テスト関数の空間の完備性について

北陸先端科学技術大学院大学・情報科学研究科 石原 哉(Hajime Ishihara) School of Information Science, Japan Advanced Institute of Science and Technology

The space $\mathcal{D}(\mathbf{R})$ of all infinitely differentiable functions $f : \mathbf{R} \to \mathbf{R}$ with compact support together with a locally convex structure defined by the seminorms

$$p_{\alpha,\beta}(f) := \sup_{n} \max_{l \leq \beta(n)} \sup_{|x| \geq n} 2^{\alpha(n)} |f^{(l)}(x)| \quad (\alpha, \beta \in \mathbb{N} \to \mathbb{N})$$

is an important example of a locally convex space. Classically the space $\mathcal{D}(\mathbf{R})$ - the space of test functions - is complete, but it is difficult to show that it is complete within the framework of Bishop's constructive mathematics. This leads us a difficulty in developing the theory of distributions in Bishop's constructive mathematics; see [1, Appendix A] and [2, Chapter 7, Notes].

Our aim of the paper is to find a principle which is necessary and sufficient to establish the completeness of $\mathcal{D}(\mathbf{R})$. Although it is formulated in the setting of informal Bishop-style constructive mathematics, the proofs could easily be formalized relative to a system based on intuition-istic finite-type arithmetics \mathbf{HA}^{ω} [8, Chapter 1], [9, Chapter 9]; see also [5].

A subset A of N is said to be *pseudobounded* if for each sequence $\{a_n\}_n$ in A,

$$\lim_{n\to\infty}\frac{a_n}{n}=0.$$

A bounded subset of N is pseudobounded. The converse holds in classical mathematics, intuitionistic mathematics and constructive recursive mathematics of Markov's school; see [6]. However, the following principle is independent of Heyting arithmetic [4].

BD-N: Every countable pseudobounded subset of N is bounded.

BD-N has been proved to be equivalent to the following theorems [6, 7, 4]; Banach's inverse mapping theorem; the open mapping theorem; the closed graph theorem; the Banach-Steinhaus theorem; the Hellinger-Toeplitz theorem; every sequentially continuous mapping of a separable metric space into a metric space is pointwise continuous; every uniformly sequentially continuous mapping of a separable metric space into a metric space is uniformly continuous. In this paper, we will show that it is also equivalent to the completeness of $\mathcal{D}(\mathbf{R})$.

In the rest of the paper, we assume familiarity with the constructive calculus, as found in [1, Chapter 2], [3, Appendix], [2, Chapter 2], or [9, Chapter 6].

Before showing our main result, we shall show that the test function

$$\hat{arphi}(x):=\left\{egin{array}{c} \exp\left(-rac{1}{1-x^2}
ight) & ext{if } |x|<1 \ 0 & ext{if } |x|\geq 1 \end{array}
ight.$$

is well-defined in Bishop's constructive mathematics.

A function $f:(a,b) \to \mathbf{R}$ is said to vanish at end points if for each k there exists m such that for all $x \in (a,b)$,

$$x < a + 2^{-m} \lor b - 2^{-m} < x \Rightarrow |f(x)| < 2^{-k}.$$

Proposition 1 Let $f : (a, b) \to \mathbf{R}$ be a function which vanishes at end points and is uniformly continuous on each compact subinterval of (a, b). Then there exists a uniformly continuous function $\hat{f} : \mathbf{R} \to \mathbf{R}$ such that $\hat{f} = f$ on (a, b) and $\hat{f} = 0$ on $(-\infty, a) \cup (b, \infty)$.

A function f from a subset X of \mathbf{R} into \mathbf{R} is uniformly differentiable on X, with a derivative f', if for each k, there exists n such that for all $x, y \in X$,

$$|x-y| < 2^{-n} \Rightarrow |f'(x)(x-y) - (f(x) - f(y))| < 2^{-k}.$$

We shall use the familiar notation for iterated derivatives: $f^{(0)} := f$, $f^{(l+1)} := (f^{(l)})'$.

