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1 Introduction
Consider the Hamilton - Jacobi equation

$u_{t}(x, t)+H$ ( $x$ , Du(x, $t)$ ) $=0$ in $1\mathrm{R}^{N}\cross(0, +\infty)$ (1.1)

with the initial condition

$u(x, \mathrm{O})=g(x)$ in $1\mathrm{R}^{N}$ . (1.2)

It is well -known that if $H(x,p)=H(p)$ is convex, then the solution of the
Cauchy problem (1.1), (1.2) is given by the function

$u(x, t)= \inf_{y\in 1\mathrm{R}^{N}}[g(y)+tH^{*}(\frac{x-y}{t})]$ (1.1)

where $H^{*}$ is the Legendre -Fenchel transform of $H$ . The first result of this type
goes back to E. Hopf [12] who proved that if $H$ is convex and superlinear at
infinity and $g$ is Lipschitz continuous, then $u$ satisfies (1.1) almost everywhere
and achieves the initial condition. This result has been generalized in several
directions, mainly in the framework of the theory of viscosity solutions, see [3],
[11], [7], [2].
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The Hopf- Lax formula (1.3) can be understood as asimplified expression
of the classical representation of the solution of (1.1), (1.2) as the value function
of the Bolza problem associated by duality with the Cauchy problem, namely

$V(x, t):= \inf\int_{0}^{t}H^{*}(\dot{y}(s))ds+g(y(0))$ (1.4)

where the infimum is taken over all smooth curves $y$ with $y(t)=x$ . Indeed, if
$H$ does not depend on $x$ then $u\equiv V$ , the proof of the equivalence relying in an
essential way on the fact that any pair of points $x$ , $y$ in $1\mathrm{R}^{N}$ can be connected
in agiven time $t>0$ by acurve of constant velocity, namely the straight line
$y(s)=x+ \frac{s}{t}(y-x)$ , see [11]. When $H$ depends on $x$ as well the situation
becomes more complicated and the simple, useful representation (1.3) of the
solution of (1.1), (1.2) as the value function of an unconstrained finite dimensional
minimization problem, parametrized by $(x, t)$ , is not available anymore.

This Note is dedicated to the presentation of arecent result due to H. Ishii
and the author concerning the validity of an Hopf -Lax tyPe representation
formula for the solution of (1.1), (1.2) for aclass of x- dependent Hamiltonians.
In Section 2we describe the main results contained in the forthcoming paper [10],
give abrief sketch of their proofs and indicate some relevant examples.
Further comments on the Hopf-Lax formula in connection with large deviations
problems and the related Maslov’s approach to Hamilton -Jacobi equations are
outlined in Section 3.

2Results
From now on we assume that $H$ is of the form

$H(x,p)=\Phi(H_{0}(x,p))$ (2.1)

where $H_{0}$ is acontinuous real valued function on $\mathrm{R}^{2N}$ satisfying the following
conditions

$p\mapsto H_{0}(x,p)$ is convex , $H_{0}(x, \lambda p)=\lambda H_{0}(x,p)$ (2.2)

$H_{0}(x,p)\geq 0$ , $|H_{0}(x,p)-H_{0}(y,p)|\leq\omega(|x-y|(1+|p|))$ (2.3)

for all $x$ , $y,p$ , for all $\lambda>0$ and for some continuous, non decreasing function
$\omega$ : $[0, +\infty)arrow[0, +\infty)$ such that $\omega(0)=0$ .
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We assume also that $H_{0}$ is degenerate coercive in the sense that, for some $\epsilon>0$ ,
the conditions (2.4), (2.5) below hold:

$\sigma(x)([-\epsilon, \epsilon]^{M})\subseteq\partial H_{0}(x, 0)$ (2.4)

