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Abstract
Results on general and tight wavelet frames and microlocal analysis

in $\mathbb{R}^{n}$ are summarized. To perform microlocal analysis of tempered
distributions in Rn, tight frame wavelets, whose Fourier transforms
consist of smoothed characteristic functions of cubes in $\mathbb{R}^{n}$ , are con-
structed. Singularities in smooth images are localized in position and
direction by means of frame coefficients computed in the Fourier d0-
main. The numerical process of image restoration based on microlocal
analysis with smooth tight wavelet frames is presented and two natural
images are restored by this process.

1Introduction
In previous work [1], [2], [3], the concept of microlocal analysis was described,
with the goal of numerically studying the singularities of distributions in $\mathbb{R}^{n}$ .
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The micr0-analytic content of adistribution was localized by means of the
coefficients of amultiwavelet expansion. The Fourier transforms of the mul-
tiwavelets were characteristic functions of boxes or squares that completely
covered the Fourier domain. In order to have better resolution in the $x$ d0-
main, smooth tight wavelet frames were constructed in [4] by using several
types of smoothings of the box functions. Anumerically convenient smooth-
ing was obtained in [5] by tapering the characteristic functions in $\mathbb{R}^{2}$ . Image
analysis in the Fourier domain allows the localization of the micr0-analytic
content and singularities in position and orientation. It also allows some
denoising and compression of natural and geometric images.

This paper is acontinuation of the previous work. We expand the discus-
sion on general frame theory for the convenience of the reader and present,
as anew application, aprocedure for image restoration based on microlocal
analysis and smooth frame expansion. In particular, singularities that have
been localized by the above methods are removed from the image. The the-
oretical results on the construction and application of wavelet frames have
to be adapted to finite images. Two simple examples are presented, where a
singularity in the form of ashort straight segment or astraight line is added
to anatural image, thus producing ascarred image. The discrete Fourier
transform of the scarred image is filtered by means of one or two wavelet
frames with support in the high frequency part of the transformed image, at
right angle to the scar, in order to pick up the singularity. This high pass
filter cuts off the low frequencies which come mainly from the Fourier trans-
form of the original image (which is rather smooth). The frame coefficients
of the filtered image are computed in the Fourier domain. By means of the
Plancherel theorem, the coefficients with larger absolute values localize the
scar in the $x$ domain. The scar is reconstructed by means of its wavelet frame
expansion in the $x$ domain. Because of its finite size, the one-pixel-thick scar
is returned to the $x$ domain as afew-pixel-thick segment or line after adirect
and an inverse discrete Fourier transform. To remove small perturbations
in the returned image, the values at each pixel are rounded, thus setting
the small values to zero. Then the thickness of the line or segment is found
and reduced by setting to zero the pixels off the center line. In some cases,
further tuning may be needed. Then, subtracting the image of the scar from
the initial scarred image restores the original image.

The paper is organized as follows. In section 2, frame theory is briefly
reviewed. Tight wavelet frames in $\mathbb{R}^{n}$ are described in section 3. Sections 4
to 7present the notions of frame multiresolution analysis, microlocal analy-
sis, one- and multi-dimensional orjhornormal and frame microlocal filtering.
Section 9describes the image restoration process based on the above theory.
Two scarred natural images are numerically restored
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2Frames
We briefly review frame theory in this section, referring to [6], [7] and [8] for
detailed information. Frame theory was originally developed by Duffin and
Schaeffer [9] to reconstruct band-limited signals $f$ from irregularly spaced
samples $\{f(t_{n})\}_{n\in \mathrm{Z}}$ . Afunction $f$ is said to be band-limited if its Fourier
transform is supported in afinite interval $[-\pi/T, \pi/T]$ , Duffin and Schaef-
fer were motivated by the classical sampling theorem (see, for example, [8],
p. 44), which asserts that aband-limited function $f\langle t$) can be recovered from
regularly spaced samples $f(nT)$ .

Theorem 1(Sampling Theorem) If the support of $f$ is included in the
interval $[-\pi/T, \pi/T]$ , then

$f(x)= \sum_{n=-\infty}^{\infty}f(nT)h_{T}(t-nT)$ ,

with
$h_{T}(t)= \frac{\sin(\pi t/T)}{\pi t/T}$ .

It is natural to consider general conditions under which one can recover a
vector $f$ in aseparable Hilbert space $\mathcal{H}$ from inner products $\langle f, \phi_{n}\rangle$ with a
family of vectors $\{\phi_{n}\}_{n\in \mathrm{J}}$ , where the index set $\mathrm{J}$ might be finite or infinite.

