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Abstract
In this note we will discuss some of the geometry of Holder and $L^{p}$ estimates

for elliptic equations. We will also show that aprobabilistic view point for $L^{p}$

estimates.

1. INTRODUCTION
We will use standard notations. $B_{f}=\{x\in \mathbb{R}^{n} : |x|<r\}$ , $Q_{r}=\{x=$

$(x_{1}, \ldots, x_{n})\in \mathbb{R}^{n}$ : $-r<x_{i}<r$} and $Br(x)=B_{r}+x$ , $Q_{f}(x)=Q_{\Gamma}+x$ . For
any measurable set $A$ , $|A|$ is its measure. For any integrable function $u$ , we denote
the average of $u$ as

$\overline{u}_{A}=\mathrm{f}_{A}^{u=}\frac{1}{|A|}\int_{A}u$ .
The classical Holder estimates of elliptic equations is the following Schauder

estimates, see [5], 1909 or [7], 1934.

Theorem 1(Korn-Schauder). If $u$ is a solution of
$\triangle u=f$ in $B_{2}$ (1)

then

$|\mathrm{D}^{2}u|_{C^{\alpha}(B_{1})}\leq C(|f|_{C^{\alpha}(B_{2})}+||u||_{L\infty(B_{2})})$ for any $0<\alpha<1$ . (2)

There are many proofs for this theorem and we will sketch some of the proofs
here but we will emphasis the interplay between the geometry of the equation and
the geometry of the functions.

The classical Calder\’on-Zygmund estimates established in [3] 1952.
Theorem 2(Calder\’on-Zygmund). If $u$ is a solution of (1) then

$\int_{B_{1}}|\mathrm{D}^{2}u|^{p}\leq C(\int_{B_{2}}|f|^{p}+\int_{B_{2}}u^{p})$ for any $1<p<+\infty$ . (3)

These estimates are among the most fundamental estimates for elliptic equations.
The classical proof of Calder\’on-Zygmund estimates, uses the singular integrals

$\frac{\partial^{2}u}{\partial x_{i}\partial x_{j}}(x)=\int_{\mathrm{R}^{n}}w_{ij}(y)f(x-y)dy$ (4)

where $Wij$ is ahomogeneous function of degree $-n$ with cancellation conditions.
The approach involves an $L^{2}-L^{2}$ estimate and an $L^{1}$ to $\mathrm{w}\mathrm{e}\mathrm{a}\mathrm{k}- L^{1}$ estimate. See
details in the book of Stein [9].

Our approach is more elementary. It gives an unified proof for elliptic, parabolic
and subelliptic operators. Our proof is built upon geometrical intuitions. Our basic
tools in this approach are the standard estimates for the the Vitali covering lemma
and Hardy-Littlewood maximal function
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Our approach is very much influenced by [2] and the early works in [1] and [10],
in which the Calder\’on-Zygmund decompositions were used. Here we will use the
Vitali covering lemma. Analytically the difference between the $\mathrm{C}\mathrm{a}\mathrm{l}\mathrm{d}\mathrm{e}\mathrm{r}6\mathrm{n}$-Zygmund
decomposition and Vitali covering lemma is not quite essential but subtle. One is
on cubes and the latter is on balls. However we hope that Vitali covering lemma
can easily adapted to more complicated situations since balls can be easily defined
on manifolds.

2. THE GEOMETRY OF FUNCTIONS AND SETS

Holder spaces. We should start out with ageometric description of H\"older space
which is the key to visualize the estimates.

First of all, the geometry of $||u||_{L(B_{1})}\infty\leq 1$ is that the graph of $u$ is in the box
$B_{1}\mathrm{x}[-1,1]$ . This gives avery mild control of z&.

The Holder norm of $u$ is actually very geometrical. Let us recall that $u$ is H\"older

urith $[u]_{C^{\alpha}}\leq 1$ if
$|u(x)-u(y)|\leq|x-y|^{\alpha}$ for all $x$ and $y$ , say, $\mathrm{i}\mathrm{n}B_{1}$ . (5)

Geometrically, the graph of $u$ is not abox anymore rather than asurface which is
away ffom spikes: $|x|^{\alpha}$ . That is, if $(x0,y\mathrm{o})$ is on the graph of $u$ , then all the points
$(x,y)$ with $y-y0>|x-x_{0}|^{\alpha}$ is not on the graph.