Let $f, f': (a, b) \to \mathbf{R}$ be functions which vanish at end points, and suppose that f is uniformly differentiable on each compact subinterval of (a, b) with a derivative f'. Then by [3, A.1], f and f' are uniformly continuous on each compact subinterval of (a, b), and hence they have the uniformly continuous extensions \hat{f} and $\hat{f'}$.

Proposition 2 Let $f, f': (a, b) \to \mathbf{R}$ be functions which vanish at end points, and suppose that f is uniformly differentiable on each compact subinterval of (a, b) with a derivative f'. Then \hat{f} is uniformly differentiable on \mathbf{R} with a derivative $\hat{f'}$.

The function

$$arphi(x):=\exp\left(-rac{1}{1-x^2}
ight)$$

from (-1, 1) to **R** is infinitely differentiable on each compact subinterval of (-1, 1), and whose *l*-th derivative is

$$\varphi^{(l)}(x) = \frac{P_l(x)}{(1-x^2)^{2l}} \exp\left(-\frac{1}{1-x^2}\right)$$

for some polynomial P_l . Since for each m and k there exists n such that

$$t > 2^n \Rightarrow \frac{t^m}{\exp(t)} < 2^{-k} \quad (t \in \mathbf{R}),$$

each $\varphi^{(l)}$ vanishes at end points. Hence $\hat{\varphi} = \widehat{\varphi^{(0)}}$ is infinitely differentiable on **R**, and whose *l*-th derivative $\hat{\varphi}^{(l)}$ is $\widehat{\varphi^{(l)}}$.

We shall show our main result with the completeness of the space $\mathcal{K}(\mathbf{R})$, which is another important example of a locally convex space, of all uniformly continuous functions $f : \mathbf{R} \to \mathbf{R}$ with compact support together with the seminorms

$$q_{\alpha}(f) := \sup_{n} \sup_{|x| \ge n} 2^{\alpha(n)} |f(x)| \quad (\alpha \in \mathbf{N} \to \mathbf{N}).$$

Note that since differentiable functions on a compact interval are uniformly continuous on the interval, functions in $\mathcal{D}(\mathbf{R})$ belong to $\mathcal{K}(\mathbf{R})$.

Lemma 3 A subset A of N is pseudobounded if and only if for each sequence $\{a_n\}$ in A, $a_n < n$ for all sufficiently large n.

Theorem 4 The following are equivalent.

- 1. $\mathcal{K}(\mathbf{R})$ is complete.
- 2. $\mathcal{D}(\mathbf{R})$ is complete.
- *3. BD-***N**.

参考文献

- [1] Errett Bishop, Foundations of Constructive Analysis, McGraw-Hill, New York, 1967.
- [2] Errett Bishop and Douglas Bridges, Constructive Analysis, Grundlehren der Math. Wissenschaften 279, Springer-Verlag, Heidelberg, 1985.
- [3] Douglas Bridges, Constructive Functional Analysis, Pitman, London, 1979.
- [4] Douglas Bridges, Hajime Ishihara, Peter Schuster and Luminița Vîță, Strong continuity implies uniform sequential continuity, preprint, 2001.
- [5] N. Goodman and J. Myhill, The formalization of Bishop's constructive mathematics, in F. Lawvere (ed.), Toposes, Algebraic Geometry and Logic, pp. 83-96, Springer, Berlin, 1972.
- [6] Hajime Ishihara, Continuity properties in constructive mathematics,
 J. Symbolic Logic 57 (1992), 557–565.
- [7] Hajime Ishihara, Sequential continuity in constructive mathematics, In: C.S. Calude, M.J. Dinneen and S. Sburlan eds., Combinatorics, Computability and Logic, Proceedings of the Third International Conference on Combinatorics, Computability and Logic, (DMTC-S'01) in Constanţa Romania, July 2-6, 2001, Springer-Verlag, London, 2001.
- [8] A. S. Troelstra, Metamathematical Investigation of Intuitionistic Arithmetic and analysis, Springer, Berlin, 1973.

[9] A. S. Troelstra and D. van Dalen, Constructivism in Mathematics, Vol. 1 and 2, North-Holland, Amsterdam, 1988.