Asequence $\{\phi_{n}\}_{n\in \mathrm{J}}$ is called aframe for $\mathcal{H}$ if there exist constants $A>0$
and $B>0$ such that for any $f\in ll$ ,

$A||f||^{2} \leq\sum_{n\in \mathrm{J}}|\langle f, \phi_{n}\rangle|^{2}\leq B||f||^{2}$
.

The constants $A$ and $B$ are called frame bounds. Aframe is said to be tight
if $A=B$ . The operator $L:\mathcal{H}\vdasharrow \mathcal{H}$ defined by

$Lf= \sum_{n\in \mathrm{J}}$

$\langle f, \phi_{n}\rangle\phi_{n}$ , $\forall f\in lt$ ,

is called the frame operator, and is apositive, continuous mapping of $H$ onto
itself with continuous inverse. Define

$\ell^{2}(\mathrm{J}):=$ {x : $||x||_{\ell^{2}(\mathrm{J})}^{2}:= \sum_{n\in \mathrm{J}}|x[n]|^{2}<+\infty\}$

and define the analysis operator $U:\mathcal{H}-*\ell^{2}(\mathrm{J})$ by

$Uf[n]=\langle f, \phi_{n}\rangle$ , $\forall n\in \mathrm{J}$ .
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The synthesis operator is the adjoint $U^{*}$ of $U$ , and is given by

$U^{*}x= \sum_{n\in \mathrm{J}}x[n]\phi_{n}$
, $x\in\ell^{2}(\mathrm{J})$ .

Then the frame operator $L$ factorizes as $L=U^{*}U$ . The system $\{\tilde{\phi}_{n}^{\backslash }\}_{n\in \mathrm{J}}$

defined by
$\tilde{\phi}_{n}=L^{-1}\phi_{n}=(U^{*}U)^{-1}\phi_{n}$

is aframe for $?t$ with frame bounds $1/B$ , $1/A$ , and is called the dual frame
of $\{\phi_{n}\}_{n\in \mathrm{J}}$ . If the frame is tight (i.e., $A=B$), then $\tilde{\phi}_{n}=A^{-1}\phi_{n}$ .

Let ran $U$ denote the range of $U$ , that is, the space of all $Uf$ where $f\in ll$ .
If $\{\phi_{n}\}_{n\in \mathrm{J}}$ is aframe which is not abasis for $\mathcal{H}$ , then ran $U$ is strictly included
in $\ell^{2}(\mathrm{J})$ and $U$ admits an infinite number of left inverses $\overline{U}^{-1}$ :

$\overline{U}^{-1}Uf=f$, $\forall f\in \mathcal{H}$ .

The left inverse that is zero on ran $U^{[perp]}$ is called the pseudO-inverse of $U$ and
is denoted by $\tilde{U}^{-1}$ :

$\tilde{U}^{-1}x=0$ , $\forall x\in \mathrm{r}\mathrm{a}\mathrm{n}$
$U^{[perp]}$ .

In infinite-dimensional spaces, the pseud0-inverse $\tilde{U}^{-1}$ of an injective operator
is not necessarily bounded. This induces numerical instabilities when trying
to reconstruct $f$ from $Uf$ . The pseud0-inverse can be expressed in the form

$\tilde{U}^{-1}=(U^{*}U)^{-1}U^{*}$ ,

and
$f= \tilde{U}^{-1}Uf=\mathrm{I}\langle f, \phi_{n}\rangle\tilde{\phi}_{n}=\sum_{n\in \mathrm{J}}\langle f,\tilde{\phi}_{n}\rangle\phi_{n}=L(L^{-1}f)$

.

When the frame is tight (i.e., $A=B$), then $\tilde{\phi}_{n}=A^{-1}\phi_{n}$ , so in this case

$f= \tilde{U}^{-1}Uf=\frac{1}{A}\sum_{n\in \mathrm{J}}\langle f, \phi_{n}\rangle\phi_{n}$.

Hence, for atight frame, by replacing $\phi_{n}$ by $\phi_{n}/\sqrt{A}$ we may without loss of
generality always assume that the frame bound is $A=1$ .

Let us describe some numerical algorithms to recover asignal $f$ from
its frame coefficients $Uf[n]=\langle f, \phi_{n}\rangle$ . When the dual frame vectors $\tilde{\phi}_{n}=$

$(U^{*}U)^{-1}\phi_{n}$ are precomputable, we can recover each $f$ from the frame expan-
sion

$f=L^{-1}Lf= \sum_{n\in \mathrm{J}}$

$\langle f, \phi_{n}\rangle\tilde{\phi}_{n}$ .
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But in some applications, the dual frame vectors $\tilde{\phi}_{n}$ cannot be computed in
advance. In this case, another approach is to apply the pseud0-inverse to $Uf$

in the form:
$f=\tilde{U}^{-1}Uf=(U^{*}U)^{-1}(U^{*}U)f=L^{-1}Lf$.