Here, $\partial H_{0}(x, 0)$ is the subdifferential of the convex function $parrow H(x, p)$ at $p=0$ ,
$[-\epsilon, \epsilon]^{M}$ is the cube of side $\epsilon$ in $1\mathrm{R}^{M}$ and $\sigma(x)$ is an $N\mathrm{x}M$ matrix, $M\leq N$ ,
depending smoothly on $x$ , satisfying the Chow -Hormander rank condition

rank $\mathcal{L}(\Sigma_{1}, \ldots, \Sigma_{M})(x)=N$ for every $x\in \mathrm{I}\mathrm{R}^{N}$ (2.5)

where $\mathcal{L}(\Sigma_{1}, \ldots, \Sigma_{M})$ is the Lie algebra generated by the columns $\Sigma_{1}(x)$ , $\ldots$ , $\Sigma_{M}(x)$

of the matrix $\sigma(x)$ , see for example [8]. Concerning function (I we assume

$\Phi$ : $[0, +\infty)arrow[0, +\infty)$ is convex, non decreasing , (I)(O) $=0$ (2.6)

Under the assumptions made on $H_{0}$ , the stationary equation

$H_{0}(x, Dd(x))=1$ in $\mathrm{I}\mathrm{R}^{N}\backslash \{y\}$ (2.7)

is of eikonal type and, consequently, it is natural to expect that (2.7) has distance
type solutions $d=d(x, y)$ and, on the basis of the analysis in [13], that the solution
of

$u_{t}(x, t)+\Phi(H_{0}$ ( $x$ , Du(x, $t)$ ) $=0$ in $\mathrm{R}^{N}\cross(0, +\infty)$ (2.8)

$u(x, \mathrm{O})=g(x)$ in $\mathrm{R}^{N}$ (2.9)

can be expressed in terms of these distances.

We have indeed the following results, see [10]:

Theorem 2.1 For each $y\in \mathrm{R}^{N}$ , equation (2.7) has a unique viscosity solution
$d=d(x, y)$ such that

$d(x, y)\geq 0$ for all $x$ , $y$ , $d(y, y)=0$ . (2.10)

Theorem 2.2 Assume that

$g$ lower semicontinuous, $g(x)\geq-C(1+|x|)$ for some $C>0$ . (2.10)
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Then, the function

(2.12)$u(x, t)= \inf_{y\in \mathrm{R}^{N}}[g(y)+t\Phi^{*}(\frac{d(x,y)}{t})]$

is the unique lower semicontinuous viscosity solution of (2.8) which is bounded
below by a function of linear growth and such that

$\lim_{(y,t)arrow(}\inf_{x,0^{+})}u(y, t)=g(x)$ (2.13)

Theorem 2.1 extends to the present setting previous well -known results on the
minimum time function for nonlinear control systems, see [4], [5].

The proof of the theorem starts from the construction by optimal control
methods of the candidate solution $d$ . Consider the set -valued mapping $xarrow$

$\partial H_{0}(x, 0)$ and the differential inclusion

$\dot{X}(t)\in\partial H_{0}(X(t), 0)$ (2.14)

By standard results on differential inclusions, for all $x\in \mathrm{R}^{N}$ there exists aglobal
solution of (2.14) such that $X(\mathrm{O})=x$ , see [1]. Assumptions (2.4), (2.5) imply
that the set $F_{x,y}$ of all trajectories $X$ ( $\cdot$ ) of (2.14) such that

$X(0)=x$ , $X(T)=y$

for some $T=T(X(\cdot))>0$ is non empty for any $x$ , $y\in \mathrm{R}^{N}$ since it contains all
trajectories of the symmetric control system

$\dot{X}(t)=\sigma(X(t))\epsilon(t)$ , $X(\mathrm{O})=x$ (2.15)

where the control $\epsilon$ is any measurable function of $t\in[0, +\infty)$ taking values in
$[-\epsilon, \epsilon]^{M}$ . Indeed, thanks to assumption (2.5), the Chow’s Connectivity Theorem
implies that any pair of points $x$ , $y$ can be connected in finite time by atrajectory
of (2.15) and so, afortiori, by atrajectory of (2.14), see for example [8].
Define then

