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Logarithmic Correction of Kashaev’s Invariant

RFERF R¥REFRAAEN HEE 45k

L Foi)
Kazuhiro HIKAMI 1

1 Introduction

In Refs. 1,2 Kashaev defined an invariant (X) y for knot X using a quantum dilogarithm
function at the N-th root of unity (@ = €*"/N), and proposed a stimulating conjecture
that for a hyperbolic knot X the invariant (KX)y gives a hyperbolic volume of a knot
complement in a limit N — oo;

) |
Jim 7” log|(X) | = Vol(S3 \ %), (1.1)

where Vol denotes a hyperbolic volume (see, e.g., Ref. 3). Here the invariant (X)y is
defined for a (1, 1)-tangle of knot X with the enhanced Yang-Baxter operator defined by

.. 1—(k—j+1)(€—i) ..
Rg = No — — [' ’], (1.2a)
(w)ll—k—ll (w)U_g] (w)li—jl (w)lk—il k €
N —1+(E—i=1)k—j) .
R = — No _ .9 [’ ’], (1.2b)
(w)ll—k—ll (w)lj—ll (w)li—j] (@) (k—i k »
u’t‘ = —8k.e+1 a)’l’, (1.2¢)

where [x] € {0, 1,..., N — 1} modulo N, and

i<k<t<j,

i JLi<k<g,
£<j<i<k(with? <k),
k<t<j<i.

I
O[k e]—l, if and only
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It was proved later that Kashaev’s invariant (X) v is identified with the N-colored Jones
polynomial at the N-th primitive root of unity [4], whose R-matrix is given by

ij min(N—1—i,j) o (w)j_ (a))J . I(- )
Ry = 8¢.i+n S, j—n (—1) " dn it (1.3a)
k¢ ’; t+n j—n (w)i* (w)_]—n (w)n*

. min(N—1~j,i) (@)* (@); i ,
R—l b _ 8£ . 8’( , (__])i+j+n i j+n w—-ij—f(i+j—n), (1.3b
(e go Tk @), @) (@)n )

i J i J
Rk]£= . (R l)kje= IE’-‘ ( 1)z=
‘ k \\e k/ » Z u v U k ,

and the conjecture (1.1) is rephrased as for arbitrary knot X,

uk =~ ot (1.3¢)

. 2w o ’
Jim 2% tog ()] = vs - |7\ ], )
where v3 and || - || are a hyperbolic volume of regular ideal tetrahedron and the Gromov

norm respectively. Further recalling a close relationship between the hyperbolic volume

and the Chern-Simons invariant [5, 6], discussed is a complexification of above conjec-

ture [7, 8], » . :
.2 .

Jim = log((K)n) = v3- |$*\ K| +i CS(X), (1.4)

where CS denotes the Chern-Simons invariant defined by

CS(M) = 272 cs(M)

2
csM(A)=8—;ﬁfTr(A/\dA+§A/\A/\A)
M

It is expected that this volume conjecture will be a key to solve a geometrical meaning of
the quantum invariants which have been introduced since a discovery of the Jones polyno-

mial.

Since the conjecture (1.1) was proposed, some attempts have been made, and especially
the relationship between the R-matrix (1.2) and the hyperbolic ideal octahedron has been



42

clarified [9-11]. Though, it is a hard analytic problem to prove a conjecture (1.1) rigorously
from an explicit form of invariants (a limit to replace the g-series (q), with the dilogarithm
function works well generally [2]). Purpose of this article is to study analytically eq. (1.1) for
the torus knot and numerically for several hyperbolic knots and links. These results support
the volume conjecture (1.1'), and further indicate that there is a logarithmic correction to
Kashaev’s invariant,

N 3
log|(X)w| ——— vs - || 8%\ x|| 5+ 3 #X) - log N + O(N®), (1.5)

where #(X) is the number of prime factors (as connected-sum of prime knots) of a knot X.

This paper is organized as follows. In Section 2 we study the invariants of the torus
knot Trs(m, p) with m and p being coprime integers following Ref. 12. We first consider
an asymptotic expansion, and see that the left hand side of eq. (1.1) gives zero, which
agrees with a fact that the torus knot is not hyperbolic. Furthermore there is a logarithmic
correction,

3
log|(Trs(m, p))n| = 5 logN,

which supports eq. (1.5). On the other hand, explicit form of the invariants itself gives an
interesting fact. From a view point of the g-series, such invariants can be regarded as a
reduction of the g-series in a case of ¢ being the N-th root of unity w, and in a case of
the trefoil knot the g-series defined from an invariant (trefoil) y generates the number of
“regularized linearized chord diagrams”, i.e., an upper bound of the number of linearly
independent Vassiliev invariants [13, 14]. Based on this observation, we propose asymp-
totic expansion of certain sets of g-series which arises from Kashaev’s invariant of the
(2m + 1, 2)-torus knot.