Whether we precompute the dual frame vectors or apply the pseudo in-
verse on the frame data, both approaches require an efficient way to compute
$f=L^{-1}g$ for some $g\in \mathcal{H}$ . One way is to use the following Richardson’s ex-
trapolation scheme when the frame bounds $A$ and $B$ are known.

Lemma 1(Richardson’s Extrapolation) Let $g\in \mathcal{H}$ . To compute $f=$
$L^{-1}g$ , initialize $f_{0}=0$ . Let $\gamma>0$ be a relaxation parameter. For any $n>0$ ,
define

$f_{n}=f_{n-1}+\gamma(g-Lf_{n-1})$ .

If
$\delta=\max\{|1-\gamma A|, |1-\gamma B|\}<1$ ,

then
$||f-f_{n}||\leq\delta^{n}||f||$ , (1)

and hence $\lim_{narrow+\infty}f_{n}=f$ .

This algorithm for frame inversion appears in [9] and is commonly referred
to as the frame algorithm. The convergence rate is maximized when $\delta$ is
minimum:

$\delta=\frac{B-A}{B+A}=\frac{1-A/B}{1+A/B}$ ,

which corresponds to the relaxation parameter

$\gamma=\frac{2}{A+B}$ .

The algorithm converges quickly if $A/B$ is close to 1. If $A/B$ is small then

$\delta\approx 1-2\frac{A}{B}$ . (2)

Inequality (1) proves that we obtain an error smaller than $\epsilon$ for a number $n$

of iterations, such that the following inequality holds

$\frac{||f-f_{n}||}{||f||}\leq\delta^{n}=\epsilon$ .
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Inserting (2) in this inequality gives

$n \approx\frac{1\mathrm{o}\mathrm{g}\epsilon}{\log(1-2A/B)}\approx\frac{-B}{2A}\log\epsilon$ .

Thus, the number of iterations is directly proportional to the frame bound
ratio $B/A$ .

As Grochenig has shown, much faster algorithms for frame inversion can
be derived by making use of ideas from conjugate gradient methods [10]. In
particular, those methods do not require knowledge of the frame bounds, and
can be fast even when $B/A$ is not close to 1.

3Tight Wavelet Frames
Since the dual of atight frame is aconstant multiple of the frame itself, recov-
ering functions from their frame coefficients does not require the computation
of the dual frame. Hereafter, we shall focus on tight wavelet frames.

Given $f\in L^{2}(\mathrm{R}^{n})$ , let $f_{jk}$ denote the scaled and shifted function

$f_{jk}(x)=2^{nj/2}f(2^{j}x-k)$ , j $\in \mathbb{Z}$ , k $\in \mathbb{Z}^{n}$ . (3)

Let L be afinite index set. Asystem $\{\psi_{jk}^{\ell}\}_{\ell\in \mathrm{L}_{\dot{\theta}}\in \mathrm{Z},k\in \mathrm{Z}^{n}}\subset L^{2}(\mathbb{R}^{n})$ is called a
tight wavelet frame with frame bound A if

$f= \frac{1}{A}\sum_{\ell\in \mathrm{L},j\in \mathrm{Z}},$

$\langle f, \psi_{jk}^{\ell}\rangle\psi_{jk}^{\ell}k\in \mathrm{Z}^{n}$

’
$\forall f\in L^{2}(\mathbb{R}^{n})$ . (4)

Asystem $\{\psi_{jk}^{\ell}\}_{\ell\in \mathrm{L},j\in \mathrm{Z},k\in \mathrm{Z}^{n}}\subset L^{2}(\mathbb{R}^{n})$ is called an orthonormal wavelet basis
if it is an orthonormal basis for $L^{2}(\mathbb{R}^{n})$ . This is equivalent to saying that
the system $\{\psi_{jk}^{\ell}\}_{\ell\in \mathrm{L}_{\dot{\theta}}\in \mathrm{Z},k\in \mathrm{Z}^{n}}$ is atight wavelet frame with frame bound 1and
$||\psi^{\ell}||_{L^{2}(\mathrm{R}^{n})}=1$ for $\ell\in \mathrm{L}$.

The following general theorem, which is essentially Theorem 1as stated
and proved in [11] for $\mathbb{R}^{n}$ , gives necessary and sufficient conditions to have a
tight wavelet frame in $\mathrm{R}^{n}$ with frame bound 1.

