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Fully Nonlinear Oblique Derivative Problems
for Singular Degenerate Parabolic Equations

Hitoshi Ishii (RfEEXFHBEFH FH 1-7)
1. Capillary Boundary Condition

Following a recent joint work with M.-H. Sato, we discuss about the nonlinear Neu-
mann type boundary value problems for singular parabolic partial differential equations.

Motion of hypersurfaces {I't};>0, which is confined in the closure of a bounded
domain © C R", arises in many applications, and has been studied extensively in the
past.

A characteristic of such a motion {I';}:>0 is the needed description of the behavior
of its boundary OI'; and a typical situation is that OI'; stays on 92 and satisfies an
appropriate geometrical condition.

A typical example of such a geometrical condition is the Capillary boundary condi-
tion (or the prescribed contact angle condition), which we address here.

We adapt here the level set approach, so the hypersurface is given as a level set
It = {z | u(z) = c} of a function u € C(Q), with c € R. If the contact angle between
00 and T'; is given by « € (0,7/2], then

|Du(z)|~ ! Du(z) - v(z) = cosy for z € T, NN,
or equivalently,
ou
ov
Here v(z) denotes the unit outer normal vector of {2 at z € 9.
If every hypersurface {z | u(z) = ¢}, with ¢ € R, is moved by its mean curvature,
then the function u, which now depends not only on the space variable  but also on
the time variable ¢ > 0, should satisfy

cosy|Du| for z € Ty NON.

ug = tr[(I - Du® Du)D?u] for (¢,z) € (0,00) x £,

B—: = cosy|Du| for (t,z) € (0,00) x 912,
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where v : Q — (0,7/2] and P := p/|p| for p # 0.
Thus, the fundamental mathematical task is to establish the existence and unique-
ness of a solution of the initial-boundary value problem

uy = tr[(I - Du® Du)D?u] for (t,z) € (0,00) x ©,
Oou '
v
u(z,0) = g(z) for z € Q.

= cosy|Du for (t,z) € (0,00) x 89Q,

We present here a comparison and an existence theorems obtained in [IS] which are
applicable to the above initial-boundary value problem.

2. Main Results

In what follows we deal with the following bouhdary value problem
(1) us + F(t,z,u,Du, D*u) =0 in (0,T) x ©,
(2) B(z,Du) =0 in (0,T) x 99,
where T' > 0 is a fixed number. |
We always assume that Q is a bounded domain in R™ with C! boundary. How-
ever, the results below are still valid for certain Lipschitz domains Q under appropriate

interpretations.
Let us give a list of the assumptions on F' and B . Henceforth, for p,g € R™\ {0}

we write
p(,q) = [(Ip| Alal) " p—gl] AL

Here and below, we use the notation: a A b := min{a, b} and a Vb := max{a, b}. Let S"
denote the space of n X n real symmetric matrices equlpped with the usual ordermg

(F1) FecC(o,T] x QxR x (R"\ {0}) x S")

(F2) There exists a constant v € R such that for each (¢,z,p, X) € [0,T] x  x (R™\
{0}) x 8™ the function u — F(t,z,u,p, X) — yu is non-decreasing on R.

(F3) For each R > 0 there exists a continuous function wg : [0, 00) — [0, 00) satisfying
wr(0) = 0 such that if X, Y € 8™ and p,, 2 € [0, 00) satisfy

X 0 I -1 I0
(0 Y)Sm(—l I)Jr 2(0 I)
then

F(ta xau,an) - F(ta y,u,q, _Y) Z ""*‘)R(/"’l(la7 - y|2 +p(pa q)2)
+up2+|p—q|+ |z —yl(lp| Vg + 1))
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forallt € [0,T], z,y € Q, u € R, with |u| < R, and p,q € R"\ {0}.
(Bl)  BeC(R"xR")NCL(R" x (R™\ {0})).

(B2) For each z € R™ the function p — B(z,p) is positively homogeneous of degree
one in p, i.e., B(z,Ap) = AB(z,p) for all A > 0 and p € R™.

(B3) There exists a positive constant 6 such that (v(2), DpB(z,p)) > 0 for all z € 6
and p € R\ {0}.

Theorem 1. Suppose that (F1)-(F3) and (B1)-(B3) hold. Let u € USC([0,T) x )
and v € LSC([0,T) x Q) be, respectively, viscosity sub- and supersolutions of (1)-(2).
If u(0,z) < v(0,z) for z € Q, then u <v on (0,T) x Q.

Under the above assumptions
—o0 < F,(t,z,u,0,0) = F*(¢,z,4,0,0) < 00

holds for all (t,z,u) € [0,T] x Q x R.
Key observations for the proof of Theorem 1 are in the following lemmas.

Lemma 1. Assume that (B1) and (B3) hold. For any € € (0,1) there exists a function
¢ € C*®(R) satisfying the properties:

Dy(z) # 0 for all z € 89,
Y(z) >0 forallz € Q,
(v(z), Dy(z)) > (1 — ¢)|Dy(z)| for all z € 09,
and
(DpB(z,p), DY(z)) > 1 for all (z,p) € IR x (R™\ {0}).