In Section 3 we consider numerically the volume conjecture (1.1) for hyperbolic knots
up to 6-crossing (figure-eight knot 4,, 5, 6;, 6,, 63), Whitehead link, and Borromean rings.
We find that numerical calculation supports eq. (1.1), and that there is also a logarithmic
correction to the hyperbolic volume,

2 3 2n
7 ~ 3 e
~ og|(XK)n| ~ VoI(S \3<)+2 N

for X € {up to 6-crossing knots, Whitehead link, Borromean rings}. Based on these result-
s, we may propose a conjecture (1.5), as the invariant is defined for a (1, 1)-tangle of an
arbitrary knot K. The last section is devoted to concluding remarks.

logN + O(N7h,
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Throughout this paper we use a standard notation for a g-product,

n—1

k
=@ a=](1-x4, @t X6 O = [ [ i O

i=0 i=1

In a case of g being the N-th primitive root of unity, we set

= exp (-271’,—‘) , (1.6)

and use a notation

@ =[] (1 -, @), =[]0 -o™).
i=1 i=1

2 Torus Knot

We consider the (m, p)-torus knot Trs(m, p), where m and p are coprime integers (Fig. 1).
The torus knot is not hyperbolic, and an explicit form of the colored Jones polynomial is
known. We review the asymptotic expansion of their knot invariants following Kashaev & .
Tirkkonen [12]. We compute explicitly Kashaev’s invariant for the (2m + 1, 2)-torus knot
by use of the R-matrix (1.2), and obtain a formula for an asymptotic expansion for certain
sets of w-series. In the case of the trefoil knot, this formula is nothing but one studied in
Ref. 14. We further define the g-series which reduces to the knot invariant in a case of ¢

being w, and we study an asymptotic expansion of these g-series.

Figure 1: Trefoil (Trs(3, 2)) and Solomon’s Seal knot (Trs(5, 2)).
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2.1 Integral Formula

We start from the colored Jones polynomial for the (m, p)-torus knot X = Trs(m, p). We
set N as a “color”. We know that the colored Jones invariant for the (m, p)-torus knot in a
case that m and p are coprime integers is explicitly written by [15, 16]

Nh\ Jx(h; N) W2 ) 1
2sh( ) = E E eexp\hmpr°+hr(m+ep)+—-€h), (2.1)
2] Joii Ny r=—(N—1)/2 2

where O denotes unknot, and we have
A Sh(Nh/2)
Jo(h; N) = W
As was shown in Ref. 4 Kashaev’s invariant is related with a specific value of the colored
Jones polynomial, and we see thatt

Jx(h; N)

Trs(m, — oMiN+) —_ 7
(Trs(m, p)ln = e h—2xi/N Jo(h; N)

(2.2)

To rewrite the invariant in the integral form, we follow Ref. 12. We use the Gauss
integral formula;

2
Jrhet' = fdz exp(—% +2wz) ,
¢
where a path % is to be chosen by the convergence condition, R > x - x e ¢ & satisfying

R(h e=3%) > 0 [12]. We apply the Gaussian integral formula to eq. (2.1), and we get

N-1)/2
S
2 ) Jo(h; N) e=%1 r=—(N=1)/2

(N=1)/2 ’ ) L
_ Z . Z —/dze—’fﬁ“(z”’iﬁ)
mp
€

e=x1 r=—(N=1)2 VT h

2 2, sh(Nz)sh(Z)
- ppts 2\ L))
AT %[ dee ™ —3 o

Summing integrand with one replacing z - —z, we have

2 " sh(N z) sh(%) sh(%)
= Tehmy ! dze” i :

*A prefactor in the right hand is dropped in Ref. 12.

shz
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Decomposing sh(N z) and using an invariance under z — —z, we see that

z z
nhm shz

_ [mp mp(Nz_;h_)Zsh(m 2)sh(p 2)
Vnh !dze shmpz)

To obtain Kashaev’s invariant (Trs(m, p))y defined in eq. (2.2), we differentiate above

integral with respect to &, and we obtain

(Trs(m, p)IN

3/2
_(mpN / N+ B+ D) /‘ dg emPNTGEHD) 2 sh(m  2) sh(pnz). (2.3)
5 sh(m pm 2)

When we shift the path € to € + i, we get

3/2
m p N) / TN+ - G+ 5 -%

(Tl'S(m, P))N = ( ) P m

2) 5 sh(m  z) sh(p 7 2)
sh(m pm 2)

x | Res(m, p) + / dz emPNT 37
C+i

Here the first term, Res(m, p), comes from residues of the integral at z = ;”; miforn =

1,2,...,mp — 1, and it is written as

. mp—1 . n
Res(m, p) = o 21 e Z( " n? sh (—p—l) sh( - ) N"'(""'zmip). (2.4)

In the second term, we introduce z = w+1i, and using a fact that even function only survive
in the integrand, we get '

3/2 . .
mpN ) / STNE— T B+ 8%

(Trs(m, p)In = (—-2—

2 sh(mm w)sh(pr w)

sh(m p w) 2.5)

x | Res(m, p) + 2i (= 1)mr+m+pezmpNi / duw edimpNTu?