Theorem 2Suppose $\psi^{\ell}\subset L^{2}(\mathbb{R}^{n})$ for $\ell\in \mathrm{L}$. Then

$||f||_{L^{2}(\mathrm{R}^{n})}^{2}= \sum_{\ell\in \mathrm{L},j\in \mathrm{Z}},$

$|\langle f,\psi_{j,k}^{\ell}\rangle|^{2}k\in \mathrm{Z}^{n}$

(5)
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for all f $\in L^{2}(\mathbb{R}^{n})$ if and only if the set of functions $\{\psi^{\ell}\}_{\ell\in \mathrm{L}}$ satisfies the
following trno equalities:

$\sum_{\ell\in \mathrm{L},j\in \mathrm{Z}},$

$|\hat{\psi}^{\ell}(2^{\dot{g}}\xi)|^{2}=1$ , a.e. $\xi\in \mathbb{R}^{n}$ , (6)

$j \in \mathbb{Z}_{+}\sum_{\ell\in \mathrm{L}}\hat{\psi}^{\ell}(2^{j}\xi)\hat{\psi}^{\ell}(2^{j}(\xi+q))=0$

, a.e. $\xi\in \mathbb{R}^{n}$ , $\forall q\in \mathbb{Z}^{n}\backslash (2\mathbb{Z})^{n}$, (7)

where $\mathbb{Z}_{+}:=\mathrm{N}$ U{0} and q $\in \mathbb{Z}^{n}\backslash (2\mathbb{Z})^{n}$ means that at least one component
$q_{j}$ is odd.

Corollary 1Under the hypotheses of Theorem 2, any function f $\in L^{2}(\mathbb{R}^{n})$

admits the tight wavelet frame expansion

$f= \sum_{\ell\in \mathrm{L},j\in \mathbb{Z}},$

$\langle f, \psi_{jk}^{\ell}\rangle\psi_{jk}^{\ell}k\in \mathbb{Z}^{n}$

. (8)

By using the localization property of the frame wavelet in the Fourier domain,
one can study the directions of growth of $\hat{f}(\xi)$ by looking at the size of the
frame coefficients

$\langle f, \psi_{jk}^{\ell}\rangle=(2\pi)^{-n}\langle\hat{f,}\hat{\psi}_{jk}^{\ell}\rangle$ , (9)

where the Fourier transform of $f$ is defined by

$\mathcal{F}[f](\xi)=\hat{f}(\xi):=\int_{\mathrm{R}^{n}}e^{-ix\xi}f(x)dx$

and the inverse Fourier transform of $g$ is defined by

$\mathcal{F}^{-1}[g](x):=(2\pi)^{-n}\int_{\mathrm{R}^{n}}e^{ix\xi}g(\xi)d\xi$ .

Moreover, by using the localization property of the frame wavelets in x-space,
one can localize the singular support of $f(x)$ by varying $\ell$ , $j$ and $k$ in (9).

4Frame Multiresolution Analysis
The notion of frame multiresolution analysis was introduced by Benedetto
and Li [12]. Let us recall that an orthonormal multiresolution analysis con-
sists of asequence of closed subspaces $\{V_{j}\}_{j\in \mathrm{Z}}$ of $L^{2}(\mathbb{R}^{n})$ satisfyin$\mathrm{g}$
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(i) $V_{j}\subset V_{j+1}$ , for all j $\in \mathbb{Z}$ ;

(ii) $f(\cdot)\in V_{j}$ if and only if $f(2\cdot)\in V_{j+1}$ , for all j $\in \mathbb{Z}$ ;

(iii) $\bigcap_{j\in \mathrm{Z}}V_{j}=\{0\}$ ;

(iv) $\overline{\bigcup_{j\in \mathrm{Z}}V_{j}}=L^{2}(\mathbb{R}^{n})$ ;

(v) There exists afunction $\phi\in V_{0}$ such that $\{\phi(\cdot-k)\}_{k\in \mathrm{Z}^{n}}$ is an orthonor-
mal basis for V4.

The function $\phi\in L^{2}(\mathbb{R}^{n})$ whose existence is asserted in condition (v) is called
an orthonormal scaling function for the given orthonormal multiresolution
analysis.

frame multiresolution analysis consists of asequence of closed subspaces
$\{V_{j}\}_{j\in \mathrm{Z}}$ of $L^{2}(\mathrm{R}^{n})$ satisfying (i), (ii), (iii), (iv) and

(v-1) There exists afunction $\phi\in V_{0}$ such that $\{\phi(\cdot-k)\}_{k\in \mathrm{Z}^{n}}$ is aframe for
$V_{0}$ .

