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0 Introduction
The aim of this note is to explain briefly the joint work [AB2] with S.B\"ocherer

concerning the vanishing of certain spaces of modular forms with small weights ant its
applications.

First we describe the motivation which made us to study such kind of problems. The
starting point was the conjecture presented by K.Hashimoto about 1990 (published in
[Ha2] in 1998). His conjecture was concerning the linear dependences of several kinds
of certain theta series associated to Eichler orders of definite quaternion algebras over
Q. It was supported by many numerical computations by himself ([Ha2]). B\"ocherer
and the author independently became interested in the conjecture, started ajoint
research about 1998, and succeeded in solving it by distinct methods ([AB2]). In the
following we briefly explain asummary of the conjecture and describe how certain
spaces of elliptic modular (or Jacobi) forms were introduced and how we were led to
the solution. Moreover we explain some applications of our results.

1Hashimoto’s Conjecture
We abbreviate $\exp(2\pi iw)$ (to $\in \mathbb{C}$) to $e(w)$ . Let $B$ be adefinite quaternion algebra

over $\mathbb{Q}$ and $d(B)$ the product of prime integers that are ra mified in $B$ over Q. Set
$q:=d(B)$ .

For apositive integer $N=qN_{2}$ with $(N_{2}, q)=1$ , an order of $B$ with level $N$ is
defined as an order of $\mathcal{O}\subset B$ satisfying the following conditions:

1. $\mathcal{O}_{p}:=\mathcal{O}\otimes_{\mathrm{Z}_{p}}\mathbb{Z}$ is amaximal order of $B_{p}:=B\otimes \mathbb{Q}_{p}$ , if $p$ is aprime integer
dividing $q$ .

2. $\mathcal{O}_{p}\cong$ $(\begin{array}{ll}\mathbb{Z}_{p} \mathbb{Z}_{p}N\mathbb{Z}_{p} Z_{p}\end{array})$ for any prime onteger $p$ not dividing $q$ .
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If $N$ is square free, such an order is called an Eichler order.
Let $\mathcal{O}_{1}$ , $\mathcal{O}_{2}$ , $\ldots$ , $\mathcal{O}\tau$ be all representatives of conjugacy classes of orders with level

$N=qN_{2}$ . The number $T=T(q, N_{2})$ is called the type number of level $qN_{2}$ and
has been computed explicitly by many authors. Among others $\mathrm{H}\mathrm{a}_{\hslash}\mathrm{s}\mathrm{e}\mathrm{g}\mathrm{a}\mathrm{w}\mathrm{a}$ Hashimoto
([Hal], [HH]) represented $T(q, N_{2})$ as the sum of dimensions of certain spaces of cusp
forms of weight 2.

Let $M_{k}.(N)=M_{k}(\Gamma_{0}(N))$ (resp. $J_{k,1}(\Gamma_{0}(N))$ ) denote the space of modular forms
of weight $k$ (resp. Jacobi forms of weight $k$ and index 1) on $\Gamma_{0}(N)$ . Let $S_{k}(N)=$

$S_{k}(\Gamma_{0}(N))$ be the subspace of $M_{k}(N)$ consisting of cusp forms.
We define the following four types of theta series attached to orders $\mathcal{O}_{j}(1\leq j\leq T)$

with level $N$ :

$\theta_{j}(\tau):=\sum_{a\in \mathcal{O}_{j}}e(N(a)\tau)$
,

$\theta_{j}^{J}(\tau, z):=\sum_{a\in O_{j}}e(N(a)\tau+\mathrm{t}\mathrm{r}(a)z)$

$\theta_{j}^{I}(\tau):=$

$\mathrm{t}\mathrm{r}(a)=’ 0\sum_{a\in O_{j}}e(N(a)\tau)$

,
$\theta_{j}^{II}(\tau):=a$

$\mathrm{t}\mathrm{r}(a)=0\sum_{\in \mathrm{Z}+2\mathcal{O}_{j}},$

$e(N(a)\tau)$ .