$d(x, y)= \inf_{X(\cdot)\in F_{x,y}}T(X(\cdot))<+\infty$ . (2.16)

It is easy to check that

$d(x, y)\geq 0$ , $d(x, x)=0$ , $d(x, z)\leq d(x, y)+d(y, z)$
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for all $x$ , $y$ , $z$ . Therefore, $d$ is asub-Riemannian distance of Carnot - Carath\’eodory
type on $\mathrm{I}\mathrm{R}^{N}$ , non symmetric in general.
Moreover, if $\Omega$ is abounded open set and $k\in \mathbb{N}$ is the minimum length of
commutators needed to guarantee (2.5) in 0, then there exists $C=C(\Omega)$ such
that

$\frac{1}{C}|x-y|\leq d(x, y)\leq C|x-y|^{\frac{1}{k}}$

for all $x$ , $y\in\Omega$ , see [17]. Hence,

$d(x, y)-d(z, y) \leq\max(d(x, z),$ $d(z, x))\leq 2C|x-z|^{\frac{1}{k}}$

which shows that $xarrow d(x;y)$ is $\frac{1}{k}$ H\"older-continuous.
Also, it is not hard to check that function $d$ satisfies the following form of the
Dynamic Programming Principle

$d(x, y)= \inf_{X(\cdot)\in F_{x,y}}[t+d(X(t), y)]$ (2.17)

for all $x$ , $y$ and $0\leq t\leq d(x, y)$ , from which one formally argues that $d$ is a
candidate to be the required solution of the eikonal equation.
Due to the lack of regularity of the mapping $xarrow\partial H_{0}(x, 0)$ which is, in gen-
eral, only upper semicontinuous and whose values may have empty interior, some
technical refinements to the standard dynamic programming argument, see for
example [4], are needed in order to deduce from (2.17) that $d$ is aviscosity solu-
tion of the eikonal equation (2.7). Namely we consider for $\delta>0$ the differential
inclusion

$\dot{X}^{\delta}(t)\in\partial H_{0}(X^{\delta}(t), \mathrm{O})+B(0, \delta)$

and the corresponding regularized distances $d^{\delta}$ and show by astability argument
that $d \equiv\sup_{\delta>0}d^{\delta}$ is actually aviscosity solution of (2.7).
This last step relies, of course, on the well -known duality relation

$H_{0}(x,p)= \sup_{q\in\partial H\mathrm{o}(x,0)}p\cdot q$

Concerning Theorem 2.2, let us first proceed heuristically by assuming that
(2.7) has smooth solutions $d(x)=d(x, y)$ and look for solutions of (2.8) of the
form

$v^{y}(x, t)=g(y)+t \Psi(\frac{d(x,y)}{t}.)$
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where y $\in \mathrm{R}^{N}$ plays the role of aparameter and $\Psi$ is asmooth function to be
appropriately selected. Asimple computation shows that

$v_{t}^{y}(x, t)=\Psi(\tau)-\tau\Psi’(\tau)$ , $D_{x}v^{y}(x, t)=\Psi’(\tau)D_{x}d(x, y)$

where $\tau=\frac{d(x,y)}{t}$ . If $v^{y}$ has to be asolution of (2.8), then necessarily

$\Psi(\tau)-\tau\Psi’(\tau)+\Phi(H_{o}(x, \Psi’(\tau)D_{x}d))=0$ .