Now let see how this help us to understand the PDE.
Actually, one important observation already comes from these considerations.

The estimates of $u$ in H\"older is actually saying that $u’ \mathrm{s}$ graph is more and more
concentrated to asingle value. The concentration is in aprecise controlable fashion.
Similarly, estimates of $u$ in $C^{1,\alpha}$ or $C^{2,\alpha}$ will say that $u’ \mathrm{s}$ graph is more and more
look like alinear function or asecond order polynomial.

This is the geometry of H\"older spaces.
Let us examine the local geometry of the equation. Equation (1) is translation

invariant and scaling invariant as:
$\Delta u(x+x\mathrm{o})=f(x+x_{0})$

and
Au(rx) $=r^{2}f(rx)$ .

The first invariance says that all estimates at different points are equivalent and
the second one says that the equation satisfies similar equations in different scales
and the right hand side are increasingly regular (or small) as $rarrow \mathrm{O}$ . We also see
that the scaling limit is aharmonic function.

Now we put these two geometries together. The goal is to prove more concen-
tration of the graph of $u$ . And by the scaling, one can achieve that by showing
the graph is more concentrated in $B_{t\mathrm{O}}$ than that in $B_{1}$ . An iteration of this very
fact will imply more and more concentration of the graph in $B_{r_{0}^{2}}$ , $B_{\mathrm{r}_{\mathrm{O}}^{3}}\ldots$ and so
on. The scaling of the PDE enable us to perform this, iterations and the $\mathrm{H}6\mathrm{l}\mathrm{d}\mathrm{e}\mathrm{r}$

regularity reduced to one step concentration only: from $B_{1}$ to $B_{\mathrm{r}0}$ .
Now we see how these get implemented.

Lemma 1. If $u$ is a solution in $B_{1}$ of (1), and $h$ is the harmonic function with
$h=u$ on $\partial B_{1}$ , then

$|u(x)-h(x)| \leq\frac{1}{2n}(1-|x|^{2})||f||_{L\infty(B_{1})}$ .
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We will omit the proof since since it is the standard maximum principle.
The geometry of this lemma says the the graph of $u$ is very close to agraph of a

harmonic function. Actually, one can arrange it as close as one wants by arranging
$f$ small. An immediate consequence of the lemma is the following.

Corollary 1. For any $0<\alpha<1$ , there are positive universal constants $r_{0}<1$

and $\epsilon_{0}$ so that if $u$ is a solution in $B_{1}$ of (1) with $|u|\leq 1$ and $|f|\leq\epsilon_{0}$ then there
is a constant $A$ (we can take $A=h(0)$ , $h$ is the harmonic function in the previous
lemma), so that

$|u(x)-A|\leq r_{0}^{\alpha}$ for $x\in B_{r0}$ .
An iteration of the corollary gives that there are constants $A_{k}$ so that

$|u(x)-A_{k}|\leq r_{0}^{k\alpha}$ for $x\in B_{\mathrm{r}_{0}^{k}}$

with smallness conditions on $f$ . $A_{k}$ is clearly convergent as geometric series and
the H\"older norm estimates follows.

One can also prove the $C^{2,\alpha}$ estimates using second order approximation instead
of constant approximation.

Lemma 2. For each $0<\alpha<1$ , there are positive universal constants $r0<1$ and
$\epsilon_{0}$ so that if $u$ is a solution in $B_{1}$ of (1) with $|u|\leq 1$ and $|f|_{L(B_{1})}\infty\leq\epsilon_{0}$ , then there
is a harmonic polynomial $h(x)$ so that

$||u-p||_{L(B_{r_{0}})}\infty\leq r_{0}^{2+\alpha}||u||_{L\infty(B_{1})}$ . (6)

We will refer the readers to [1] or [10] for details.
Amore important fact of C’ space is that one can show the decay of $u(rx)$ with

respect to many other norms such as the $L^{p}$ norms. This fact is beautifully stated
in the Campanato Embedding theorem:

$\sup_{x\in\Omega}\inf_{c\in \mathrm{R}^{1}}\sup_{0<r<1}\frac{1}{r^{\alpha}}(f_{B_{r}(x)\cap\Omega}|u-c|^{p})\frac{1}{\mathrm{p}}\sim[u]_{C^{\alpha}}$ . (7)

This theorem says that we can understand if function is in Holder function not
only in pointwise sense, but also in $L^{p}$ norms. Here we notice that only the averages
not the $L^{p}$ norm measure the invariant smallness of afunction.