Then, $\theta_{j}(\tau)\in M_{2}(N)$ , $\theta_{j}^{J}(\tau, z)\in J_{k,1}(\Gamma_{0}(N))$ , and $\theta_{j}^{I}(\tau)$ , $\theta_{j}^{II}(\tau)$ are modular forms of
half-integral weight 3/2 with level $4N$ .

Our concern is the linear (in)dependence of these theta series. Hashimoto presented
the following conjecture, whose details were discussed in [Ha2] and we solved it in [AB2],

Conjecture 1(Hashimoto, 1990) Assume N is square free,

(A) $\sum_{j=1}^{T}c_{j}\theta_{j}(\tau)=0\Leftrightarrow$ (B) $\sum_{j=1}^{T}c_{j}\theta_{j}^{II}(\tau)=0$ $\Leftrightarrow(C)\sum_{j=1}^{T}c_{j}\theta_{j}^{I}(\tau)=0$

8
(B) $\sum_{j=1}^{T}c_{j}\theta_{j}^{J}(\tau, z)=0$ .

Here $c_{j}’ s$ are some constants.

We make some remarks.

Remark 1. The equivalences of the assertions above are easily proved except the case
of $(A)\Rightarrow(B)$ (or $(A)\underline{-}$, $(B’)$ ).

2. If $N$ is not square free, as is discussed in [Ha3] Hashimoto also conjectured that
the assertions $(A)\Leftrightarrow(B)\Leftrightarrow(B’)$ will hold true,

3. If $4|N$ , then the assertion (C) $\Rightarrow(B)$ is not true, though the opposite one
$(B)\Rightarrow(C)$ always holds
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We explain the background of this conjecture. Gross [Gr] was the first who recoginizec
the significance of the problem of linear (in)dependences of the theta series concerned.
He showed that in case of $q=p$, aprime integer, and $N=q$, alinear relation of
$\{\theta_{j}^{II}(\tau)\}$ implies the existence of an eigen form $f\in S_{2}(q)$ with $L(f, 1)=0$ . Then
Bocherer, Schulze-Pillot generalized this result to the case of Eichler orders (i.e., $N$ is
square free) in amore concrete fashion. We exhibit here only apart of their results.
Let $\Theta^{II}(q, N_{2})$ be the $\mathbb{C}$-linear span of the theta series $\theta_{j}^{II}(\tau)(1\leq j\leq T(q, N_{2}))$.

Theorem 2(Gross [Gr], and B\"ocherer, Schulze-Pillot $[\mathrm{B}S]$ ) Assume that $N$ is
a square free positive integer. Let $g(\tau)\in S_{3/2}^{q}(N)_{J}$ a new form, and $f(\tau)\in S_{2}(\Gamma_{0}(N))$

a nomalized new form corresponding to $g$ by the Shimura correspondence. Then,

$g\in\ominus^{II}(q, N_{2})\Leftrightarrow L(f, 1)\neq 0$

and moreover

$L(f, 1)g( \tau)=c\cdot\sum_{j=1}^{H}\frac{\langle g,\theta_{\mathrm{j}}^{II}\rangle}{e_{j}}\theta_{j}^{II}(\tau)$,

where $c\neq 0$ is a constant depending only on $q$ , $N_{2}$ , and $H=H(q, N_{2})$ is the class
number of the Eichler order with level $N=qN_{2}$ . Here $\theta_{j}^{II}(\tau)(1\leq j\leq T)$ are the
same as above, while $\theta_{j}^{II}(\tau)(T+1\leq j\leq H)$ are so me repetitions of the theta $se’\backslash ies$

for $1\leq j\leq T$ . Moreover $S_{3/2}^{q}(N)$ is a certain space of cusp $forms$ or weight 3/2 with
level $4N$ introduced by Kohnen [Ko] (for the precise definition we refer to [Ko]).

In the rest of this subsection we give aproof of the easier parts $((B)\Leftrightarrow(C,)$ ,
$(B)\Leftrightarrow(B’))$ of the conjecture.

For $r$ $=0,1$ and $(\tau, z)\in \mathfrak{H}$ $\cross \mathbb{C}$ , we define the ordinary theta series by

$\theta_{r}(\tau,z)=\sum_{\lambda\in \mathrm{Z}}e((\lambda+\frac{r}{2})^{2}\tau+2(\lambda+\frac{r}{2})z)$ .