For strictly increasing $\Psi$ , the positive homogeneity of $H_{0}$ , see assumption (2.2),
and the fact that $d$ solves (2.7) yield

$\Psi(\tau)-\tau\Psi’(\tau)+\Phi(\Psi’(\tau))=0$ . (2.18)

Since the solution of the Clairaut’s differential equation (2.18) is \Psi =$*, by the
above heuristics we are lead to look at the following family of special solutions

$v^{y}(x, t)=g(y)+t \Phi^{*}(\frac{d(x,y)}{t}.)$ (2.19)

of (2.8). It is not hard to realize that the envelope procedure originally proposed
by E. Hopf [12], namely to take

$\inf_{y\in \mathrm{R}^{N}}v^{y}(x, t)$

which defines indeed the Hopf-Lax function (2.12), preserves, at least at points
of differentiability of $u$ , the fact that each $v^{y}$ satisfies (2.8) and also enforces the
matching of the initial condition in the limit as $t$ tends to $0^{+}$ .

The rigorous implementation of the Hopf’s method in our setting is made
up of three basic steps. The first one is to show, for non smooth convex (I), that
the functions $v^{y}$ defined in (2.19), which are in general just Holder-continuous,
do satisfy (2.8) for each $y$ in the viscosity sense. This requires, in particular, to
work with regular approximations of (I), namely

$\Phi_{\delta}(s)=\Phi(s)+\frac{\delta}{2}s^{2}$ , $\delta>0$

and to use the standard reciprocity formula of convex analysi$\mathrm{s}$

$\Phi_{\delta}((\Phi_{\delta}^{*})’(s))+\Phi_{\delta}^{*}(s)=s(\Phi_{\delta}^{*})’(s)$ .
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The second step of the proof is to show that $u$ is lower semicontinuous and solves
(2.8) in the viscosity sense. Acrucial tool to achieve this is the use of the stability
properties of viscosity solutions with respect to $\inf$ and $\sup$ operations.
Observe that, since $parrow\Phi(H_{0}(x,p))$ is convex, it is enough at this purpose to
check that

$\lambda+H(x, \eta)=0\forall(\eta, \lambda)\in D^{-}u(x, t)$

at any $(x, t)$ , where $D^{-}u(x, t)$ is the subdifferential of $u$ at $(x, t)$ , see [6].
The third step is to check the initial condition (2.9) and the fact that $u$ is bounded
below by afunction of linear growth; this is performed much in the same way as
in [2]. The uniqueness assertion is aconsequence of aresult in [6].

Let us conclude this section by exhibiting afew examples of Hamiltonians
$H_{0}$ to which Theorem 2.1 and Theorem 2.2 do apply.

Example 1. Aclass of examples is given by Hamiltonians of the form

$H_{0}(x,p)=|A(x)p|_{\alpha}$

where $A(x)$ is asymmetric positive definite $N\cross N$ matrix with suitable conditions
on the $x$ -dependence and $|p|_{\alpha}=(\Sigma_{i=1}^{N}|p_{i}|^{\alpha})^{\frac{1}{\alpha}}$ , $\alpha\geq 1$ .
Condition (2.5) is trivially satisfied and the minimum length of commutators
needed is $k=1$ for all $x\in \mathrm{R}^{N}$ . On the other hand, condition (2.4) is fulfilled,
for sufficiently small $\epsilon>0$ , with $M=N$ and $\sigma(x)=A(x)$ . In this setting, the
eikonal equation (2.7) is solved by aRiemannian metric, see [13], [18].

Example 2. Adifferent kind of examples is provided by degenerate Hamiltonians
of the form

$H_{0}(x,p)=|A(x)p|_{\alpha}$

where $A(x)$ is an $N\cross M$ matrix with $M<N$ whose columns satisfy the Chow
-Hormander rank condition (2.5). Asimple convex duality argument shows
that assumption (2.4) holds with $\sigma(x)=A^{*}(x)$ for sufficiently small $\epsilon>0$ .
The associated Carnot -Carath\’eodory metrics and their relations with eikonal
equations have been recently investigated in adifferent functional setting in [16].
An interesting particular case (here $N=3$ to simplify notations) is

$H_{0}(x,p)=((p_{1}- \frac{x_{2}}{2}p_{3})^{\alpha}+(p_{2}+\frac{x_{1}}{2}p_{3})^{\alpha})^{\frac{1}{\alpha}}$
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Asimple computation shows that condition (2.5) holds with $k=2$ . Note that
the control system (2.15) reduces in the present case to that of the well -known
Brockett’s system in nonlinear control theory, see [9]. Our Hopf -Lax formula
(2.12) coincides in this case with the one the recently found for this example with
$\alpha=2$ in [14].