The geometry of $u$ in $L^{\infty}$ is clear visible however, once equipped with the above
theorem, we have enormouse freedom to visualize the Holder norm of $u$ in all kinds
of different norms. This $L^{p}$ picture of Holder norm is particularly important for
nonlinear equations, such as minimal surfaces and harmonic maps.

For example one can prove Schauder estimates by the standard energy estimates
outlined below.

Lemma 3. For each $0<\alpha<1$ , there are positive universal constants $r_{0}<1$ and
$\epsilon_{0}$ such that if

$f_{B_{1}}|f|^{2}\leq\epsilon_{0}^{2}$

then there is a second order harmonic polynomial $p(x)$ so that

$f_{B_{r_{\mathrm{O}}}}|u-p|^{2}\leq r_{0}^{2(2+\alpha)}$ . (8)

The proof of this is almost the same as above.
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$L^{p}$ spaces. The information carried by $L^{p}$ norm of afunction is not as local as by
the Holder norms. In contrast to H\"older spaces, there is no way to say afunction
is like a $L^{p}$ function at apoint.

In order to examine the information carried by $L^{p}$ norm of afunction, let us
recall the formula,

$\int_{\Omega}|u|^{p}dx=p\int_{0}^{\infty}t^{p-1}|\{x\in\Omega : |u|>t\}|dt$ . (9)

If $\int_{\Omega}|u|^{p}dx=1$ , one will have that

$| \{x\in\Omega : |u|>\lambda\}|\leq\frac{1}{\lambda^{p}}$ , (10)

i.e., the measure
$|\{x:\in\Omega : |u|>\lambda\}|$

is small for Alarge. This tells us that if we randomly choose apoint $x$ , then the
probability for $|u(x)|>\lambda$ is small for Alarge. The identity (9) shows the decay of
$|\{x:\in\Omega : |u|>\lambda\}|$ in aprecise way and this decay is the only information carried
by the $L^{p}$ norm. We also observe that the faster this probability decays the bigger
the $p$ is.

Now let us discuss how we can show that afunction is in $L^{p}$ .
First we see that one has to prove the decay of $|\{|u|>\lambda\}|$ . As in the Holder

estimates, we should prove this decay inductively. Areasonable argument of this
sort is to prove:

$|\{|u|>\lambda_{0}\}|\leq\epsilon|\{|u|>1\}|$ . (11)

The smaller $\epsilon$ or $\lambda_{0}-1$ is, the faster the decay is. Here one should realize that this
estimate should be scaled to

$|\{|u|>\lambda_{0}\lambda\}|\leq\epsilon$ $|\{|u|>\lambda\}|$ (12)

with proper conditions on the data. As in the H\"older space case, one should expect
that an inductive argument proves the decay.

The $W^{2.p}$ theory of (1) says that $\mathrm{D}^{2}u$ is in $L^{p}$ if Au is. Hence areasonable
expectation of an inductive estimate could be

$|\{|\mathrm{D}^{2}u|>\lambda\circ\}|\leq\epsilon(|\{|\mathrm{D}^{2}u|>1\}|+|\{|f|>\delta_{0}\}|)$ . (13)

Here we can scale (13) to

$|\{|\mathrm{D}^{2}u|>\lambda_{0}\lambda\}|\leq\epsilon(|\{|\mathrm{D}^{2}u|>\lambda\}|+|\{|f|\geq\delta_{0}\lambda\}|)$ (14)

which is the s0-called $good-\lambda$ inequality. One can easily show the $L^{p}$ estimates if
(13) were true for fixed $\lambda_{1}>1$ and $\epsilon$ small. (13), however, is not true. One reason
for the failure of (13) is that the condition

$|\mathrm{D}^{2}u(x\mathrm{o})|\leq 1$ (15)

is unstable in the setting of $W^{2,p}$ theory.
Although (13) is not true, its modification (19) below is true.
The key modification is provided by one of the treasures in analysis, the Hardy-

Littlewood maximal function
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For alocally integrable function $v$ defined in $\mathbb{R}^{n}$ , its maximal function is defined
as

$\mathcal{M}v(x)=\sup_{r>0}f_{B_{r}(x)}|v|d\mathcal{L}^{n}$ . (16)

We also use
$\mathcal{M}_{\Omega}v(x)=\mathcal{M}(v\chi_{\Omega})(x)$ ,

if $v$ is not defined outside $\Omega$.or equivalently we replace or extend $v$ by 0outside Q.
We will drop the index $\Omega$ if $\Omega$ is understood clearly in the context. We can also
define the maximal function by taking the supremum in cubes.