¢
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We intend to replace the integral with an infinite series. We define T-numbers T,\™ "
by a series expansion of a generating function as

shmw)sh(pw) = Ty 1y 20+
sh(m p w) "Z(2n+1)!( D W (26)

It is noted that the left hand side is also expanded as

sh(m w) sh(p w) 1
sh(m p w)

mep(n)e e, (2.7)

where x2mp(n) is a periodic function modulo 2 m p;

n mod2mp|mp-—m——p mp—m+p mp+m—p mp+m+ p other
Xomp(n) | 1 —1 —1 1 0

By use of the Mellin transformation to egs. (2.6) and (2.7), we can define the T-numbers
Tn(m’l’)

(2.8)

in terms of the associated L-series as

1
TP = o (= 1™ L(=2n = 1, Xomp) (2.9)
1 (zmp)Zn-H 2mp a
= (-1 ——" B )
A e ;)Qmp(a) ez | 7o

where B, (x) is the Bernoulli polynomial.

Substituting the expansion (2.6) into an integrand in eq. (2.5), we have

(TrS(m, P))N ~ (gg_N) NIN+ (] l(ﬂ"f’ ))

00 (m.p)
Res(m, p)+2i(- l)mp+m+p eimNmpZ Ty (- l)" Jt2"+1fdw e%impan2 w2n+2
L= 2n+1)!

After using an identity,

dwepme 2n+2 _ es! (- .(2n+])!.N—(n+%)
\/‘ (pn'l)""'l n!22n+l1 ’

we finally get an asymptotic expansion of the invariant of the torus knot as

N 3/2 : wifq_ m
(Trs(m, p))y =~ (m_g;) e (1-bh )% Res(m, p)

. , ile 1 00 7(m.p) n
+ (= 1)m+Dp+D TiNG+mp+F (1-3E+2) § T ( T ) (2.10)

= n 2mpNi
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As aresult, we see in a limit N — oo that
3
log |(Trs(m, p)) | ~ 3 logN. (2.11)
which supports volume conjecture (1.1) and that there exits a logarithmic correction (1.5).

As seen from eq. (2.4), residue Res(m, p) is generally given as a summation of several

terms whose asymptotics is controlled by e‘N”iZn"—’fP. In view from a complexification of
the volume conjecture (1.4), this summation seems to represent a decomposition of the
contribution by irreducible flat connections. In fact, when we consider the fundamental
group of S \ Trs(m, p) which has a presentation

m(S3\ Trs(m, p)) = (x, y | 2" = yP), (2.12)

there are (m — 1) (p — 1)/2 irreducible representations, 71(S3 \ Trs(m, p)) — SU(2), up
to conjugacy as was discussed in Ref. 17. We hope to report a relationship with our re-
sult (2.10) and Ref. 18 in a future issue.

We shall give this asymptotic behavior explicitly for the (2m + 1, 2)-torus knot below.
These expressions are for our purpose to introduce an asymptotic expansion of g-series,
and to propose a “strange identity” in a sense of Zagier.

Trefoil 3;: (m, p) = (3,2) By explicit computation of the knot invariant using the R-

matrix (1.2), we know that the invariant of the trefoil is given simply by [2]

N-—1

(Trs(3, 2))v = ) _ (@)a- (2.13)
a=0

Thus the formula (2.10) determines the asymptotic behavior of eq. (2.13) in a limit N — 00.
By setting (m, p) = (3,2) in eq. (2.4) we see that the residue term is given as

Res(3,2) = L e”iN““l_Z),

33
and that our T-numbers T, = T,,(3'2) are nothing but the Glaisher T-numbers 7, defined by
M = i _ﬁ_x2n+1. (2.14)
2cos(3x) —= 2n+ 1!
nl|0 1 2 3 4 5 6

T. |1 23 1681 257543 67637281 27138236663 15442193173681
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With these T-numbers, we obtain the asymptotic formula of eq. (2.13) as