3Hopf-Lax formula and convolutions

An interesting but not evident relationship exists between the Hopf-Lax formula,
the $\inf$ -convolution in the sense of Yosida -Moreau and the classical integral
convolution procedure. Let us illustrate this with reference to the Cauchy problem

$u_{t}(x, t)+ \frac{1}{2}|Du|^{2}=0$ in $\mathrm{R}^{N}\cross(0, +\infty)$ (3.1)

$u(x, \mathrm{O})=g(x)$ in $\mathrm{R}^{N}$ . (3.2)

In this case

$H_{0}(x,p)= \frac{1}{2}|p|_{2}$ , $\Phi(s)=\frac{1}{2}s^{2}\equiv\Phi^{*}(s)$ , $d(x, y)=|x-y|_{2}$

and the Hopf-Lax function (2.12) becomes then

$u(x, t)= \inf_{y\in \mathrm{R}^{N}}[g(y)+\frac{|x-y|^{2}}{2t}]$ (3.3)

that is the $\inf$ -convolution of the initial datum $g$ , see for example [4] for fur-
ther informations. Assume that $g$ is continuous and bounded and consider the
parabolic regularization of the Cauchy problem (3.1), (3.2), that is

$u_{t}^{\epsilon}$ -elSu’ $+ \frac{1}{2}|Du^{\epsilon}|^{2}=0$ , $u^{\epsilon}(x, \mathrm{O})=g(x)$ (3.4)

where $\epsilon$ is apositive parameter. Adirect computation shows that if $u^{\epsilon}$ is asmooth
solution of the above, then its Hopf- Cole transform

$w^{\epsilon}=e^{-\frac{u^{\epsilon}}{2\epsilon}}$ (3.5)
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satisfies the linear heat problem

$w_{t}^{\epsilon}-\epsilon\triangle w^{\epsilon}=0$ , $w^{\epsilon}(x, 0)=g^{\epsilon}(x)=e^{-\mathrm{g}_{\frac{(x}{2\epsilon}\mathit{1}}}$ (3.6)

By classical linear theory, see [11] for example, its solution $w^{\epsilon}$ can be expressed
as the convolution $w^{\epsilon}=\Gamma\star g^{\epsilon}$ where $\Gamma$ is the fundamental solution of the heat
equation, that is

$w^{\epsilon}(x, t)=(4 \pi\epsilon t)^{-\frac{N}{2}}\int_{1\mathrm{R}^{N}}e^{-\frac{|x-y|^{2}}{4\epsilon t}}e^{-\frac{g(x)}{2\epsilon}}dy$

Hence, by inverting (3.5), the function

$u^{\epsilon}(x, t)=-2 \epsilon\log((4\pi\epsilon t)^{-\frac{N}{2}}\int_{\mathrm{R}^{N}}e^{-\frac{|x-y|^{2}}{4\epsilon t}}e^{-\frac{g(x)}{2\epsilon}}dy)$ (3.7)

turns out to be asolution of the quasilinear problem (3.4).

It is natural to expect that the solutions $u^{\epsilon}$ of (3.4) should converge, as
$\epsilon$

$arrow 0^{+}$ , to the solution of

$u_{t}+ \frac{1}{2}|Du|^{2}=0$ , $u(x, 0)=g(x)$

given by (3.3).