$\overline{\mathcal{M}}v(x)=\sup_{Q_{r}(x)}f_{Q_{r}(x)}|v|d\mathcal{L}^{n}$ . (17)

It is clear that,
$\mathcal{M}v\leq C\overline{\mathcal{M}}v\leq C\mathcal{M}v$.

We will use the maximal function $\mathcal{M}v$ defined in (16) on balls in this paper.
The basic theorem for Hardy-Littlewood maximal function is the following:

Theorem 3.
$||\mathcal{M}(v)(x)||_{L^{\mathrm{p}}(\Omega)}$ $\leq$ $C||v||_{L^{\mathrm{p}}(\Omega)}$ for any $1<p\leq+\infty$ .

$|\{x\in\Omega : \mathcal{M}v(x)\geq\lambda\}|$ $\leq$ $\frac{C}{\lambda}||v||_{L^{1}(\Omega)}$ .

The first inequality is call strong $p-p$ estimates and the second is call weak 1-1
estimates. This theorem says that the measures of $\{|v(x)|>\lambda\}$ and {Mv(x) $>\lambda$ }
decay roughly in the same way. However $\mathcal{M}u(x)\leq 1$ is much more stable and
geometrical than $|u(x)|\leq 1$ if $u$ is merely an $L^{p}$ function. The reason is that $\mathcal{M}u$

is invariant with respect to scaling. Another aspect of the maximal function is that
$\{\mathcal{M}u\geq\lambda\}$ and $\{|u|\geq\lambda\}$ have roughly the same measure.

Likewise we will replace (15) by
$(\mathcal{M}|\mathrm{D}^{2}u|^{2})(x)\leq 1$ . (18)

If $\mathcal{M}|\mathrm{D}^{2}u|^{2}(x_{0})\leq 1$ , one would see that $\mathrm{D}^{2}u(x)$ is really $\leq 1$ at $x_{0}$ in all scales in
the sense of $L^{2}$ .

In fact we will show that

$|\{x\in B_{1} : \mathcal{M}|\mathrm{D}^{2}u|^{2}>\lambda_{0}^{2}\}|\leq\epsilon(|\{x\in B_{1} : \mathcal{M}|\mathrm{D}^{2}u|^{2}>1\}|$

$+|\{x\in B_{1} : \mathcal{M}(f^{2})>\delta_{0}^{2}\}|)$ (19)
where $\delta_{0}$ can be taken as small as possible since it is about the data.

The proof of (19) is based on Vitali lemma and its modification.
Lemma 4(Vitali). Let $C$ be a class of balls in $\mathbb{R}^{n}$ with bounded radius. Then there
is a finite or countable sequence $B_{i}\in C$ of disjoint balls such that

$\bigcup_{B\in C}B\subset\bigcup_{i}5B_{i}$ ,

where $5B_{i}$ is the ball with the same center as $B_{i}$ and radius five times big.

We will use the following in this paper.

Theorem 4(Modified Vitali). Let $0<\epsilon<1$ and let $C\subset D\subset B_{1}$ be two
measurable sets with $|C|<\epsilon|B_{1}|$ and satisfying the following property: for every
$x\in B_{1}$ with $|C\cap B_{r}(x)|\geq\epsilon|B_{f}|$ , $B_{r}(x)\cap B_{1}\subset D$ . Then $|D| \geq\frac{1}{20^{n}\epsilon}|C|$ .
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Proof. Since $|C|<\epsilon|B_{1}|$ , we see that for almost every $x\in C$ , there is an $r_{x}$ so
that $|C\cap B_{r_{x}}(x)|=\epsilon|B_{t_{x}}|$ and $|C\cap B_{f}(x)|<\epsilon|B_{f}|$ for all $1>r>r_{x}$ . By Vitali’
covering lemma, there are $x_{1},x_{2}$ , $\cdots$ , so that $B_{\mathrm{r}_{x_{1}}}(x_{1})$ , $B_{\mathrm{r}_{x_{2}}}(x_{2})$ , $\cdots$ are disjoint
and $\bigcup_{k}B_{5\mathrm{r}_{x_{k}}}(x_{k})\cap B_{1}\supset C$ .