The function $\phi\in L^{2}(\mathbb{R}^{n})$ whose existence is asserted in condition (v-1) is
called aframe scaling function for the given frame multiresolution analysis.

Let $D$ be afinite index set. An orthonormal multiwavelet multiresolu-
tion analysis consists of asequence of closed subspaces $\{V_{j}\}_{j\in \mathrm{Z}}$ of $L^{2}(\mathbb{R}^{n})$

satisfying (i), (ii), (iii), (iv) and

(v-2) There exists asystem of functions $\{\phi_{\delta}\}_{\delta\in D}\subset V_{0}$ such that $\{\phi_{\delta}(\cdot-$

$k)\}_{\delta\in D,k\in \mathrm{Z}^{n}}$ is an orthonormal basis for $V_{0}$ .

The set of functions $\{\phi_{\delta}\}_{\delta\in D}$ whose existence is asserted in condition (v-2)
is called aset of orthonormal multiscaling functions.

Aframe multirnavelet multiresolution analysis consists of asequence of
closed subspaces $\{V_{j}\}_{j\in \mathrm{Z}}$ of $L^{2}(\mathrm{R}^{n})$ satisfying (i), (ii), (iii), (iv) and

(v-3) There exists asystem of functions $\{\phi_{\delta}\}_{\delta\in D}\subset V_{0}$ such that $\{\phi_{\delta}(\cdot-$

$k)\}_{\delta\in D,k\in \mathrm{Z}^{n}}$ is aframe for $V_{0}$ .

The set of functions $\{\phi_{\delta}\}_{\delta\in D}$ whose existence is asserted in condition (v-3)
is called aset of frame multiscaling functions.
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5Microlocal Analysis
Our approach to microlocal analysis is based on the theory of hyperfunctions
([13], [14], [15]). Hyperfunctions are powerful tools in several applications; for
example, vortex sheets in tw0-dimensional fluid dynamics are arealization of
hyperfunctions of one variable. Microlocal analysis deals with the direction
along which ahyperfunction can be extended analytically. In other words, it
decomposes the “singularity” into microlocal directions. Microlocal analysis
plays an important role in the theory of hyperfunctions, partial differential
operators, and other areas. In this theory, for example, one can consider the
product of hyperfunctions and discuss the partial regularity of hyperfunctions
with respect to any independent variable.

Here, we give only arough sketch. Amore complete treatment of mi-
crolocal filtering can be found in [1] (see also [4]). The important point is to
find directions in which ahyperfunction can be continued analytically. Let
$\Omega\subset \mathbb{R}^{n}$ be an open set, and $\Gamma\subset \mathbb{R}^{n}$ be aconvex open cone with vertex at 0.
From now on, every cone is assumed to have vertex at 0. The set $\Omega+i\Gamma\subset \mathbb{C}^{n}$

is called awedge. An infinitesimal wedge $\Omega+\mathrm{z}\mathrm{F}\mathrm{O}$ is an open set $U\subset\Omega+i\Gamma$

which approaches asymptotically to $\Gamma$ as the imaginary part of $U$ tends to 0
(see Figure 1).

$x$

Figure 1: An infinitesimal wedge $\Omega+\mathrm{i}\mathrm{F}\mathrm{O}$ .

Ahyperfunction $f(x)$ can be defined as asum

$f(x)= \sum_{j=1}^{N}F_{j}(x+i\Gamma_{j}0)$ , $x\in\Omega$ ,

of formal boundary values

$F_{j}(x+i\Gamma_{j}0)=$
$x+iy \in\Omega+’ i\Gamma_{\mathrm{j}}0\lim_{yarrow 0}F_{j}(x+iy)$
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of holomorphic functions $F_{j}(z)$ in the infinitesimal wedges $\Omega+\mathrm{i}\mathrm{F}\mathrm{j}\mathrm{O}$ .
Ahyperfunction is said to be micrO-analytic at $x_{0}\in \mathbb{R}^{n}$ in the direction

$\xi_{0}\in \mathrm{S}^{n-1}$ or, in short, at $(x_{0},\xi_{0})$ , if there exists aneighborhood $\Omega$ of $x_{0}$

and holomorphic functions $F_{j}$ in infinitesimal wedges $\Omega+\mathrm{i}\mathrm{T}\mathrm{j}\mathrm{O}$ such that
$f= \sum_{j=1}^{N}F_{j}(x+i\Gamma_{j}0)$ and

$\Gamma_{j}\cap\{y\in \mathbb{R}^{n} : y\cdot\xi_{0}<0\}\neq\emptyset$

for all $j$ .
Asimple aspect of the relation between micr0-analyticity and the Fourier

transform is given as follows.