Then the theta transformation formula in this case is well known and given by

(1) $(\begin{array}{ll}\theta_{0}(M(\tau \sim’))\theta_{1}(M(\tau z))\end{array})=(c\tau+d)^{1/2}e(\frac{cz^{2}}{c\tau+d})U(M)$ $(\begin{array}{ll}\theta_{0}(\tau z)\theta_{1}(\tau,\approx) \end{array})$ ,

where $M=(\begin{array}{ll}a bc d\end{array})$ $\in SL_{2}(\mathbb{Z})$ , $M(\tau, z)=(M\tau,$ $\frac{\approx}{c\tau+d})$ , and $U(M)$ is aunitary matrix

of degree 2depending only on $M$ . Here we choose the branch of the holomorphic
function $z^{1/2}(z\neq 0)\mathrm{w}\mathrm{i}\mathrm{t}\mathrm{h}-\pi<\mathrm{a}\mathrm{l}.\mathrm{g}z\leq\pi$ .

Each $\phi(\tau, z)\in J_{k,1}.(\Gamma_{0}(N))$ has the expression

(2) $\phi(\tau, z)=h_{0}(\tau)\theta_{0}(\tau, z)+h_{1}(\tau)\theta_{1}(\tau, z)$
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with the transformation formula

$(h_{0}(M\tau), h_{1}(M\tau))U(M)=(c\tau+d)^{k-1/2}(h_{0}(\tau),h_{1}(\tau))$ $(M\in SL_{2}(\mathbb{Z}))$ .

Moreover it is known by Kramer [Kr] that the expresiion (2) for the theta series $\theta_{j}^{J}(\tau,z)$

is given by

$\theta_{j}^{J}(\tau, z)=\theta_{j}^{I}(\tau)\theta_{0}(\tau, z)+(\theta_{j}^{II}(\tau/4)-\theta_{j}^{I}(\tau))\theta_{1}(\tau, z)$ .

Lemma 3Let $\phi\in J_{k,1}.(\Gamma_{0}(N))$ .
(a) If $N$ is not divisible by 4and $h_{0}(\tau)=0$ , then, $h_{1}(\tau)=0$ and hence $\phi=0$ .

(b) If $h_{0}(\tau)+h_{1}(\tau)=0$ , then $\phi=0$ (we do $noJ$ need the condition 4 $\int N$ ).

2How to prove (A) $\Rightarrow(\mathrm{B}$
’

$)$

In the case of $N$ being square free we shall give asketch of aproof of (A) $\Rightarrow(\mathrm{B}$
’

$)$

instead of proving (A) $\Rightarrow(\mathrm{B})$ . The details were discussed in [AB2].
We consider the linear map

(3) $D_{0}$ : $J_{k,1}(\Gamma_{0}(N))\ni\phi(\tau, z)arrow\phi(\tau, 0)\in M_{k}.(\Gamma_{0}(N))$.

Set

$\omega(\mathrm{A}f)=\det U$ (A ) $(M\in SL_{2}(\mathbb{Z}))$ ,

which forms aunitary character of $SL_{2}(\mathbb{Z})$ . This $\omega$ actually coincides with the character
obtained from ,7, $\eta$ denoting the Dedekind eta function:

$\eta^{6}(\mathrm{A}\mathrm{f}\tau)$ $=\omega(\mathrm{A})(c\tau+d)^{3}\eta^{6}(\tau)$ , $(M\in SL_{2}(\mathbb{Z}))$ .

For any unitary character $\psi$ of $\Gamma_{0}(N)$ we denote by $M_{k}(\Gamma_{0}(N), \psi)$ (resp. $S_{k}(\Gamma_{0}(N),$ $\psi)$ )
the space of modular forms (resp. cusp forms) of weight $k$ with the character $\psi$ on
$\Gamma_{0}(N)$ .

We write $J_{k,1}.(\Gamma_{0}(N))^{0}$ for the kernel of the map Do. This kernel is described as
follows.

