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1 Introduction
(Domain Decomposition Method) has been popular in numerical simulation It saves

CPU time and memory space. Moreover, balanced accuracy realized by suitable resolution
in each subdomains makes numerical simulation stable.

On the other hand, (Infinite-Precision Numerical Simulation) has been developed
recently[5]. It attains ultimately high accuracy. From this property IPNS has reclaimed new
fields of numerical simulation, e.g. direct simulation of inverse problems[3, 4, 6, 7].

In the paper application of DDM and IPNS is considered. Atest problem is solved.
Numerical results are investigated from the view point of accuracy.

2Application of DDM and IPNS

2.1 Infinite-Precision Numerical Simulation
Numerical errors originate from the truncation error in the discretization and the rounding
error. Realization of highly accurate numerical simulation needs arbitrary reduction of both
errors. For such numerical simulation we proposed asimple method called IPNS(Infinite-
Precision Numerical Simulation). IPNS consists of the arbitrary order approximation and
the multiple-precision arithmetic. The former is used for the arbitrary reduction of the
truncation error. The last is used for the arbitrary reduction of the rounding error. As
for the arbitrary order approximation spectral methods are very useful[l]. Especially, the
spectral collocation method is most useful. Its application is same in FDM, so it is easily
applicable to nonlinear problems, even to free boundary problems[10]. In the spectral coll0-
cation method, the order of approximation can be controlled by the number of collocation
points. The multiple-precision arithmetic[8] is now easily available. Alot of subroutines
about it are already prepared. Some libraries are free and distributed on the net, e.g
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http: $//\mathrm{w}\mathrm{w}\mathrm{w}$ . lmu. $\mathrm{e}\mathrm{d}\mathrm{u}/\mathrm{a}\mathrm{c}\mathrm{a}\mathrm{d}/\mathrm{p}\mathrm{e}\mathrm{r}\mathrm{s}\mathrm{o}\mathrm{n}\mathrm{a}\mathrm{l}/\mathrm{f}\mathrm{a}\mathrm{c}\mathrm{u}\mathrm{l}\mathrm{t}\mathrm{y}/\mathrm{d}\mathrm{m}\mathrm{s}\mathrm{m}\mathrm{i}\mathrm{t}\mathrm{h}2/\mathrm{F}\mathrm{M}\mathrm{L}\mathrm{I}\mathrm{B}$.html [9]. IPNS has bee
applied to many problems and ultimately high accuracy has been seen in numerical results.

2.2 Test problem

We consider the following simple boundary value peoblem.

Problem 1. For agiven $a$ find $u(x)\mathrm{s}.\mathrm{t}$ .

$\{$

$\frac{d^{2}u}{dx^{2}}=\frac{-8a^{2}(e^{ax}-e^{-ax})}{(e^{ax}+e^{-ax})^{3}}$ , $-1<x<1$ ,

$u(-1)= \frac{e^{-a}-e^{a}}{e^{-a}+e^{a}}$ , $u(1)= \frac{e^{a}-e^{-a}}{e^{a}+e^{-a}}$ .

(1)

Remark 1. The exact solution to Problem 1is $u(x)= \tanh(ax)=\frac{e^{ax}-e^{-ax}}{e^{ax}+e^{-ax}}$ . If $a$ is
large this problem becomes difficult to be solved numerically. This is because for a large $a$ the
solution becomes the step function approximately. This situation can be seen in Fig. 1.

(a) $\tanh(3x)$ (b) $\tanh$ (100x)

Fig. 1. Exact solutions for various values of $a$ .

2.3 Application of DDM and IPNS
The exact solution to Problem 1is analytic, so IPNS can catch it in arbitrary accuracy.
However, if $a$ is large, IPNS cost very much. Thus efficiency of DDM to such acase is our
interest. Our interest is rather mathematical, so parallel computing or automatic domain
decomposition are not considered. DDM is applied to Problem 1as follows. The domain
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is decomposed into three subdomains [-1, -c], [-c, c] and [c, 1] where $0<c<1$ . Then
Problem 1is decomposed into the following three problems.

$\{$

$\frac{d^{2}u}{dx^{2}}=\frac{-8a^{2}(e^{ax}-e^{-ax})}{(e^{ax}+e^{-ax})^{3}}$ , $c<x<1$ ,

$u(1)= \frac{e^{a}-e^{-a}}{e^{a}-e^{-a}}$ ,

(2)

$\frac{d^{2}u}{dx^{2}}=\frac{-8a^{2}(e^{ax}-e^{-ax})}{(e^{ax}+e^{-ax})^{3}}$ , $-c<x<c$ , (3)

$\{$

$\frac{d^{2}u}{dx^{2}}=\frac{-8a^{2}(e^{ax}-e^{-ax})}{(e^{ax}+e^{-ax})^{3}}$ , $-1<x<-c$ ,

$u(-1)= \frac{e^{-a}-e^{a}}{e^{-a}+e^{a}}$ .

(4)

For the application of IPNS with the Chebyshev polynomial in each subdomains, the fol-
lowing mapping functions are indroduced for mapping each subdomains into [-1, 1]. For
$-1\leqq t\leqq 1$

$\{\begin{array}{l}x_{1}(t)=\frac{\mathrm{l}-c}{2}(t+1)+cx_{2}(t)=ctx_{3}(t)=\frac{1-c}{2}(t+1)-1\end{array}$ (5)

By using these mapping functions equations in subdomains are transformed as follows, re-
spectively.