N-1
(Trs3, 2D)n = ) _ (@)a
a=0
3 ri wiN  mi riwnT,; m \n
~ N3 _—— e ~ 12N — . 2.1
N e""(4 2 121\/)Jre n=0n!<l2iN) (2.15)
This is nothing but a formula which was conjectured in Ref. 14.
As a result we obtain in a limit N - oo v
21 nt 3 logN R
~ log((Trs(3, 2))n) -< i+ 3 27 Nt ON7h, (2.16)

where, according to a conjecture (1.4), the first term is expected to give the Chern-Simons
invariant of the trefoil,

7[2
CS(Trs(3,2)) = —

Solomon’s Seal Knot 5;: (m, p) = (5,2) The invariant of the knot 5 is computed ex-
plicitly as1

N-1

(MsG.2DIn= ) & @ (2.17)
OSa‘-ll'-z‘;(l)V-—l

Then the asymptotic expansion of this invariant follows from eq. (2.10) by setting (m, p) —
(5, 2). The residue term (2.4) is calculated as

2i L i pis
Res(5,2) = Sz Vi (2a e~ % — be H'),

where we have set

. (m\ A5 . V5 |
a=s1n(§)=75 %(]—%) b=sm(25£)=75 %(l+%)

The infinite series can be written in terms of T,'? defined by

sinx) & P,

2c0s(5x) A @nt i) (2.18)

n [0 1 2 3 4 5 6
TP |1 71 14641 6242711 455513328 5076970085351 8024733763147921

Y. Yokota showed this expression to the author during workshop.
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As a result, we obtain

(Trs5, 20 = ), @ (@atb

0<a+b<N-1
2 o 762 4\

~ 2 NieFi- _be % i . (2.
ﬁN e 0N(2ae T —be” )—i—e Z (ZOiN) (2.19)

- n=0

Recalling a complexification of volume conjecture (1.4), the first term which follows

from residues of the integral may give the Chern-Simons invariant as

1
CS(Trs(5,2)) = {“Tﬁ 2, —Tg(-) 712} :

(2m + 1, 2)-Torus Knot: (m >2) We compute Kashaev’s invariant explicitly using the

R-matrix (1.2), and we find that it is explicitly written as

(Trs2m + 1,2))n
. 2m—2 el aj(aj _ 1)
Z aj a)2 =
_ —1) /=1 .
=N Z =D 2m—3

I<ayy-2<+-<a1<N—-1
l—I (w)aj—aj_H
2m-2
N—1 Z jaj
_ Y (@artart-+oms 4y j=3
0 2m-3
ay,a,...am-2=
0<ay+az+:--+azm—2<N-1 ]_[ (w)aj

X ® j=3 (2.20)

The asymptotic form of this series is given from eq. (2.10) by substituting (m, p) —
(2m + 1, 2). The residue term (2.4) is computed as

2i 2]+1 ’ Nri 1_(7-'+|)2
Res2m +1,2) = (—2——T1)—2-Z( 1 (m — j) sm( +]Jr>e ( T({?nTﬁ),
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and the infinite series is written in terms of T,,(Z"'H‘Z) defined by

sin(2 x) 00 T(2m+l 2) s

2cos((2m + 1) x) Z=:(2n+l)' '
n |0 1 2 3 4 5
"9 |1 143 58081 48571823 69471000001 151763444497103
TP |1 239 160801 222359759 525750011041  1898604115708079
TP 11 359 361201 746248439 2635820840161  14219082731542919
TP |1 503 707281 2041111463 10069440665761  75868751534107223
T.°2 |1 671 1256641 4828434911 31713479172481 318124890738776351

To conclude, we have obtained an asymptotic expansion for a set of the w-series as

(TrsCm +1,2))n
N—1

— Z (w)al +ax+---+ay,—2 (_ ])Zf’_n:;z ] aj

2m—3
aj.az,...,azm_2=0 nj=2 (w)aj
O<aj+az+--+aym_2<N-—1

—a a2+2§"=';2(£— 1 —a|) aj+% Z,-’:;’(a,- +aji1++aym—2)?

X W
2 3 mi_mi(m 2ml 2]+] 2j+1
~_ 2 NI T-Fimmw 1) (m - sm( JT) e N7 f'?’r')
V2Zm+1 Jz_:o( y'(m = j)sin{ =
2 oo pOm+12) . n
¥ Bt . 21
te DD (4(2m+1)Ni) 2.21)

n=0

Based on the first sum the Chern—Simons invariant may be identified as

QJj+1)?

nzlj=0,1,...,m—l}.