Proposition 4We have the $iso\uparrow no\uparrow^{\tau}phi.sm$

$\iota$ : $J_{k,1}.(\Gamma_{0}(N))^{0}\cong\Lambda f_{\mathrm{A}\cdot-1}(\Gamma_{0}(N),\overline{\omega})$

given by $\phiarrow\varphi(\tau):=-\frac{h_{1}(\tau)}{\theta_{0}(\tau)}f$ $were$ $\theta_{r}(\tau)=\theta_{f}.(\tau, 0)(r=0, 1)$ and $\overline{\omega}$ is the complex

conjugate of $\omega$ . $\Lambda fo$ reover $\phi\in J_{k,1}.(\Gamma_{0}(l\mathrm{V}))^{0}h,as$ the expression $n$

(4) $\phi(\tau, z)=\varphi(\tau)(\theta_{1}(\tau)\theta_{0}(\tau, z)-\theta_{0}(\tau)\theta_{1}(\tau, z))$ .
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We consider one more linear map

(5) $D_{2}$ : $J_{k,1}.(\Gamma_{0}(N))arrow M_{k+2}(\Gamma_{0}(N))$ ,

given by

$\phi(\tau,z)\mapsto(\frac{k}{2\pi i}\frac{\partial^{2}}{\partial z^{2}}-2\frac{\partial}{\partial\tau})\phi|_{z=0}$

One remarkable thing of this map is that, if $\phi\in J_{k,1}(\Gamma_{0}(N))^{0}$ , then

$D_{2}\phi=4k\varphi\xi$ with $\xi=\theta_{1}\theta_{0}’-\theta_{0}\theta_{1}’=-\pi i\eta^{6}$ ,

$\eta(\tau)$ being the Dedekind eta function.

Theorem 5We have the following commutative diagram:

$J_{k,1}(\Gamma_{0}(N))^{0}$

$\iota$ $\swarrow$ $[searrow] D_{2}$

$M_{k-1}(\Gamma_{0}(N),\overline{\omega})$
$\vec{\mathrm{X}4k\zeta}$

$S_{k+2}(\Gamma_{0}(N))^{0}$

In the diagr am

$S_{k+2}( \Gamma_{0}(N))^{0}:=\{f\in S_{k+2}(\Gamma_{0}(N))|\frac{f}{\xi}\in M_{k-1}.(\Gamma_{0}(N),\overline{\omega})\}$

and all the arrows are isomorphisms.

To prove the assertion $(A)\Rightarrow(B’)$ we set $\phi(\tau, z)=\sum_{j=1}^{T}cj\theta_{j}^{J}(\tau, z)$ . Then by the

assumption of (A), $\phi(\tau, 0)=\sum_{j=1}^{T}cj\theta j(\tau)=0$ ;namely, $\phi\in J_{2,1}(\Gamma_{0}(N))^{0}$ . Therefore it
is sufficient to prove $J_{2,1}(\Gamma_{0}(N))^{0}=\{0\}$ if $N$ is square free. In view of Theorem 5we
have only to prove

$M_{1}(\Gamma_{0}(N),\overline{\omega})=\{0\}$ or $S_{4}(\Gamma_{0}(N))^{0}=\{0\}$ .

Bocherer proved the latter identity by using the notion of Weierstrass subspaces. On
this occasion we shall give an outline of the proof of vanishing of $M_{1}(\Gamma_{0}(N),\overline{\omega})$ .

3Vanishing of $M_{1}(\Gamma_{0}(N),\omega^{\pm 1})$

First we note that $\overline{\omega}=\omega^{-1}=\omega^{3}$ , since $\omega^{4}$ is the identity character of $SL_{2}(\mathbb{Z})$ . We
assume that $N$ is square free. Then

$\Lambda f_{1}(\Gamma_{0}(N),\omega^{\pm 1})=S_{1}(\Gamma_{0}(N),\omega^{\pm 1})$ (see $[\mathrm{A}\mathrm{B}2$ , Proposition 1.2])
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$\tilde{N}=\{$

$N$

$N/2$

if $(N, 2)=1$ ,

if $(N, 2)>1$ .