Prom the choice of $B_{t_{x_{k}}}$ , we have

$|C\cap B_{5\mathrm{r}_{ax_{k}}}(x_{k})|<\epsilon|B_{5\mathrm{r}_{x_{k}}}(x_{k})|=5^{n}\epsilon|B_{\mathrm{r}_{x_{k}}}(x_{k})|=5^{n}|C\cap B_{\mathrm{r}_{x_{k}}}(x_{k})|$.

We also notice that

$|B_{\mathrm{r}_{x_{k}}}(x_{k})|\leq 4^{n}|B_{fk}.(x_{k})\cap B_{1}|$

since $x_{k}\in B_{1}$ and $r_{x_{k}}\leq 1$ .
Putting everything together,

$|C|=| \bigcup_{k}B_{5\mathrm{r}_{x_{k}}}(x_{k})\cap C|$

$\leq\sum_{k}|B_{5r_{x_{k}}}(x_{k})\cap C|$

$\leq 5^{n}\sum_{k}\epsilon|B_{f}(x_{k}x_{k})|$

$\leq 20^{n}\sum_{k}\epsilon|B_{\mathrm{r}_{x_{k}}}(x_{k})\cap B_{1}|$

$=20^{n}\epsilon|\cup B_{\mathrm{r}_{x_{k}}}(x_{k})\cap B_{1}|$

$\leq 20^{n}\epsilon|D|$ .
This finishes the proof. $\square$

The proof of (19) will be carried out in next section.

3. ELLIPTIC EQUATIONS

Now we prove Theorem 2. We only need to prove it for $p>2$ since the statement
for $p<2$ follows from the standard duality argument.

The starting point of the estimates is the following classical estimates. See [4],
page 317.

Lemma 5. If
$\{$

$\triangle u=f$ in $B_{1}$ ,
$u=0$ on $\partial B_{1}$ ,

then
$\int_{B_{1}}|\mathrm{D}^{2}u|^{2}\leq C\int_{B_{1}}|f|^{2}$

Lemma 6. There is a constant $N_{1}$ so that for any $\epsilon>0$ , $\exists\delta=\delta(\epsilon)>0$ and if $u$

is a solution of (1) in a domain $\Omega\supset B_{4}$ , with

$\{\mathcal{M}(|f|^{2})\leq\delta^{2}\}\cap\{\mathcal{M}|\mathrm{D}^{2}u|^{2}\leq 1\}\cap B_{1}\neq\emptyset$ (20)

then
$|\{\mathcal{M}|\mathrm{D}^{2}u|^{2}>N_{1}^{2}\}\cap B_{1}|<\epsilon|B_{1}|$ . (21)
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Proof. Prom condition (20), we see that there is apoint $x_{0}\in B_{1}$ so that

$f_{B_{r}(x\mathrm{o})}|\mathrm{D}^{2}u|^{2}\leq 2^{n}$ and $f_{B_{r}(x_{0})}|f|^{2}\leq 2^{n}\delta^{2}$ , (22)

for all $B_{f}(x_{0})\subset\Omega$ and consequently we have

$f_{B_{4}}|\mathrm{D}^{2}u|^{2}\leq 1$ and $f_{B_{4}}|f|^{2}\leq\delta^{2}$ .

Then
$f_{B_{4}}|\nabla u-\overline{\nabla u}_{B_{4}}|^{2}\leq C_{1}$ .

Let $v$ be the solution of the following equation

$\{$

$\triangle v=$ 0
$v=$ $u-(\overline{\nabla u})_{B_{4}}\cdot$ $\mathrm{x}-\overline{u}_{B_{4}}$ on $\partial B_{4}$ .

Then by the minimality of harmonic function with respect to energy in B4,

$\int_{B_{4}}|\nabla v|^{2}\leq\int_{B_{4}}|\nabla u-\overline{\nabla u}_{B_{4}}|^{2}\leq C_{1}$ .