2.2 g-Series Identity and (2m + 1, 2)-Torus Knot

We shall propose some observations based on the asymptotic behavior studied in the pre-
vious section. Strategy is merely to regard the invariants as g-series with g being the N-th
root of unity (w = €*"/¥) as was formulated by Zagier [14]. In general, by setting ¢ to
be @ an infinite g-series terminates and gives finite number even though the g-series it-
self diverges. We explicitly study g-series which arise from Kashaev’s invariants of the
(2m + 1, 2)-torus knots.
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Trefoil 312 (m, p) = (3,2) We define

F(g) = Z(Q)ns (2'22)

n=0

following Ref. 14. This series does not converge in any open set, but in a case of g being
root of unity w = e2™/N it reduces to Kashaev’s invariant (2.13);

F() = (Trs(3, 2))n- (2.23)
We note that
o0
F(l—-x)= Zan x", (2.24)
n=0 ’
n|0 1 4 5 6 1 8 9 10
a,,‘] 1 15 53 217 1014 5335 31240 201608

and that a, coincides with the upper bound of the number of linearly independent Vassiliev
invariants of degree n [13]. |

Furthermore, we have in a limit t — 0

Fe)=) (I-eH—e?).-(1-e) |
- n=0 : ‘
_ o i I (_‘_)" | | (2.25)
- ! \24 ’

where T, is the Glaisher number (2.14). This identity can be proved based on Zagier’s
g-series identity as follows [14] (see also Ref. 19 for a generahzatlon of eq. (2.25)). When
we define a function S(x) by : ‘ :

S(x) =) (X)n41 X"
n=0 :
= (x Qoo+ 1 =2 ) (g — (x@o0) x", . (2.26)
n=0

we can check that it solves the q-differencé equation,

Sx)=1—gx*—g*>x*S(gx). SOMEE - (2.27)
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On the other hand, we can easily see that a function

00
S =Y xia(n) x17~D gHED, (2.28)

n=]
also solves the same g-difference equation, and that both describe the same function. Here

x12(n) is from eq. (2.8) with (m, p) = (3, 2), and it becomes the Dirichlet character;

n mod12|1 5 7 11 other
xiz@) |1 -1 -1 1 0

It is remarked that S(x = 1) coincides with the Dedekind n-function,

@oo = Y _ x12(n) g#@*D, (2.29)

n=1

From two expressions (2.26) and (2.28), we find that

xDoo+(1=2) Y (P — X Do) x" = Y x12(m) x3*~DgnE*=D_ (930

n=0 n=0

By differentiating with respect to x and setting x — 1, we get

1 i n e 1 & 12
@)oo - (5—2 ! )—Z((q)n—(q)oo)=Eann(n)qﬂ‘" b (231)

n=1 1— q" n=0 n=0
Thus in a limit # — 0 we obtain
e . 1.2
—2e A F@Ee") ~ Z n x12(n)e 1"t (2.32)
n=0
because (¢)oo induces an infinite order of  in a limit t — 0. Applying the Mellin transfor-
mation to an equality 3" n x12(n) e~ %" ~ Y2 o ¥nt", we get

=n"

Vo= anm

L(-2n—1, x12)-

By use of a relationship (2.9) between the L-series and the T-numbers, we find

T,
) ,
24" n!

which proves eq. (2.25). Note that the right hand side of eq. (2.31) is regarded as a function
given by “differentiating the Dedekind n-function (2.29) half a time”.

Yn =
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Comparing eq. (2.25) with eq. (2.15), we notice that there seems to be a naive analytic
continuation as ,
N «— —, (2.33)

in a limit z — 0. In fact applying this relation to the integral in eq. (2.5), we may have

3/2
Fe™") ~— (E-E) ezt f dw e " shz w) (2.34)
it ch(3n w)
Using a generating function
sh2x) & R 2
— ) (=1 n+1’
ch(3x) n;)m(")e ,{; S AR

we see that above integral reproduces eqs. (2.25) and (2.32).

In conclusion, we have seen that a naive substitution (2.33) into the integral gives correct

asymptotic expansion (2.25) for the g-series (2.22).

Solomon’s Seal Knot 5;: (m, p) = (5,2) We define a g-series by

o0
FSD(@) = Y 47 @atss (2.35)
a,b=0

which gives the invariant (2.17) of the (5, 2)-torus knot in a case of g being the N-th root of
unity;
F®?(w) = (Trs(5, 2))n. (2.36)

It should be remarked that using Mathematica we have a positive integral series by
00
FGY1-x) = Za,(,s) x".
=0

n|012 3 4 5 6 7 8 9 10
a® |1 2 6 23 109 621 4149 31851 276408 2676388 28608866

In a case of the trefoil knot (2.24), these coefficient series give the upper bound of the
number of linearly independent Vassiliev invariants, but we do not know the meaning of

this series.
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We assume that the correspondence (2.33) is also applicable in Solomon’s seal knot.
With this assumption, the function F©&?(e~) in a limit # — 0 may be formally written in
the integral form,

107\ 0z, 2  sh(2m w)
5.2) oty ~ i) ! o w _ .
FP% (e )_1( » ) e /dwe wch(Snw)' (2.37)
¢