We see easily from the property of $\omega$ ( $[\mathrm{A}\mathrm{B}2$ , Lenuna 1.1 and Lemma 3.1]) that the
following injective linear map exists:

$S_{1}(\Gamma \mathrm{o}(N),\omega^{\pm 1})\ni\varphiarrow\varphi|V(4)\in S_{1}(\Gamma\circ(16\tilde{N}),\chi)$ ,

where $(\varphi|V(4))(\tau)=\varphi(4\tau)$ and $\chi$ is aDirichlet character $\mathrm{m}\mathrm{o}\mathrm{d}16\tilde{N}$ derived from the
unique non-trivial character $\chi_{0}\mathrm{m}\mathrm{o}\mathrm{d} 4$ (namely, $?n_{\chi}=4$).

The following lemma plays an key role.

Lemma 6Let $M$ be a square free positive integer coprime to 2and $\nu$ a positive integer
$\geq 2$ . Then for any Dirichlet character $\chi$ defined modulo $2\mathrm{U}\mathrm{M}$ with conductor $\uparrow n_{\chi}=4$ ,
we have

$S_{1}(\Gamma_{0}(2^{\nu}M, \chi)=\{0\}$ .

Outline ofProof Assume that there exists anormalized new form $f\in S_{1}^{new}(\Gamma(2^{\nu}M, \chi)$ .
Let $L(s, f)$ denote the $L$-function attached to $f$ . By the famous theorem of Deligne-
Serre [Se] there exists aGalois extension $K/\mathbb{Q}$ and an irreducible tw0-dimension $\mathrm{a}1$

representation $\rho$ : $Gal(K/\mathbb{Q})arrow GL_{2}(\mathbb{C})$ such that

(6) $L(s, f)=L(s, \rho)$ ,

where Gal(K/Q) is the Galois group of the extension $K/\mathbb{Q}$ and $L(s, \rho)$ is the Artin
$L$-function associated to $\rho$ . For the Artin $L$-function we refer to [Ma]. Moreover by
the theorem $\chi=\det\rho$ and the Artin conductor of $\rho$ coincides with $2^{\nu}\Lambda f$ . We compute
the local factor of the both hand sides of (6) for each prime $p$ dividing $\Lambda f$ .

It is known in [Mi, Theorem 4.6.17, (2)] that, if $p|\Lambda/I$ , then

(7) $L_{p}(s, f)=(1-a_{p}p^{-s})^{-1}$ with $(a_{p}^{2}=\chi(p)p^{-1})$ ,

since $\Lambda f$ is square free and $m_{\chi}=4$ . On the other hand we have, for the local factor
$L_{p}(s,\rho)$ ,

$L_{p}(s, \rho)=\det(id_{V}-\rho(\sigma_{p})|_{V^{I_{P}}}.p^{-s})^{-1}$ ,

where $V=\mathbb{C}^{2}$ is the representation space of $\rho$ , $I_{p}$ (resp. $D_{p}$ ) is the inertia (resp.
decomposition) subgroup of $Gal(K/\mathbb{Q})$ at the prime $p$ , and $\sigma_{p}$ is the Frobenius element
of $p$ . Moreover $V^{I_{p}}=\{v\in V|\rho(g)v=v\forall g\in I_{p}\}$ . We may divide into three cases by
the dimension of the space $V^{I_{p}}$ .
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(i) $V^{I_{p}}=\{0\}$ :In this case we have $L_{p}(s,\rho)=1$ , which contradicts the form (7).

(ii) $V^{I_{\mathrm{p}}}=V$:Then $L_{p}(s,\rho)$ is apolynomial of degree two in $p^{-s}$ , which does not occur.

(iii) $\dim V^{I_{\mathrm{p}}}=\{0\}$:This is the case we have $L_{p}(s,\rho)=(1-\zeta p^{-s})^{-1}$ with $\zeta=\rho(\sigma_{p})$ a
root of unity. This expression also contradicts the form (7).