$\{\begin{array}{l}\frac{d^{2_{4}}\tilde{u}_{1}}{dt^{2}}=\frac{-2a^{2}(\mathrm{l}-c)^{2}(e^{ax_{1}(t)}-e^{-ax_{1}(t)})}{(e^{ax_{1}(t)}+e^{-ax_{1}(t)})^{3}}\tilde{u}_{1}(1)=\frac{e^{a}-e^{-a}}{e^{a}+e^{-a}}\end{array}$

$-1<t<1$ ,

(6)

$\frac{d^{2}\tilde{u}_{2}}{dt^{2}}=\frac{-8a^{2}c^{2}(e^{act}-e^{-act})}{(e^{act}+e^{-act})^{3}}$ , $-1<t<1$ , (7)
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$\{$

$\frac{d^{2}\tilde{u}_{3}}{dt^{2}}=\frac{-2a^{2}(1-c)^{2}(e^{ax_{3}(\mathrm{t})}-e^{-ax_{3}(\mathrm{t})})}{(e^{ax_{3}(t)}+e^{-ax_{3}(t)})^{3}}$, $-1<t<1$ ,

$\tilde{u}_{3}(-1)=\frac{e^{-a}-e^{a}}{e^{-a}+e^{a}}$ .

(8)

Here $\tilde{u}_{i}(t)=u(x_{i}(t))$ , $i=1,2,3$ . As for patching conditions the followings are introduced :

$\{$

$\tilde{u}_{1}(-1)$ $=\overline{u}_{2}(1)$ ,

$\frac{d\tilde{u}_{1}}{dt}(-1)$ $= \frac{1-c}{2c}\frac{d\tilde{u}_{2}}{dt}(1)$ ,
(9)

$\{$

$\tilde{u}_{2}(-1)=\tilde{u}_{3}(1)$ ,

$\frac{1-c}{2c}\frac{d\tilde{u}_{2}}{dt}(-1)=\frac{d\tilde{u}_{3}}{dt}(1)$ .
(10)

As mentioned before, our interest is efficiency of DDM in accuracy. So, iteration for parallel
computing is not used. Eqs. (6), (7), (8), (9) and (10) are discretized by SCM(Spectral
Collocation Method) with the Chebyshev polynomial and C-G-L(Chebyshev-Gauss-Lobatto)
collocation points and they are solved simultaneously in high precision. Multiple precision
arithmetic is not necessary in numerical computation seen later.

3Numerical Results
In this section numerical results are shown. Our simple investigation did not require multiple
precision and consequently strict IPNS was not carried out. However, results obtained here
suggest the role of DDM in IPNS. Of course, IPNS is necessary for detailed investigation.

For the case where DDM is not applied, i.e. Problem 1is solved by IPNS without DDM,
$(N+1)$ C-G-L points in [-1, 1] are used. Then,

error $= \max 0\leqq j\leqq N|u^{c}(x_{j})-u(x_{j})|$ , $x_{j}= \cos\frac{j\pi}{N}$ , $\dot{\gamma}=0,1$ , $\cdots$ , $N$, (11)

where $u^{c}$ and $u$ denote the numerical solution and the exact solution, respectively. For
the case where DDM is applied, $(N_{1}+1)$ , $(N_{2}+1)$ and $(N_{3}+1)$ C-G-L points are used
in $[c, 1]$ , $[-c, c]$ , and $[-1, -c]$ , respectively. Then, $N=N_{1}+N_{2}+N_{3}$ . Moreover,
$N_{1}=N_{3}=10$ for our purpose. Then,

error $= \max\{\max 1\leqq i\leqq 30\leqq j\leqq N_{i}|\overline{u}_{i}^{c}(t_{j}^{i})-u(x_{i}(t_{j}^{i}))|\}$, $t_{j}^{i}= \cos\frac{j\pi}{N_{i}}$ , $\dot{J}$
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$\prime ic$ denotes the numerical solution by DDM.

Table 1. Maximum error for Problem 1with $a=1\mathrm{O}\mathrm{O}$ .
(Quadruple precision, DDM : $c=0.1$ , $N_{1}=N_{3}=10$ )

$\overline{\mathrm{Q}\mathrm{g}}$

Fig. 2. Behavior of maximum error for Problem 1with $a=1\mathrm{O}\mathrm{O}$ .
(Quadruple precision, DDM : $c=0.1$ , $N_{1}=N_{3}=10$ )

1these numerical results it is seen DDM is efficient in IPNS. This means DD
space (and CPU time) for adegree of accuracy comparing with the case 1
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not used. At the same time, it should be remarked improper DDM spoils merit of DDM.
This means high resolution in the region where solutions change alot does not always attain
high accuracy.

4Conclusion
In the paper DDM is applied in IPNS. Numerical results show efficiency of DDM on saving
memory space (and CPU time). At the same time they also show high accuracy is not
attained by improper resolution in each subdomains. Our future work is parallelization and
solving more difficult problems in high accuracy.
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