Now we can use the local $C^{1,1}$ estimates that there is aconstant $N_{0}$ so that
$||\mathrm{D}^{2}v||_{L\infty(B_{3})}^{2}\leq N_{0}^{2}$. (23)

At the same time we have,

$\int_{B_{3}}|\mathrm{D}^{2}(u-v)|^{2}\leq C\int_{B_{4}}f^{2}\leq C\delta^{2}$.

Prom the weak 1–1 estimate,

$\lambda|\{x\in B_{3} : \mathcal{M}_{B_{3}}|\mathrm{D}^{2}(u-v)|^{2}(x)>\lambda\}|\leq\frac{C}{N_{0}^{2}}\int_{B_{3}}|\mathrm{D}^{2}(u-v)|^{2}$

$\leq\frac{C}{N_{0}^{2}}\int_{B_{4}}f^{2}$

$\leq C\delta^{2}$ .
Consequently,

$|\{x\in B_{1} : \mathcal{M}_{B_{3}}|\mathrm{D}^{2}(u-v)|^{2}(x)>N_{0}^{2}\}|\leq C\delta^{2}$ .
Now we claim that

$\{x\in B_{1} : \mathcal{M}|\mathrm{D}^{2}u|^{2}>N_{1}^{2}\}\subset\{x\in B_{1} : \mathcal{M}_{B_{3}}|\mathrm{D}^{2}(u-v)|^{2}>N_{0}^{2}\}$,

where $N_{1}^{2}= \max(4N_{0}^{2},2^{n})$ .
Actually if $y\in B_{3}$ , then

$|\mathrm{D}^{2}u(y)$ $|2 =|\mathrm{D}^{2}u(y)|^{2}-2|\mathrm{D}^{2}v(y)|^{2}+2|\mathrm{D}^{2}v(y)|^{2}$

$\leq 2|\mathrm{D}^{2}u(y)-\mathrm{D}^{2}v(y)|^{2}+2N_{0}^{2}$ .
Let $x$ be apoint in $\{x\in B_{1} : \mathcal{M}_{B_{3}}|\mathrm{D}^{2}(u-v)|^{2}(x)\leq N_{0}^{2}\}$ .
If $r\leq 2$ we have $B_{f}(x)\subset B_{3}$ and

$\sup_{\mathrm{r}\leq 2}f_{B_{r}(x)}|\mathrm{D}^{2}u|^{2}\leq 2\mathcal{M}_{B_{3}}(|\mathrm{D}^{2}(u-v)|^{2})(x)+2N_{0}^{2}\leq 4N_{0}^{2}$ .
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Now for $r>2$ , we have $x0\in B_{r}(x)\subset B_{2r}(x\mathrm{o})$ , we have

$t_{B_{r}(x)}| \mathrm{D}^{2}u|^{2}\leq\frac{1}{|B_{\tau}|}\int_{B_{2r}(x_{0})}|\mathrm{D}^{2}u|^{2}\leq 2^{n}$,

where we have used (22). This says that $\mathcal{M}(|\mathrm{D}^{2}u|^{2})(x)\leq N_{1}^{2}$ .
This establishes the claim.
Finally, we have

$|\{x\in B_{1}$ : $\mathcal{M}(|\mathrm{D}^{2}u|^{2})>N_{1}^{2}\}|\leq|\{x\in B_{1} : \mathcal{M}_{B_{3}}(|\mathrm{D}^{2}(u-v)|^{2}>N_{0}^{2}\}|$

$\leq\frac{C}{N_{0}}\int f^{2}$

$C\delta^{2}$

$\leq\overline{N_{0}^{2}}$

$<C\delta^{2}=\epsilon|B_{1}|$ ,

by taking $\delta$ satisfying the last identity above. This completes the proof. $\square$

An immediate consequence of the above lemma is the following corollary.

Corollary 2
$4B\subset\Omega$ . $If|\{$

. Assume $u$ is a solution in a domain 0and assu
$x:\mathcal{M}(|\mathrm{D}^{2}u|^{2})>N_{1}^{2}\}\cap B|\geq\epsilon|B|$ , then $B\subset\{$

me in a ball $B$ so that
$x$ : $\mathcal{M}(|\mathrm{D}^{2}u|^{2})(x)>1\}\cup$

$\{\mathcal{M}f^{2}>\delta^{2}\}$ .