Anyway all these three cases contradict (7). .
With the help of this lemma, Lemma 4.6.9 of [Mi] and the multiplicity one theorem

([Mi, Theorem 4.6.19]) we have the decomposition of the space $S_{1}(\Gamma_{0}(16\tilde{N}), \chi)$ :

(8) $S_{1}(\Gamma_{0}(16\tilde{N}),\chi)=V_{0}\oplus V_{1}\oplus V_{2}$ ,

where, for $0\leq\delta$ $\leq 2$ ,

$V_{\delta}=\oplus\{f(lz)|f\in S_{1}^{n\mathrm{e}w}(2^{4-\delta}, \chi_{\delta})\}l|2^{\delta}\overline{N}$

,

$\chi_{\delta}$ being aDirichlet character modulo $2^{4-\delta}$ with conductor 4.
The final ingredient to the proof is the following vanishing of the spaces of modular

forms:

(9) $S_{1}^{new}(2^{4-\delta}, \chi)=\{0\}$ $(\delta=0,1,2)$ ,

where $\chi$ is aDirichlet character $\mathrm{m}\mathrm{o}\mathrm{d} 2^{4-\delta}$ with conductor 4. The proof of (9) is based
on the following computation of the dimensions:

$\dim S_{2}(\Gamma_{0}(2^{4-\delta}))=0$ $(\delta=0,1,2)$ .

Therefore we obtain our main results.

Theorem 7If N is square free, then $M_{1}(\Gamma_{0}(N),\omega^{\pm 1})=\{0\}$ .

Theorem 8The Hashimoto conjecture for square fire levels N holds true.

4Applications
The most important application of our Theorem 7is to obtain asolution of the

Hashimoto conjecture for square free levels. In this section some more applications will
be explained
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We write $U(d)$ for the group consisting of unitary matrices of degree d. For M $=$

( ac db) $\in SL_{2}(\mathbb{R})$ and z $\in \mathfrak{H}$ , let $J(M,$z) $:=cz+d$ be the ordinary factor of

automorphy. Acocycle $\sigma_{\lambda}(A,$B) for $\lambda\in \mathbb{R}$ and A, B $\in SL_{2}(\mathbb{R})$ is defined by

$\sigma_{\lambda}(A, B):=\frac{J(A,Bz)^{\lambda}J(B,z)^{\lambda}}{J(AB,z)^{\lambda}}$ .

Let $\Gamma$ be acongruence subgroup of $5\mathrm{X}2(\mathrm{Z})\mathrm{c}\mathrm{o}\mathrm{n}\mathrm{t}\mathrm{a}\mathrm{i}\mathrm{n}\mathrm{i}\mathrm{n}\mathrm{g}-1_{2}$ . Amap $\chi$ : $\Gammaarrow \mathrm{U}(\mathrm{d})$

is called aunitary multiplier system of $\Gamma$ of weight $2k(k\in \mathbb{R})$ , dimension $d$ , if it
satisfies the following two conditions (i), (ii):

(i) $\chi(-1_{2})=e^{-2\pi ik}1_{d}$ , $1_{d}$ denoting the identity matrix of size $d$ .
(ii) For any $A$ , $B\in\Gamma$ , $\chi(AB)=\sigma_{2k}(A, B)\chi(A)\chi(B)$ .

We define the Selberg zeta function $Z_{\Gamma,\chi}(s)$ attached to $\Gamma$ and aunitary multiplier
system $\chi$ of $\Gamma$ :

$Z_{\Gamma,\chi}(s)$ $:= \prod_{\{P_{0}\}_{\Gamma},\mathrm{t}\mathrm{r}P_{0}>2}\prod_{m=0}^{\infty}\det(id_{V}-\chi(P_{0})N(P_{0})^{-s-m})$ ,

where $\{P_{0}\}_{\Gamma}$ runs over all the $\Gamma$-conjugacy classes of primitive hyperbolic elements of
$\Gamma$ with $\mathrm{t}\mathrm{r}P_{0}>2$ . The infinite products on the right hand side converge absolutely for
${\rm Re}(s)>1$ . Here $N(P_{0})$ (called the norm of Po) denotes the square of the eigen value
of $P_{0}$ which is larger than one. Via the Selberg $\mathrm{t}\mathrm{r}\mathrm{a}\mathrm{c}\mathrm{e}$ formula $Z_{\Gamma_{\lambda}},,(s)$ can be continued
to ameromorphic function in the whole $s$ plane which is holomorphic in the interval
$1/2\leq s\leq 1$ .