We have indeed the following result which shows, in particular, how the inf
-convolution can be regarded, roughly speaking, as asingular limit of integral
convolutions:

Theorem 3.1 Assume that $g$ is bounded. Then,

$\lim_{\epsilonarrow 0^{+}}-2\epsilon\log((4\pi\epsilon t)^{-\frac{N}{2}}\int_{\mathrm{R}^{N}}e^{-\frac{|x-y|^{2}}{4\epsilon t}}e^{-\frac{g(x)}{2\epsilon}}dy)=\inf_{y\in \mathrm{R}^{N}}[g(y)+\frac{|x-y|^{2}}{2t}]$ (3.8)

The proof can be obtained by adirect application of ageneral large deviations
result by $\mathrm{S}.\mathrm{N}$ . Varadhan. Consider at this purpose the family of probability
measures $P_{x,t}^{\epsilon}$ defined on Borel subsets of $\mathrm{R}^{N}$ by

$P_{x,t}^{\epsilon}(B)=(4 \pi\epsilon t)^{-\frac{N}{2}}\int_{B}e^{-\frac{|x-y|^{2}}{4\epsilon t}}dy$
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and the function
$I_{x,t}(y)= \frac{|x-y|^{2}}{4t}$

It is not hard to check that, for all fixed $x$ and $t$ , the family $P_{x,t}^{\epsilon}$ satisfies the
large deviation principle, see Definition 2.1 in [19], with rate function $I_{x,t}$ .
By Theorem 2.2 in [19], then

$\lim_{\epsilonarrow 0\dagger}\epsilon\log(\int_{\mathrm{R}^{N}}e^{\underline{F}}\epsilon dP_{x,t}^{\epsilon}(y))\omega=\sup_{y\in \mathrm{R}^{N}}[F(y)-I(y)]$

for any bounded continuous function $F$ . The choice $F=-2q$ in the above shows
then the validity of the limit relation (3.8).

The same convergence result can be proved also by purely PDE methods.
Uniform estimates for the solutions of (3.4) and compactness arguments show
the existence of alimit function $u$ solving (3.1), (3.2) in the viscosity sense.
Uniqueness results for viscosity solutions allow then to identify the limit $u$ as the
Hopf-Lax function, see [13], [4].

The way of deriving the Hopf- Lax function via the Hopf -Cole transform
and the large deviations principle is closely related to the Maslov’s approach [15]
to Hamilton -Jacobi equations based on idempotent analysis. In that approach,
the base field $\mathrm{R}$ of ordinary calculus is replaced by the semiring $\mathrm{R}^{*}=\mathrm{I}\mathrm{R}\mathrm{U}\{\infty\}$

with operations $a \oplus b=\min\{a, b\}$ , $ab=a+b$ . Amore detailed description
of this relationship is beyond the scope of this paper; let us only observe in this
respect that the nonsmooth operation $a\oplus b$ has the smooth approximation

$a \oplus b=\lim_{\epsilonarrow 0^{+}}-\epsilon\log(e^{-\frac{a}{\epsilon}}+e^{-\frac{b}{\mathrm{e}}})$ .

Afinal remark is that the Hopf -Cole transform can be also used to deal
with the parabolic regularization of more general Hamilton -Jacobi equations
such as

$u_{t}+ \frac{1}{2}|\sigma(x)Du|^{2}=0$

where $\sigma$ is agiven $N\cross M$ matrix satisfying (2.5), provided the regularizing second
order operator is chosen appropriately. Indeed, if one looks at the regularized
problem

$u_{t}^{\epsilon}- \epsilon \mathrm{d}\mathrm{i}\mathrm{v}(\sigma^{*}(x)\sigma(x)Du^{\epsilon})+\frac{1}{2}|\sigma(x)Du^{\epsilon}|^{2}=0$ ,
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then the Hopf-Cole transform $w^{\epsilon}=e^{-\frac{u^{\epsilon}}{2\epsilon}}$ solves the linear subelliptic equation

$w_{t}^{\epsilon}-\epsilon \mathrm{d}\mathrm{i}\mathrm{v}(\sigma^{*}(x)\sigma(x)Dw^{\epsilon})=0$
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