Lemma 2Let $\Gamma\subset \mathbb{R}^{n}$ be a closed cone and let $x_{0}\in \mathbb{R}\mathrm{n}$ . For a tempered
distribution $f$ , if there exists a tempered distribution $g$ such that $\mathrm{s}\mathrm{u}\mathrm{p}\mathrm{p}\hat{g}\subset\Gamma$

and $f-g$ is analytic in a neighborhood of $x_{0}$ , then $f$ is micrO-analytic at
$(x_{0}, \xi)$ for every $\xi\in\Gamma^{c}\cap@^{n-1}$ , where $\Gamma^{\mathrm{c}}$ denotes the complement of $\Gamma$ .

We shall construct orthonormal multiwavelet bases or tight frames which
enable us to obtain information on the microlocal content of signals or func-
tions. Since this separation of microlocal contents can be considered as a
filtering operation, we call it microlocal filtering.

6One-dimensional Orthonormal Microlocal
Filtering

Our aim is to construct wavelets $\{\phi_{\delta}\}_{\delta\in D}$ having good localization both in the
base space $\mathbb{R}$ and in the direction space $\mathrm{S}^{0}=\{\pm 1\}$ within the limits of the
uncertainty principle. Here “good localization” at apoint $(x_{0}, \xi_{0})\in \mathbb{R}\cross \mathrm{S}^{0}$

means that $\phi_{\delta}$ is essentially concentrated in aneighborhood of apoint $x_{0}\in \mathbb{R}$

and $\hat{\phi}_{\delta}$ is essentially concentrated in aconic neighborhood of apoint $\xi_{0}\in \mathrm{S}^{0}$ .
We call this “good microlocalization.”

Define the classical Hardy spaces $H^{2}(\mathrm{R}_{\pm})$ by

$H^{2}(\mathrm{R}_{\pm})=\{f\in L^{2}(\mathbb{R}) : \hat{f}(\xi)=0 \mathrm{a}.\mathrm{e}. \xi\leq(\geq)0\}$ .

Each function of $H^{2}(\mathrm{R}_{\pm})$ has good localization in the direction space $\mathrm{S}^{0}=$

$\{\pm 1\}$ . Hence if we construct wavelets in $H^{2}(\mathrm{R}_{\pm})$ with good localization in
the base space, those wavelets have good microlocalization.

In these cases, an orthonormal wavelet function $\psi_{+}$ and an orthonormal
scaling function $\phi_{+}$ for orthonormal wavelets of $H^{2}(\mathbb{R}_{+})$ are defined by

$\hat{\psi}_{+}=\chi_{[2\pi,4\pi]}$ , $\hat{\phi}_{+}=\chi_{[0,2\pi]}$ .

110



Figure 2: The Fourier transform of the orthonormal wavelet functions $\psi_{+}$

and $\psi_{-}$ .

From the tw0-scale relation

$2\hat{\phi}_{+}(2\xi)=m_{0}(\xi)\hat{\phi}_{+}(\xi)$

it is found that the corresponding lowpass filter is

$m_{0}(\xi)=2\chi_{[0,\pi]}(\xi)=2\hat{\phi}_{+}(2\xi)$

on $[0, 2\pi)$ , and extended $2\pi$-periodically to the line. From the tw0-scale
relation

$2\hat{\psi}_{+}(2\xi)=e^{i\xi}\overline{m_{0}(\xi+\pi)}\hat{\phi}_{+}(\xi)=m_{1}(\xi)\hat{\phi}_{+}(\xi)$

it is found that the corresponding highpass filter is

$m_{1}(\xi)=e^{i\xi}\overline{m_{0}(\xi+\pi)}=2\hat{\psi}_{+}(2\xi)$

on $[0, 2\pi)$ , and extended $2\pi$-periodically to the line.
By the same argument, we have an orthonormal wavelet function $\psi_{-}$ and

an orthonormal scaling function $\phi_{-}$ for orthonormal wavelets of $H^{2}(\mathbb{R}$
-

$)$ .
Since

$L^{2}(\mathbb{R})=H^{2}(\mathbb{R}_{+})\oplus H^{2}$ (IL),

$\{\psi_{+}, \psi_{-}\}$ and $\{\phi_{+}, \phi_{-}\}$ can be regarded as sets of orthonormal multiwavelet
functions and orthonormal multiscaling functions, respectively, of $L^{2}(\mathbb{R})$ .
This decomposition of $L^{2}(\mathbb{R})$ into the orthogonal sum of the classical Hardy
spaces $H^{2}$ (I4) corresponds to the intuitive definition of hyperfunction:

$f(x)=F_{+}(x+i0)-F_{-}(x-i\mathrm{O})$ ,

where $F_{+}(z)$ and $F_{-}(z)$ are holomorphic in the upper half plane and in the
lower half plane, respectively.