We exclusively discuss the cases of $\chi=\omega^{\pm 1}$ and $\chi=\mathrm{U}$, the complex conjugate of
$U$ . For aholomorphic function $f$ at $a\in \mathbb{C}$ , $\mathrm{O}\mathrm{r}\mathrm{d}_{s=a}f$ denotes the order of zero at $s=a$
of $f$ . By using the resolvent $\mathrm{t}\mathrm{r}\mathrm{a}\mathrm{c}\mathrm{e}$ formula in [Fi], [He] we have the following theorem
(see [AB2] for the proof and also [AB1]).

Theorem 9If $N$ is square fret, then

dinu $S_{1}( \Gamma_{0}(N),\omega^{\pm 1})=\frac{1}{2}\mathrm{O}\mathrm{r}\mathrm{d}_{s=1/2}(Z_{\Gamma_{0}(N),\omega}\pm 1(s))$ .

As an immediate corollary of this theorem and Theorem 7we have

Corollary 10 If N is square free, then

$Z_{\Gamma_{0}(N)_{1d}^{\pm 1}},(1/2)\neq 0$ .
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One more application is that the injectivity of $D_{0}$ implies the bijectivity of $D_{0}$ .

Proposition 11 If N is square free, then the linear map $D_{0}$ is bijective.

This is an immediate consequence of the following theorem of Kramer and the injec-
tivity of $D_{0}$ .
Theorem 12 (Kramer [Kr]) If $N$ is square free, then

$\dim J_{2,\mathrm{I}}(\Gamma_{0}(N))=\dim M_{2}(\Gamma_{0}(N))$ .
Then by Proposition 11 the map $D_{0}$ induces bijection from the subspace $J_{2,1}^{cusp}(\Gamma_{0}(N))$

to S2(r0(AO), where $J_{2,1}^{cusp}(\Gamma_{0}(N))$ is the subspace of cusp forms of $J_{2,1}(\Gamma_{0}(N))$ . In par-
ticular

(10) $\dim J_{2,1}^{\mathrm{c}us\mathrm{p}}(\Gamma_{0}(N))=\dim S_{2}(\Gamma_{0}(N))$ .

Let $\chi=\mathrm{U}$ , the complex conjugate of the unitary multiplier system $U$ of $SL_{2}(\mathbb{Z})$

given by (1). We have proved in [Arl, Theorem 5.2, (iii)] that

$\dim J_{2,1}^{\mathrm{c}usp}(\Gamma_{0}(N))$ $=$ $\mathrm{O}\mathrm{r}\mathrm{d}_{s=3/4}(Z_{\Gamma_{0}(N),\chi}(s))+\lambda_{N}$,

$\dim J_{1,1}^{sk\mathrm{e}w}.(\Gamma_{0}(N))$ $=$ $\mathrm{O}\mathrm{r}\mathrm{d}_{s=3/4}(Z_{\Gamma_{0}(N),\chi}(s))$ ,

where $J_{1,1}^{skew}(\Gamma_{0}(N))$ is the space of skew-holomorphic Jacobi forms of weight 1and
index 1with respect to $\Gamma_{0}(N)$ . Here $\lambda_{N}=\lambda \mathrm{r}_{0}(N)(2;1)$ is arational number defined in
[Arl]. Precisely in our situation it is given by

(11) $\lambda_{N}=\frac{1}{4\pi}v(\Gamma_{0}(N)\backslash \mathfrak{H})-\frac{\nu_{2}}{4}\epsilon_{2}(2;1)-\frac{\nu_{3}}{3}\epsilon_{3}(2;1)+\nu_{\infty}-\sum_{0<v|N}\sqrt v-t_{\infty}$ .