The moral of Co

set $\{x:\mathcal{M}(|\mathrm{D}^{2}u|$

$B|=\epsilon|B|$ . As $\mathrm{s}\mathrm{a}\mathrm{i}$

portion of the set $\{$

the density of the
of the measure of

The covering is

rollary 2is that the set $\{x$ : $\mathcal{M}(|\mathrm{D}^{2}u|^{2})>1\}$ is bigger than the

$2)>N_{1}^{2}\}$ modulo $\{\mathcal{M}(f^{2})>\delta^{2}\}\mathrm{i}\mathrm{f}|\{x$ : $\mathcal{M}(|\mathrm{D}^{2}u|^{2})>N_{1}^{2}\}\cap$

$\mathrm{d}$ in the construction of the Vitali lemma, we will cover a good
$x$ : $\mathcal{M}(|\mathrm{D}^{2}u|^{2})>N_{1}^{2}\}$ by disjoint balls so that in each of balls

set is $\epsilon$ . As an application of Corollary 2, we will show the decay

the set $\{x:\mathcal{M}(|\mathrm{D}^{2}u|^{2})>N_{1}^{2}\}$ .
acareful choice of balls as in Vitali covering lemma.

Corollary 3. Assume that $u$ is a solution in a domain $\Omega\supset B_{4}$ , with the condition

that $|\{x\in B_{1}$ : $\mathcal{M}(|\mathrm{D}^{2}u|^{2})>N_{1}^{2}\}|\leq\epsilon|B_{1}|$ . Then $fo\tau$ $\epsilon_{1}=20^{n}\epsilon$ ,

1. $|$

2. $|$

3. $|\{$

$\{x\in B_{1}$ : $\mathcal{M}(|\mathrm{D}^{2}u|^{2})>N_{1}^{2}\}|\leq$

$\epsilon_{1}([_{x\in B_{1}\cdot \mathcal{M}(|f|^{2})>\delta^{2}\}|)}^{\{x\in B_{1}\cdot \mathcal{M}(\mathrm{D}^{2}u)^{2}(x)>1\}|}+|.\cdot$

.
$\{x\in B_{1}$ : $\mathcal{M}(|\mathrm{D}^{2}u|^{2})>N_{1}^{2}\lambda^{2}\}|$ $\leq\epsilon_{1}(|\{x\in B_{1}$ : $\mathcal{M}(\mathrm{D}^{2}u)^{2}>\lambda^{2}\}|$

$+|\{x\in B_{1}$ : $\mathcal{M}(|f|^{2})>\delta^{2}\lambda^{2}\}|)$ .
$x\in B_{1}$ : $\mathcal{M}(|\mathrm{D}^{2}u|^{2})>(N_{1}^{2})^{k}\}|$

$\leq\sum_{\dot{|}=1}^{k}\epsilon_{1}^{\dot{1}}$ $|\{x\in B_{1}$ : $\mathcal{M}(|f|^{2})>\delta^{2}(N_{1}^{2})^{k-i}\}|$

$+\epsilon_{1}^{k}|\{x\in B_{1}$ : $\mathcal{M}(|\mathrm{D}^{2}f|^{2})>1\}|$ .

Proof. (1) is adirect consequence of Corollary 6and Theorem 4on

$C=\{x\in B_{1}$ : $\mathcal{M}(|\mathrm{D}^{2}u|^{2})>N_{1}^{2}\}$ ,

$D=\{x\in B_{1}$ : $\mathcal{M}(|\mathrm{D}^{2}u|^{2})>1\}\cup\{$ $x\in B_{1}$ : $M(|f|^{2})>\delta^{2}\}$ .
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(2) is obtained by applying (1) to the equation Is $(\lambda^{-1}u)=\lambda^{-1}f$ .
(3) is an iteration of (2) by A $=N_{1}$ , $(N_{1})^{2}$ , $\ldots$ . $\square$

Theorem 5. If $\triangle u=f$ in $B_{4}$ then

$\int_{B_{1}}|\mathrm{D}^{2}u|^{p}\leq C\int_{B_{4}}|f|^{p}+|u|^{p}$ .