When we substitute an expansion (2.7) with (m, p) = (5, 2) into above integrand,
T(5.2)

sh(2x) 20 mx T3P
ch(5 1) —”;)Xzo(m)e —2'§(2n+])!( D x= (2.38)

n mod20|3 7 13 17 other
xom) |1 -1 —1 10

we find that the asymptotic expansion is given by

00 : ,
F(5,2)(e—t) — Z etab a- e—t) (1- e—21) e (1= e—(a+b)t)

a,b=0
° 00 T(5.2) t n
_ett 3 I (_) (2.39)
,,2=(:) n! 40
l x _t (n2_9)
~—soom X20(n) e~ , (2.40)
n=0

where T,>? is defined in eq. (2.18). The last equality also follows from the Mellin trans-
formation and eq. (2.9). Note that, owing to the Jacobi triple identity, eq. (2.40) denotes a
half-differential of the infinite g-product which can also be written in an infinite sum due
to the Rogers—Ramanujan identity;

00 qn2+n

o0
> x20m) g% = (¢, 4% 4% ¢%)00 = @)oo - (2.41)

n=1 n=0 (q)n

Numerical computation using Mathematica supports a validity of eq. (2.39), which
was a consequence of an ansatz (2.33). This result indicates that there may be a g-series
identity like eq. (2.31) for F®-2(q) (2.35), which we hope to discuss in a future issue.
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(2m + 1, 2)-Torus Knot: (m > 2) We define a formal g-series

2m—2
© (@arrart 2 i
F(2m+1.2)(q) — Z aytaz+--+aym—2 (__1) j=3
2m-3
ay,...aum-2=0 l—l (
q)a;
=2
2m—-2 . 2m—2

—aja + Z (% —1—ajaj+ 2 Z (@j +ajn 4o+ agm—2)?
X q =3 j=3 (2.42)

This gives the knot invariant (2.20) of the (2m + 1, 2)-torus knot in a limit g - » = e2mi/N

F@mtLD ) = (Trs(2m + 1, 2))N. (2.43)

We note that the function F@"+1:2)(q) gives the positive integral coefficients al™ D by

o0
F@m+1.D (] _ 5y = Za'(12m+1)xn,

n=0
n |01 2 3 4 5 6 7
aP 1 3 12 62 402 3162 29308 312975
a® |1 4 20 130 1070 10738 127316 1741705
a1 5 30 235 2345 28623 413441 6896695
a1 6 42 385 4515 64911 1105573 21759966
a1 7 56 588 7924 131124 2572640 58354762
which might be related with the Vassiliev invariants. It indicates that al™ D is given by

the n-th order polynomial of m, e.g,

a(()2m+l) =1, a§2m+1) =m, a§2m+1) =m(m+1),
1

af™h = —mn+1) @m+7),
1

a"t = em(n+1) (14m* +22m +9),

1
a§2m+l) — ﬁ)_rn(m_l_ ])(8m+7) (19m2+25m+9),

1
ag" = g m+D (2360m* + 6544 m> + 6841 m” + 3209 m + 576).
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We also assume that a naive analytic continuation (2.33) is correct in a limit t — 0 in

this case. The formal integral expression is thus given as

F(2m+].2)(e—l)

22m+Dn 32 o 2, f 22m+)a2 sh2mr w)
~j | —m— a0’ | d w . (2.44
’( : ) e we S Gmt haw) &Y
Substituting an expansion (2.7) with (m, p) — (2m +1,2),
Sh(2X) 00 x 00 (2m+l 2) onal
= =2 DA S 2.45
ch(@m+ 1)x) 'gx"""f“(”)e }: e A (2.45)
n mod 8m+4)[2m—1 2m+3 6m+1 6m+5 other
Xsmea(n) | 1 —1 —1 1 0
we obtain
2 [o @] T(2m+],2) t n
FOm+1.2) oty _ oS3ty n 2.46
e )=e nz=(:) o Bemtl) (2.46)
~ T3 Z" Xam-+4(n) € FEFD (= @m=1) (2.47)
n—O

We note that the right hand side is now a “half-differential” of the infinite g-product defined
by

o0 ) 2 12
D Xamra(n) gFEFn mCnIDD o (g gdm gdmtl, g2mily (2.48)

n=1
=@ Y. 1

Ny_1>-->n1>0 (q)"ru—l""m-z cee (Q)nz—m (q)n| )

"12+"'+"n|2—|+” 14+ +nm_i

The validity of an asymptotic expansion (2.46) is checked numerically with a help of
Mathematica for several m and n’s, and this also supports that we may have a gener-
alization of Zagier’s g-series identity (2.31).