We explain the notations used in (11). First $\nu_{\infty}$ is the number of the $\Gamma_{0}(N)$-equivalence
classes of cusps of $\Gamma_{0}(N)$ . The $\Gamma_{0}(N)$-inequivalent cusps are represented by $\xi=\frac{1}{v}(v|N$ ,
$v>0)$ . The number of such $\xi$ equals $\nu_{\infty}=2^{r}$ , $r$ being the number of prime integers
dividing $N$ . For each $0<v|N$ , $\beta_{v}$ is given by

$\beta_{v}=\langle-\frac{N}{4v}\rangle$ ,

where $\langle x\rangle$ for $x\in \mathbb{R}$ denotes the real number with $x-\langle x\rangle\in \mathbb{Z}$ , $0\leq\langle x\rangle<1$ . The number
$t_{\infty}$ is defined to be the number of linearly independent Eisenstein series attached to
the multiplier system $(\Gamma_{0}(N), \chi)$ (see [Arl, p.192]). In our situation we have $t_{\propto 1}=2^{r}$ .
Moreover

C2(2; 1) $=$ $-G_{2}(1) \cos((2+\frac{1}{2})\frac{\pi}{2})=0$ $(G_{2}(1)= \frac{1}{\sqrt{2}}(1+e(\frac{1}{2}))=0)$ ,

$\epsilon_{2}(2;1)$ $=$ $\frac{\sin(2\pi/3)}{2\sin(\pi/3)}=1$ ( $\mathrm{s}$ ee $G_{3}(1)= \frac{1}{\sqrt{3}}(1+2e(\frac{1}{3}))=0$).
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$\nu_{2}$ (resp. $\nu_{3}$ ) is the number of $\Gamma_{0}(N)$-equivalence classes of all elliptic points of TO(N)
of order 2(resp. 3). Finally we set

$\mu=N\prod_{p|N}(1+\frac{1}{p})$

and $v(\Gamma_{0}(N)\backslash \mathfrak{H})$ is the volume of $\Gamma_{0}(N)\backslash \mathfrak{H}$ with respect to $\frac{dxdy}{y^{2}}$ which is actually given
by

$v( \Gamma_{0}(N)\backslash \mathfrak{H})=\frac{\pi}{3}\mu$ .

Su mming up, we have

$\dim J_{2,1}^{cusp}(\Gamma_{0}(N))=\mathrm{d}\mathrm{i}\mathrm{n}\mathrm{n}$ $J_{1,1}^{skew}.(\Gamma_{0}(N))+\lambda_{N}$

with

$\lambda_{N}$ $=$
$\frac{\mu}{12}-\frac{\nu_{3}}{3}+2^{r}-\sum_{0<v|N}\langle-\frac{N}{4v}\rangle-2^{r}$

$=$
$\frac{\mu}{12}-\frac{\nu_{3}}{3}-\sum_{0<v|N}(1-\langle\frac{N}{4v}\rangle)$

Note that

$\sum_{0<v|N}(\frac{1}{2}-\langle\frac{N}{4v}\rangle)=\frac{1}{4}\prod_{p|N}(1+(\frac{-1}{p}))=\frac{\nu_{2}}{4}$ .

Let $g_{N}$ denote the dimension of the space $S_{2}(\Gamma_{0}(N))$ which is actually given by

$g_{N}=1+ \frac{\mu}{12}-\frac{\nu_{2}}{4}-\frac{\nu_{3}}{3}-\frac{\nu_{\infty}}{2}$

(for instance see [Sh]). Hence we have

$\lambda_{N}=g_{N}-1$ .

Therefore

$\dim J_{2,1}^{cusp}(\Gamma_{0}(N))=\dim J_{1,1}^{s\mathrm{A}\cdot ew}(\Gamma_{0}(N))+g_{N}-1=\dim J_{1,1}^{skew}.(\Gamma_{0}(N))-1+\dim S_{2}(\Gamma_{0}(N))$ .

Since we have the equality (10) of the dimensions, we conclude that

$\dim J_{1,1}^{skew}(\Gamma_{0}(N))=\mathrm{O}\mathrm{r}\mathrm{d}_{s=3/4}(Z_{\Gamma_{0}(N),\chi}(s))=1$ .

For other applications of the bijectivity of $D_{0}$ we refer the reader to [AB2]
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