\otimes v^{k-1}\otimes c\otimes v^{k}$

which agrees with
$\Phi(cv^{k})=(c\otimes a+a^{*}v^{*}\otimes c)(v^{k}\otimes v^{k})=cv^{k}\otimes av^{k}+a^{*}v^{k-1}\otimes cv^{k}$ .

Since both $(id_{A_{1}}\otimes\sigma\otimes id_{A_{2}})(\Phi_{1}\otimes\Phi_{2})$ and (I are C’-algebra homomorphisms, and
agree on generators, they satisfy the equation 2.7. $\square$

3Unitary representations of the quantum group
Our description of the unitary representations of the quantum group $(A, u)$ we base

on the work by Podles and Woronowicz [P-W], where ageneral theorem shows how to
construct representations of aquantum group which is twisted product of its quantum
subgroups. First we recall this

Theorem 3. 1Let the quantum group $A=A_{1}\otimes_{\sigma}A_{2}$ be the twisted product of its quantum
subgroups $A_{1}$ and A2, with the natural embeddings denoted by $p_{1}$ and $p_{2}$ . Let $v\in B(K)\otimes A$

be matrix with entries from $A$ for a finite dimensional complex vector space K. Then the
following holds:

1. If $w$ is $a$ (unitary) representation of $A$ on $K$ , then $w^{1}:=(id\otimes p_{1})w$ is $a$ (unitary)
representation of $A_{1}$ on $K$ and $w^{2}:=(id\otimes p_{2})w$ is $a$ (unitary) representation of $A_{2}$ on
$K$ , and the following conditions hold:

$w=w^{1}$ \copyright $w^{2}$ ,

$w^{2}$ \copyright $w^{1}=(id\otimes\sigma)(w^{1} \copyright w^{2})$ (3.1)

where

$w^{1}$ \copyright
$w^{2}= \sum_{j,k}m_{j}^{1}m_{k}^{2}\otimes w_{j}^{1}\otimes w_{k}^{2}$

for $w^{i}= \sum_{j}m\mathrm{j}$ $\otimes w_{j}^{i}\in B(K)\otimes A$:
2. If $w^{1}$ and $w^{2}$ are (unitary) representations of $A_{1}$ and $A_{2}$ respectively, which are of

the same dimension and satisfy the compatibility condition 3.10, then $w=w^{1}$ \copyright $w^{2}$ is $a$

(unitary) representation of $A$ on $K$ .

We shall apply this result to our situation to describe the unitary representations of
the quantum group $(A, u)$ . We will use the theory of irreducible unitary representations
of the quantum group $SU_{q}(2)$ , which was described by Woronowicz. The representations
$\{u^{} \}_{s\in\frac{1}{2}N}$ are indexed by the set $\frac{1}{2}N=\{0, \frac{1}{2},1, \frac{3}{2},2, \frac{5}{2},3, \ldots\}$ , and each $u^{s}$ act on a $(2s+1)$
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(3.2)

-dimensional Hilbert space. Explicit formulas for matrix elements of these representations
are given in [Pu-W], B.19, p. 1616.

Now let us assume that $w^{1}=u^{s}$ , for some $s \in\frac{1}{2}N$ , and $w^{2}$ is aunitary representation
of A2 of the dimension $2s+1$ , and that they satisfy the compatibility condition 3.10. This
condition implies that, for some positive integer $r$ , $w^{2}=diag\{v^{r}, v^{r-1}, \ldots, v^{r-2s}\}$ has a
diagonal matrix with the decreasing (or, equivalently, increasing) integral powers of the
unitary $v$ on the main diagonal. It follows that then the representation $w=w^{1}$ \copyright $w^{2}$ is
unitary and irreducible representation of $A$ . This can be seen by using the Haar measure
$h=h_{1}\otimes h_{2}$ on $A$ , which is the tensor product of the Haar measure on $SU_{q}(2)$ , $q=-t$, and
the Lebesgue measure on the unit circle, which is the Haar measure on $A_{2}$ . Let us recall
that the non-trivial action of $h_{1}$ is given by $h_{1}((cc*)^{m})= \frac{1-t^{2}}{1-t^{2(m+1)}}$ . Then irreducibility of
$w$ is equivalent to $h(\chi_{w}’\chi_{w})=1$ , where $\chi_{w}=\sum_{j}w_{jj}$ is the character of the representation
$w$ . It follows from the form of $w^{2}$ and from the formulas (B.19) of [Pu-W] that the value
$h(\chi_{w}’\chi_{w})$ is the same as $h_{1}(\chi_{w^{1}}^{*}\chi_{w^{1}})$ , which is 1, by the irreducibility of $w^{1}$ .

We shall finish our considerations with the following observation regarding the struc-
ture of the irreducible representations of $(A, u)$ . There is asequence $\{v^{r}\}_{r\in Z}$ -in-
tegral powers of $v$ -of irreducible one-dimensional representations of $(A, u)$ . There

representation $w=$ $(\begin{array}{ll}a \mathrm{t}c’ v^{*}c a’ v^{*}\end{array})$
$=u^{\frac{1}{2}}\oplus$

$(\begin{array}{ll}\mathrm{l} 00 v^{*}\end{array})1s$ the fundamental representa-

tion of $(A, u)$ , so we can write $(A, u)=(A, w)$ . Its conjugate is the representation

$\overline{w}=$ $(\begin{array}{l}atcvc’ av\end{array})$
$=u^{\frac{1}{2}}\oplus$

$(\begin{array}{ll}1 00 v\end{array})$ . These tw0-dimensional representations are not

equivalent since they have different characters: $\chi_{w}=a+a^{*}v’\neq a^{*}+av=\chi_{\overline{w}}$ . The fol-
lowing is the decomposition of their tensor products into irreducible sub-representations:

$w\mathrm{Q}$ $w=v^{*}\oplus(u^{1}$ \copyright $(\begin{array}{lll}1 0 00 v^{*} 00 0 v^{*2}\end{array})$ $)$

(3.3)$w\mathrm{Q}$ $\overline{w}=1$ $ $(u^{1}$ \copyright $(\begin{array}{lll}v 0 00 1 00 0 v^{*}\end{array})$ $)$

(3.4)$\overline{w}\circ$ $\overline{w}=v\oplus(u^{1}$ \copyright $(\begin{array}{lll}v^{2} 0 00 v 00 0 1\end{array})$ $)$
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