Summary: To conclude we have proposed conjectures, egs. (2.39) and (2.46), concern-
ing an asymptotic expansion for the g-series which arise from Kashaev’s invariants of the
(2m + 1, 2)-torus knot. A case of the trefoil (m = 1) was studied in detail in Ref. 14, and
this fact indicates strongly that there should be a generalization of Zagier’s identity (2.31)
for m > 1. It suggests that the g-series which is constructed based on the invariant for
(m, p)-torus knot may generate a new asymptotic formula of the g-series in this manner.
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3 Hyperbolic Knot

In a previous section, we have studied an asymptotic expansion of the invariant of the torus
knot. We have seen that eq. (1.5) is checked analytically and that there is a logarithmic
correction to the volume conjecture (1.1).

In this section, we shall check numerically with a help of PARI * on Alpha the loga-
rithmic correction for the hyperbolic knots up to 6-crossing (the figure-eight knot 41, 5,
61, 62, and 63), Whitehead link, and Borromean rings. All these results support our conjec-
ture (1.5).

Figure-Eight Knot: We study the figure-eight knot, whose invariant is given by [2]

N—1
v =Y @l (3.1)
a=0
The asymptotic form in N — oo is known exactly (see, e.g., Ref. 20), and we have
Nlim 27\’;- log((41)n) = 2 D(e™/?) = 2.029883212819307... (3.2)
—00

which coincides with the hyperbolic volume of the complement of the figure-eight knot.
Here we have used the Bloch-Wigner function D(z);

D(z) = Liy(z) + arg(1 — z) - log|z|,

Liz(z) = — /()z 19&“7—_’) dr.

Using PARI program, we perform numerical computation up to N = 400000 (see
Fig. 2). Dots e in figure denote numerical data. We apply a method of least-squares to
above data with a trial function

)
ux(N) = <= Iog(X)w

2
=C|+Cz--ﬁn10gN+C3N_l+C4N_2, (3.3)

*GP/PARI calculator (http: //www.parigp-home.de/)
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v(N)

2.2

2.175 \

2.125
2.1
2.075

2.05 \TT I y

100 1000 10000 100000.

Figure 2: Figure-eight knot

which is motivated from analytic results of the torus knot. As a result, we obtain

c1 = 2.029883193056962 + 7.771162 x 10~?
c2 = 1.500026853413564 + 2.421627 x 1076
c3 = —1.726932111824925 + 0.00009535

ca = 3.575981132004609 + 0.00270356

A solid line in Fig. 2 denotes a function v(N) with these parameters. We see that the first
term ¢; matches with the exact result (3.2) and that the logarithmic correction c; is written
ascy >~ 3/2.

52 Knot: Using the R-matrix, we have [2]
2
(@)p)” _ -
(Saov= ) __((w)z w~Gthe, (3.4)
0<a<b<N-1 a

We only consider a real part of 27” log((52) N), and numerical data by PARI is given in
Fig. 3 (e in figure).

In this case, we also apply the method of least-squares with a trial function (3.3), and
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v(N)
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3.1 .

2.95
2.9 \\“YT
TTee N

100 150 200 300 500 700 1000 15002000

Figure 3: Knot 5;

we get following results;

) = 2.8281219744 + 1.5571 x 1078
¢» = 1.5000269858 + 2.01017 x 107°
c3 = —2.648116951 + 0.0000732

cs = 4.2278829125 £ 0.0016885

It seems that ¢; coincides with the hyperbolic volume of the complement of knot 55,
Vol(S3 \ 55) = 2.828122088330783...

See that the logarithmic correction term seems to be ¢ >~ 3/2.

6; Knot: We have [2]

N-1 2
(61)N — |(w)c‘ w(c-—a—-b)(c——a+l). (35)
abmty @a (@),
a+b=<c

We have used PARI and plotted a real part of %{-,’- log((61)n) in Fig. 4.



v(N)

Figure 4: Knot 6,

60

Due to the least-squares method, we obtain the following result for the function (3.3);

c1 = 3.1639628602 + 3.0400 x 10~8
c2 = 1.5000355979 + 1.8773 x 10~
c3 = —4.034362734 % 0.0000611
ca = 3.9717769748 + 0.0009704

A solid line in Fig. 4 denotes this function. We see that the first term ¢, is in good agreement

with the hyperbolic volume of the complement of 6,,
Vol(S3 \ 6;) = 3.16396322888...

and that ¢, ~ 3/2.

62 Knot: Kashaev’s invariant is explicitly computed as

N-1

(0)p—a

2
(62)y = Z w—ab+c+D) ( (@)p ) (w)a_,_c.