Proof. Without lose of generality, we may assume that $||f||_{p}$ is small and the mea-
sure $|\{x\in B_{1} : \mathcal{M}|\mathrm{D}^{2}u|^{2}>N_{1}^{2}\}|\leq\epsilon|B_{1}|$ by multiplying the function by asmall
constant. We will show that $\mathcal{M}(|\mathrm{D}^{2}u|^{2})\in L^{R}2(B_{1})$ ffom which it follows that
$\mathrm{D}^{2}u\in L^{p}(B_{1})$ . Since $f\in L^{p}$ , we have that $\mathcal{M}(|f|^{2})\in L^{R}2$ with small norm.
Suppose

I $f||_{L^{\mathrm{p}}(B_{4})}=\delta$ .
Then

$\sum_{i=1}^{+\infty}(N_{1})^{ip}|\{\mathcal{M}(|f|^{2})>\delta^{2}(N_{1})^{2:}\}|\leq\frac{pN^{p}}{\delta^{p}(N-1)}||\mathrm{f}||_{L^{\mathrm{p}}(B_{1})}^{p}\leq C$ .

Hence

$\int_{B_{1}}|\mathrm{D}^{2}u|^{p}\leq\int_{B_{1}}(\mathcal{M}(|\mathrm{D}^{2}u|^{2}))^{2}2dx$

$=p \int_{0}^{\infty}\lambda^{p-1}|\{x\in B_{1} : \mathcal{M}|\mathrm{D}^{2}u|^{2}\geq\lambda^{2}\}|d\lambda$

$\leq p(|B_{1}|+\sum_{k=1}^{+\infty}(N_{1})^{kp}|\{x\in B_{1}$ : $\mathcal{M}|\mathrm{D}^{2}u|^{2}>(N_{1})^{2k}\}|)$

$\leq p(|B_{1}|+\sum_{i=1}^{+\infty}N_{1}^{kp}\sum_{i=1}^{k}\epsilon_{1}^{i}|\{x\in B_{1}$ : $\mathcal{M}|f|^{2}\geq\delta^{2}N_{1}^{2(k-:)}\}|$

$+ \sum_{k=1}^{\infty}N_{1}^{kp}\epsilon^{k}|\{x$ : $\mathcal{M}(|D^{2}u|^{2})\geq 1\}|)$

$\leq p(|B_{1}|+\sum_{i=1}^{+\infty}(N_{1})^{ip}\epsilon_{1}^{i}\sum_{k\geq i}N_{1}^{(k-i)p}|\{x\in B_{1}$ : $\mathcal{M}|f|^{2}\geq\delta^{2}N_{1}^{2(k-i)}\}|$

$+ \sum_{k=1}^{\infty}N_{1}^{kp}\epsilon_{1}^{k}|\{x\in B_{1}$ : $\mathcal{M}|\mathrm{D}^{2}u|^{2}\geq 1\}|)$

$\leq C$,

if we take $\epsilon_{1}$ so that $N_{1}^{p}\epsilon_{1}<1$ and the theorem follows. 口

We remark that our methods can be adapted to prove the same result by using
the Caldron Zygmund decomposition.

The advantage ofVitali covering lemma is that it holds on any manifolds whereas
the Caldron Zygmund decomposition requires cubes which give clean cut in Eu-
zlidean spaces which are rare to find on manifolds
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4. $W^{1,p}$ ESTIMATES

One can easily adapt the methods in the preceding section to obtain $W^{1,p}$ esti-
mates of the following type:

Theorem 6. If
$\triangle u=\mathrm{d}\mathrm{i}\mathrm{v}\mathrm{f}=\sum_{i=1}^{n}\partial_{\dot{l}}f_{\dot{l}}$ in $B_{1}$

then
$\int_{B}:|\nabla u|^{p}\leq C_{p}\int_{B_{1}}|\mathrm{f}|^{p}+|u|^{p}$ for $1<p<+\infty$ .

Theorem 6is proved by the following elementary energy estimates lemma and
the steps as in the previous section.

Lemma 7. If
$\{$

$\Delta u=\mathrm{d}\mathrm{i}\mathrm{v}\mathrm{f}$ in $B_{1}$ ,
$u=0$ on $\partial B_{1}$ ,

then
$\int_{B_{1}}|\nabla u|^{2}\leq\int_{B_{1}}|\mathrm{f}|^{2}$

For aproof of this elementary lemma, see [4], page 297.
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