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The space $D(\mathrm{R})$ of all infinitely differentiable functions $f$ : $\mathrm{R}arrow \mathrm{R}$

with compact support togethcr with alocally convex structure dcfined
by the seminorms

$p_{\alpha.\beta}(f \rangle:=\sup_{n}\max\sup_{x}2^{\alpha(n)}|f^{(l)}(x)|l\leq\rho(n)_{||\geq n} (\alpha, \beta\in \mathrm{N}arrow \mathrm{N})$

is an important example of alocally convex space. Classically the space
$D(\mathrm{R})$ -the space of t.est functions -is complete, but it is difficult to
show that it is complete within the framework of Bishop’s constructive
mathematics. This leads us adifficulty in developing the theory of distri-
butions in Bishop’s constructive mathematics; see [1, Appendix $\mathrm{A}$ ] and
[2, Chapter 7, Notes].

Our aim of the paper is to find aprinciple which is necessary and
sufficient to establish the completeness of $D(\mathrm{R})$ . Although it is formulat-
ed in the setting of informal Bishop-style constructive mathematics, the
proofs could easily be formalized relative to asystem $\mathrm{b}\mathrm{a}_{*}\mathrm{s}\mathrm{e}\mathrm{d}$ on intuition-
istic finite-type arithmetics $\mathrm{H}\mathrm{A}^{\mathrm{t}t}$ [$8$ , Chapter 1], [9, Chapter 9]; see also
[5].

Asubset $A$ of $\mathrm{N}$ is said to be pseudobounded if for each sequence $\{a_{n}\}_{n}$

in $A$ ,
$\lim\underline{a_{n}}=0$ .

$narrow\infty n$

Aboundcd subset of $\mathrm{N}$ is pseudobounded.
$\cdot$

The converse holds in $\mathrm{c}1\mathrm{a}_{h}\mathrm{s}-$
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mathematics of Markov’s school; see [6]. However, the following principle
is independent of Heyting arithmetic [4].

BD-N: Every countable pseudobounded subset of $\mathrm{N}$ is bounded.

BD-N has been proved to be equivalent to the following theorems [6,
7, 4]; Banach’s inverse mapping theorem; the open mapping theorem;
the closed graph theorem; the Banach-Steinhaus theorem; the Hellinger-
Toeplitz theorem; every scquentially continuous mapping of aseparable
metric space into ametric space is pointwise continuous; every uniformly
sequentially continuous mapping of aseparable metric space into ametric
space is uniformly continuous. In this paper, we will show that it is also
equivalent to the completeness of $D(\mathrm{R})$ .

In the rest of the paper, we assume familiarity with the constructive
calculus, as found in [1, Chapter 2], [3, Appendix], [2, Chapter 2], or [9,
Chapter 6].

Before showing our main result, we shall show that the test function

$\hat{\varphi}(x):=\{$

$\exp(-\frac{1}{1-x^{2}})$ if $|x|<1$

0if$|x|\geq 1$

is well-defined in Bishop’s constructive mathematics.
Afunction $f$ : $(a, b)arrow \mathrm{R}$ is said to vanish at end points if for each $k$

there exists $m$ such that for all $x\in(a, b)$ ,

$x<a+2^{-m}\vee b-2^{-m}<x\Rightarrow|f(x)|<2^{-k}$ .

Proposition 1Let $f$ : $(a, b)arrow \mathrm{R}$ be a function which vanishes at end
points and is unifomly continuous on each compact subinterval of $(a, b)$ .
Then there exists a unifomly continuous function $\hat{f}$ : $\mathrm{R}arrow \mathrm{R}$ such that
$\hat{f}=f$ on $(a, b)$ and $\hat{f}=0$ on $(-\infty, a)\cup(b, \infty)$ .

Afunction $f$ from asubset $X$ of $\mathrm{R}$ into $\mathrm{R}$ is unifomly differentiable
on $X$ , with aderivative $f’$ , if for each $k$ , there exists $n$ such that for all
$x,$ $y\in X$ ,

$|x-y|<2^{-n}\Rightarrow|f’(x)(x-y)-(f(x)-f(y))|<2^{-k}$ .

We shall use the familiar notation for iterated derivatives: $f^{(0)}:=f$ ,
$f^{(l+1)}:=(f^{(l)})’$ .
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Let $f,$ $f’$ : $(a, b)arrow \mathrm{R}$ be functions which vanish at end points, and
suppose that $f$ is uniformly differentiable on each compact subinterval
of $(a, b)$ with aderivative $f’$ . Then by [3, A.1], $f$ and $f’$ are uniformly
continuous on each compact subinterval of $(a, b)$ , and hence they have the
uniformly continuous extensions $\hat{f}$ and $\hat{f}’$ .

Proposition 2Let $f,$ $f’$ : $(a, b)arrow \mathrm{R}$ be functions which vanish at end
points, and suppose that $f$ is unifomly differentiable on each $com\prime pact$

subinterval of $(a, b)$ with a derivative $f’$ . Then $\hat{f}$ is uniformly differen-
tiable on $\mathrm{R}$ with a derivative $\hat{f}’$ .

The function
$\varphi(x):=\exp(-\frac{1}{1-x^{2}})$

from (-1, 1) to $\mathrm{R}$ is infinitely differentiable on each compact subinterval
of (-1, 1), and whose $l$-th derivative is

$\varphi^{(l)}(x)=\frac{P_{1}(x)}{(1-x^{2})^{21}}\exp(-\frac{1}{1-x^{2}})$

for some polynomial $P_{l}$ . Since for each $m$ and $k$ there exists $n$ such that

$t>2^{n} \Rightarrow\frac{t^{m}}{\exp(t)}<2^{-k}$ $(t\in \mathrm{R})$ ,

each $\varphi^{(l)}$ vanishes at end points. Hence $\underline{\hat{\varphi}=}\overline{\varphi^{(0)}}$ is infinitely differentiable
on $\mathrm{R}$ , and whose $l$-th derivative $\hat{\varphi}^{(\mathrm{t})}$ is $\varphi^{(l)}$ .

We shall show our main result with the completeness of the space
$\mathcal{K}(\mathrm{R})$ , which is another important example of alocally convex space, of
all uniformly continuous functions $f$ : $\mathrm{R}arrow \mathrm{R}$ with compact support
together with the seminorms

$q_{\alpha}(f):= \sup_{n}\sup_{x||\geq n}2^{a(n)}|f(x)|$
$(\alpha\in \mathrm{N}arrow \mathrm{N})$ .

Note that since differentiable functions on acompact interval are uni-
formly continuous on the interval, functions in $D(\mathrm{R})$ belong to $\mathcal{K}(\mathrm{R})$ .

Lemma 3A subset $A$ of $\mathrm{N}$ is pseudobounded if and only if for each
sequence $\{a_{n}\}$ in $A,$ $a_{n}<n$ for all sufficiently large $n$ .
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Theorem 4The follorning are equivalent.

1. $\mathcal{K}(\mathrm{R})$ is complete.

2. $D(\mathrm{R})$ is cornplete.

3. BD-N.
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