Lemma 2. Assume that (B1)-(B3) hold. There are a function w € C11(Q x Q) and
a positive constant C such that for all (z,y) € Q x Q,

(i) lz—yl* <w(z,y) <Clz -yl
|Daw(z,y)| V |Dyw(z,y)| < Clz -y,
(ii) B(z,D;w(z,y)) >0 if z €09,
B(y,-Dyw(z,y)) >0 if ye€ 99q,
(iii) |Dw(z,y) + Dyw(z,y)| < Clz ~y|*,
p(Dyw(z,y), —Dyw(z,y)) < Clz —y| ifz#y,
and for a. e. (z,y) € 2 x A,

(iv) D2w(w,y)50{lx—ylz(_[1 }I)Hx“y"’(é ?)}
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Regarding the existence of a solution, the main result is:

Theorem 2. Assume that (F1)-(F3) and (B1)-(B3) hold. Then for each g € C(%)
there is a (unique) viscosity solution u € C([0,T) x Q) of (1)-(2) satisfying

u(z,0) = g(x) for z € Q.

The uniqueness assertion above is an immediate consequence of Theorem 1. The
standard technique based on the Perron method and the construction of sub- and su-
persolutions is applied to proving Theorem 2.

3. A brief comparison with previous results

One of features in the previous results is that the assumptions allow the function
F(p, X) to be discontinuous for p = 0. In the case when F is continuous in its variables,
there are already many comparison and existence results for viscosity solutions of second
order degenerate parabolic PDE with boundary condition (1.2). A few of those which
are concerned with viscosity solutions are those obtained in [L, I, B1]. [I, B1] are the
first work which treated general nonlinear Neumann type boundary value problems for
degenerate elliptic and parabolic partial differential equations in the viscosity solutions
approach.

In the case of singular PDE like the mean curvature flow equation, [GS] is the
first which treated the Neumann problem. More general Neumann type probems are
dealt with in [S1, S2, B2]. The results in [B2] are close to Theorems 1 and 2 here.
Indeed, the results in [B2] has a better feature compared with our results here. Indeed,
the regularity assumption on B in [B2] is weaker than (B1). On the other hand, our
regularity assumption on 952 is weaker than that of [B2].

4. A class of functions F :
We examine here that a class of functions F satisfy (F1)—(F3).

Let A:Qx (R"\ {0}) - M™™ where M™*™ denotes the space of real n x m
matrices. Assume that A is a homogeneous function of degree zero, i.e.,

(3) A(z,\p) = A(z,p) for all (z,p,)) € O x (R™\ {0}) x (0, 00),
and satisfies
4)  lA@zp) - Ay, DIl < Ci(lz -yl +|p—gq|) forall z,y € Qand p,g e S™F,

where C; > 0 is a constant.
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It follows that for all z,y € Q and p,q € R™\ {0},

|Az,9) - A D)l <C1(l= -9l + y% _ |‘3‘| )

lp - 4q|
<Gi(le - v+ i)

<Ci(lz -yl + 20(p, 9))-
Let b € C(Q, R™) satisfy
(5) b(z) — b(y)| < Calz —y| for all z,y € Q.

Furthermore let ¢, f € C(Q, R) be given. Define the function F € C( x R x (R™\
{0}) x 8") by

F(z,u,p,X) = — tr[A(=,p)A(z,p)T X] + b(z) - p + c(z)u + f(x).

If X,Y € 8" and p1, 2 € [0,00) satisfy
X 0 I -I I0

— tr [A(a:,p)A(z,p)TX] — tr[A(y, 9)A(y, q)TY]
< C3||A(z,p) — Ay, 9)|I* < 4CsCa(Iz — yl* + p(p,9)?).

Thus F satisfies condition (F3). Also, it is immediate to see that condition (F2) is
satisfied with v < mingec.

If A(z,p) = I — |p|"2(p®p), b=0, and ¢ = f = 0, then it is the case of the mean
curvature flow equation and the above conditions on A, b, ¢, and f are valid.

More generally, let .A and B be two non-empty index sets, and let Ao € C(Q %
(R™\ {0}), M™*™), bas € C(Q, R™), cap € C(Q), and fop € C(Q), with (o, 8) € Ax B,
be given. Assume that these sets of functions are uniformly bounded, that {cap} and
{fap)} are equi-continuous, that {Aqs} satisfies (3) and (4) with a uniform constant Cy,
and that {bss} is equi-Lipschitz continuous (i.e., satisfies (5) with a uniform constant
Cs. Define

then

Fop(z,u,p, X) = —tr [Aaﬂ(m,p)Agﬁ(x’p)X] + bap(z) - P+ cap(z)u + fap(2),

and
F(z,u,p, X) = sup inf Fap(z,u,p, X).
acABEB

Then the function F satisfies (F1)-(F3).
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5. Functions B
In this section ‘we examine functions B Whlch descrlbes the boundary condition.
Consider the function B of the form ’ ‘

B(z,p) = M(-'v) p —|C(z)p|,

where p : R" - R" is a CL1 vector field over R™ and C : R® — M"x" is a C11
function satisfying det C(z) # 0 in a neighborhood of 8Q. It is clear that (B2) is
satisfied. We can modlfy the definition of B so that the resulting function B satisfies
(B1) and B(z,-) = B(z, - -) for all z in a neighborhood of 9.

As before let v(z) denote the unit outer normal of Q at z € BQ By calculatlon we
have '

C(z)TC(z)p ; :
Capl P70

and we see that (B3) is equivalent to the condition

Dy, B(z,p) = plz) -

pw(zx) -v(z) > §-C(z)v(z) for all (z,€) € OQ x S™~L.

A particular case is when u = v and C(z) = a(z)I for some a € C}(R™) such that
0 < a(z) <1 for z € 9, which corresponds to the Capillary condition. In this case the
boundary regularity of 2 should be of class C*! so that u = v € C11(R") is satisfied,
which is one of requirements of Theorems 1 and 2. It is interesting to find that the
results in [B2] need the same C?! regularity of the boundary.
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