I (@)a l

a.b,c=0
a<

0<a+c<N-1

(3.6)

With PARI, we have computed numerically a real part of ZW” log(61)n for several N (e in
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|
Figure 5: Knot 6,

The least-square method with eq. (3.3) gives

¢1 = 4.400828513 £ 2.9716 x 1077
¢y = 1.500213389 + 9.8267 x 1078
c3 = —4.6850950 =+ 0.00028

ca = 6.02178 % 0.00266

which indicates that c; agrees with a hyperbolic volume of the complement of 65,
Vol(S3 \ 62) = 4.40083251...

and ¢y ~ 3/2.

63 Knot: We have

= (®)a+b+c 2 * (a+1)(b—-c)
(63)N = z ——(w)b (@) (@)g4p (W)a4c @ . (3.7)
a,b,c= ¢
a+b-€ccsl\(l)—l

Plotted as e in Fig. 6 is numerical result of a real part of 27 Jog(62) N-

A solid line is from eq. (3.3) with following coefficients determined by the least-square
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v(N)
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6.4
6.2
50 1?0 0 250 N

Figure 6: 63 Knot

method,;

c1 = 5.69289987 + 0.0000124
c2 = 1.50410580 + 0.00025998
c3 = —5.61617 + 0.00659

cs = 10.31505 £ 0.03968

The first term ¢, is consistent with the exact hyperbolic volume of the complement of knot
63,
Vol(S53 \ 63) = 5.69302109...

and the logarithmic correction term indicates c, ~ 3 /2.

Whitehead Link: We have

N-1 *
. (w) +c (@a -
Whitehead) y = ——ate ' 97 pea—b), 3.8
( W= D (38)
’b'Sa _
a+c<N-1

Numerical results by PARI for a real part of 27” log(Whitehead) y are plotted as e in Fig. 7.
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v(N)

4.4 \

“\‘\\

25 50 75 100 125 18— N
Figure 7: Whitehead link

We have applied the least square method with a function (3.3), and we obtain the
following result;

c1 = 3.663960 £ 0.000113
c2 = 1.499780 £ 0.001902
c3 = —3.272891 £ 0.046130
¢4 = 6.184589 £ 0.254868

In view of these data, it seems that c; coincides with the hyperbolic volume of the
Whitehead link,

Vol($? \ Whitehead) = 3.66386237...
and that ¢, ~ 3/2.

Borromean Rings: Using the R-matrix (1.3) of the colored Jones invariant, we have

2 ‘ »
] (b+1)(c—d+a—b). (3.9)

v (W)g+c (W)p+d
B =
(Borromean) a,,,;ﬂ) @ @ates

a<b<a+c<N-1
b+d<N—1

(w)q (@) b*—a
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See Fig. 8 for numerical results of a real part of ZW” log(Borromean) y, and a solid line is a
trial function (3.3) with

c1 = 7.3276812 £+ 4.119463 x 10~
c2 = 1.5017634 + 0.0001082

c3 = —8.764472 + 0.0029616

cs = 11.116386 + 0.0250

This is in agreement with the hyperbolic volume of the complement of the Borromean
rings,
Vol(S3 \ Borromean) = 7.32772475...
and that ¢, ~ 3/2.
v(N)

2\ N

6/0 8|0 100 120 140 140 180

T

~J
N

[« )}

Figure 8: Borromean rings

4 Conclusion

We have studied an asymptotic expansion of Kashaev’s knot invariant (or, a specific value
of the colored Jones polynomial); analytical studies for the torus knot, and numerical com-
putations for the hyperbolic knot (up to 6-crossing), Whitehead link, and Borromean rings.
Collecting these results and recalling that Kashaev’s invariant is given from the colored
Jones polynomial for (1,1)-tangle of knot, we have proposed that Kashaev’s invariant (X YN
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of knot X have an asymptotic form in a limit N — oo,
N 3
log(K)n| ~ v+ |S*\ K| - oo+ 5 #(X) log N + ON%). (1.5)

Here v3 is a hyperbolic volume of the regular ideal tetrahedron, and || - | and #(X) respec-
tively denote the Gromov norm and the number of prime factors of a knot as connected-
sum of prime knots. According to Ref. 14, in a case of the trefoil knot a factor 3/2in a
logarithmic term in eq. (1.5) is connected with a weight 1/2 of a nearly modular function
F(w). It will be interesting to study analytic properties of Kashaev’s invariant of knot X,
and to see a difference between the torus knot and the hyperbolic knot.

We have also proposed several g-series identities, eqgs. (2.39) and (2.46). The g-series is
introduced so that it reduces to an explicit form of Kashaev’s invariants of 2m+1, 2)-torus
knot in a case of g being the N-th root of unity. In a case of trefoil (m = 1) the g-series
identity was proved by Zagier. It remains for future studies whether we have such g-series
identities for invariant of the (2m + 1, 2)-torus knot.
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