Auscher [16] essentially proved that there is no smooth orthonormal
wavelet $\psi$ in the classical Hardy space $H^{2}(\mathbb{R}_{+})$ , that is, there is no orthonor-
mal wavelet $\psi$ whose Fourier transform $\hat{\psi}$ is continuous on $\mathbb{R}$ and satisfies
the regularity condition:

$\exists\alpha>0$ ; $|\hat{\psi}(\xi)|=O((1+|\xi|)^{-\alpha-1/2})$ at $\infty$ .
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The decay of function at infinity in $x$ space corresponds to the smoothness of
its Fourier transform in 4space. Hence the non-existence of smooth wavelets
implies that it is impossible to have any smooth orthonormal wavelet having
good microlocalization. Thus our aim is to construct smooth tight frame
wavelets with good microlocalization properties.

7 Multi-dimensional Orthonormal Microlocal
Filtering

The following notation will be used.

$\bullet\eta=(\eta_{1}, \ldots, \eta_{n})\in H:=\{\pm 1\}^{n}$.
$\bullet\epsilon=(\epsilon_{1}, \ldots,\epsilon_{n})\in E:=\{0,1\}^{n}\backslash \{0\}$ , $j\in \mathbb{Z}_{+}$ .
$\bullet Q_{\eta}:=\prod_{k=1}^{n}[0, \eta_{k}]$ , $\epsilon.*\eta:=(\epsilon_{1}\eta_{1}, \ldots, \epsilon_{n}\eta_{n})$ .
$\bullet Q_{j,\epsilon,\eta}:=\{\prod_{k=1}^{n}[\eta_{k}(\ell_{k}-1), \eta_{k}\ell_{k}]+2^{j}(\epsilon.*\eta)$ :

$1\leq\ell_{1}$ , $\ldots,\ell_{n}\leq 2^{j}$ , $\ell_{1}$ , $\ldots$ , $\ell_{n}\in \mathrm{N}\}$ .
$\bullet$ $\mathbb{Z}_{+}^{E\mathrm{x}H}$ is the set of all functions from $E\cross H$ to $\mathbb{Z}_{+}$ .

Theorem 3Fix $j\in \mathbb{Z}_{+}$ , $\epsilon\in E$ , $\eta\in H$ . For a cube $Q\in Q_{j,\epsilon,\eta}$, define $\psi_{Q}$ by

$\hat{\psi}_{Q}=\chi_{2\pi Q}$ ,

where $\chi_{2\pi Q}$ is the characteristic function of the cube 2ttQ. For $\rho\in \mathbb{Z}_{+}^{E\cross H}$ , let

.
$Q_{\rho}:=\cup(\epsilon,\eta)\in E\mathrm{x}HQ_{\rho(\epsilon,\eta),\epsilon,\eta}$

.

Then $\Psi:=\{\psi Q\}_{Q\in Q_{\rho}}$ is a set of orthonormal wavelets. Define $\phi_{\eta}$ by

$\hat{\phi}_{\eta}:=\chi_{2\pi Q_{\eta}}$ .
Then $\{\phi_{\eta}\}_{\eta\in H}$ is a set of frame scaling functions for these wavelets.

In particular, when $\rho(\epsilon, \eta)$ is constant, 1is a set of multirnavelets.

Figure 3illustrates the 2-D multiwavelets constructed in Theorem 3. Mul-
tiwavelets are masks in Fourier space –they are characteristic functions of
cubes $2\mathrm{n}\mathrm{Q}$ . The left part of Fig. 3shows 12 multiwavelet functions. For finer
resolution in Fourier space, we need agreater number of multiwavelets. The
right part of Fig. 3shows 27 multiwavelet functions.
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Figure 3: 2-D orthonormal multiwavelet functions in Fourier space.

8Multi-dimensional Frame Microlocal Filter-
lng

Smooth tight multiwavelet frames are obtained by convolving characteristic
functions of cubes $\pi Q$ so that the support of the smoothed functions have
support inside cubes $2\mathrm{n}\mathrm{Q}$ . This is achieved by considering the next inside
annulus of cubes $\pi Q$ in the left part of Figure 3.

Let $\theta(t)$ be a $C_{0}^{\infty}(\mathbb{R})$ -function of one variable satisfying

$\theta(t)\geq 0$ , $\theta(t)=\theta(-t)$ , $\int_{\mathrm{R}}\theta(t)dt=1$ , $\theta(t)=\{\begin{array}{l}10\end{array}$ $|t| \geq\frac{\frac{1}{23}}{3}|t|\leq.’$

.

For $\alpha>0$ and $\xi=$ $(\xi_{1}, \xi_{2}, \ldots, \xi_{n})\in \mathbb{R}^{n}$ , let

$\theta_{\alpha}(\xi)=\frac{1}{\alpha^{n}}\prod_{j=1}^{n}\theta(\frac{\xi_{j}}{\alpha})$ .

We have the following theorem.

Theorem 4Fix $j\in \mathbb{Z}_{+}$ , $\epsilon$ $\in E$ , $\eta\in H$ , and $\alpha\in(0,1/2)$ . Define

$\lambda_{Q}(\xi):=(\theta_{\alpha}*\chi_{\pi Q})(’\xi)=\int_{1\mathrm{R}^{n}}\theta_{\alpha}(\xi-\zeta)\chi_{\pi Q}(\zeta)d\zeta$, $Q\in Q_{j,\epsilon,\eta}$ ,

have $\chi_{\pi Q}$ is the characteristic function of the cube $\pi Q$ . For $\rho\in \mathbb{Z}_{+}^{E\cross H}$, let

$\tau_{\rho}(\xi):=\sum_{j\in \mathrm{Z},Q\in Q_{\rho}}|\lambda_{Q}(2^{j}\xi)|^{2}$
,
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and, for $Q\in Q_{\rho}$ , define $\psi_{Q}(x)$ by

$\hat{\psi}_{Q}(\xi):=\tau_{\rho}(\xi)^{-1/2}\lambda_{Q}(\xi)$ .

Then $\Psi:=\{\psi_{Q}\}_{Q\in Q_{\rho}}$ is a set of ryht frame wavelets.

Theorem 4follows from Theorem 2.

9Numerical Restoration of Images
In this section, we apply the above theory to the restoration of finite images
represented by matrices. Since the Fourier transform of afinite region gives
rise to oscillations of the type of cardinal sine, care must be taken in the
restoration process.

The restoration process involves the following steps.

\bullet The figure A to be restored is Fourier transformed into B.

$\bullet$ $B$ is filtered by multiplication with atapered characteristic function
with support far from the origin and at right angle with the singularity
to be localized. This produces $C$ .

$\bullet$ In view of the Plancherel theorem, the wavelet coefficients of $C$ , in (9),

$\langle\hat{f,}\hat{\psi}_{jk}^{\ell}\rangle=(2\pi)^{2}\langle f, \psi_{jk}^{\ell}\rangle$ ,

are constructed in the Fourier domain and used in the $x$ domain, to
produce $D$ which is the wavelet frame expansion (8) of Corollary 1.

$\bullet$ The extra width of $D$ , caused by the side lobes in the support of $\psi_{jk}^{\ell}$ ,
is narrowed to eliminate oscillations due the cardinal sine effect when
transforming functions with finite support.

\bullet Atuned multiple of D is subtracted from A to restore the original
image.

In Figure 4, the scarred woman image is restored. One notices in the
top right part of the figure the wide width of the negative of the Fourier
transform of the one-bit-wide short scar. The frame expansion of the inverse
Fourier transform of the top right part produced afive-bit-wide segment.
The width of this segment was reduced to one bit shown as anegative in
the bottom left part of the figure. Amultiple of the bottom left part of the
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figure, as apositive, was subtracted from the top left part to produce the
restored woman figure shown in the bottom right part. In this case, only one
frame wavelet was used as highpass filter in the top right part of the figure in
the Fourier domain. Using asecond filter in the lower left part of the Fourier
domain does not seem to modify the final result.

In Figure 5, the boy image with adiagonal line is restored. One notices in
the top right part of the figure the narrow width of the negative of the Fourier
transform of the one-bit-wide long diagonal line. The frame expansion of the
inverse Fourier transform of the top right part produced an eight-bit-wide
segment. The width of this segment was reduced to one bit. Moreover, fine
tuning required that the fourth root of this segment be taken. The result is
shown as anegative in the bottom left part of the figure. Amultiple of the
bottom left part of the figure, as apositive, was subtracted from the top left
part to produce the restored boy figure shown in the bottom right part. In
this case, two frame wavelets were used as highpass filters in the top right
and bottom left parts of the figure in the Fourier domain. Using only one
filter in the upper right or lower left part in the Fourier domain does not
seem to modify the final result.
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right: positive restored woman figure.
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negative filtered Fourier transform of top left figure. Bottom left: framed
negative frame expansion of the inverse Fourier transform of top right figure.
Bottom right: positive restored boy figure.
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