Relatively Simple Chain Complexes

城西大学•理学部 山崎 正之（Masayuki Yamasaki）
Faculty of Science，
Josai University

Introduction

The purpose of this short note is to give a characterization of geometric module chain complexes representing the trivial element in the relative $p_{X}^{-1}(\epsilon)$－controlled Whitehead group $W h\left(X, Y ; p_{X}\right.$ ， $n, \epsilon)$ of a pair (X, Y) of metric spaces．These groups were introduced in［5］．Here $p_{X}: W \rightarrow X$ is a given control map，and n is the restriction on the dimensions of chain complexes．For different n＇s，$W h\left(X, Y ; p_{X}, n, \epsilon\right)$ are in general different abelian groups，but they are all the same after stabilization（Propositions 4．6，4．7，and the comment after 4.7 of［5］）．

Main Theorem．There exist a positive constant α such that the following holds：For any chain complex C representing the trivial element of $W h\left(X, Y, p_{X}, n, \epsilon\right)$ ，there exist n－dimensional trivial chain complexes T, T^{\prime} and an n－dimensional free $\alpha \epsilon$ chain complex F on $p_{X} \mid Y^{\alpha \epsilon}$ such that $C \oplus T$ and $F \oplus T^{\prime}$ are $\alpha \epsilon$－simple isomorphic．Actually $\alpha=500$ works．

In the first section，we review some facts from［5］and give the proof of the main theorem． The main ingredient of the proof is the restriction operation of simple isomorphisms described in［3］．In the second section we discuss how this can be used in the theroy of controlled L－theory．

1．Proof of the Main Theorem

We first review the definition of the controlled Whitehead group of a pair．Let (X, Y) be a pair of metric spaces，and $p_{X}: W \rightarrow X$ be a continuous map．$W h\left(X, Y ; p_{X}, n, \epsilon\right)$ is the set of equiv－ alence classes of n－dimensional free ϵ chain complexes on p_{X} which are strongly ϵ contractible over $X-Y$ ．The equivalence relation is generated by n－stable 40ϵ－simple equivalences away from $Y^{20 \epsilon}$ ．Here the term＂stable＂means that we allow taking sums with trivial chain complexes

the term "away from $Y^{20 \epsilon}$ " means that we allow taking sums with free chain complexes lying over the specified set, the prefix n indicates that all the complexes involoved should be strictly n-dimensional (i.e. $C_{i}=0$ for $i<0$ and $i>n$), and the prefix 40ϵ indicates that everything involved should have appropriate size control. The following is immediate from 4.1 of [5].

Proposition 1. If $[C]=0 \in W h\left(X, Y, p_{X}, n, \epsilon\right)$, then there exist trivial chain complexes T, T^{\prime} on p_{X}, free 86ϵ chain complexes D, D^{\prime} on $p_{X} \mid Y^{20 \epsilon}$, and an 86ϵ equivalence $f: C \oplus D \oplus T \rightarrow$ $D^{\prime} \oplus T^{\prime}$.

For each i, the 86ϵ isomorphism $f_{i}: C_{i} \oplus D_{i} \oplus T_{i} \rightarrow D_{i}^{\prime} \oplus T_{i}^{\prime}$ is the composition of an 86ϵ deformation

$$
C_{i} \oplus D_{i} \oplus T_{i}=G_{0} \xrightarrow{g_{1}} G_{1} \xrightarrow{g_{2}} \cdots \xrightarrow{g_{m}} G_{m}=D_{i}^{\prime} \oplus T_{i}^{\prime} .
$$

Each g_{j} is either
(1) an elementary automorphism of the form $\left(\begin{array}{ll}1 & h \\ 0 & 1\end{array}\right): \mathbb{Z}\left[S_{1}\right] \oplus \mathbb{Z}\left[S_{2}\right] \rightarrow \mathbb{Z}\left[S_{1}\right] \oplus \mathbb{Z}\left[S_{2}\right]$, or
(2) a geometric isomorphism $\mathbb{Z}[S] \rightarrow \mathbb{Z}\left[S^{\prime}\right]$ made up of paths with coefficient ± 1 which give a one-to-one correspondence of the basis elements S and S^{\prime}.
Make a new 86ϵ deformation $G_{0} \xrightarrow{g_{1}^{\prime}} G_{1} \xrightarrow{g_{2}^{\prime}} \ldots \xrightarrow{g_{m}^{\prime}} G_{m}$ as follows. Firstly, if g_{j} is of type (1) above, then define g_{j}^{\prime} by the matrix $\left(\begin{array}{cc}1 & h^{\prime} \\ 0 & 1\end{array}\right)$, where $h^{\prime}: \mathbb{Z}\left[S_{2}\right] \rightarrow \mathbb{Z}\left[S_{1}\right]$ is obtained from h by deleting paths whose starting points are in $p_{X}^{-1}\left(Y^{(20+86 \times 2) \epsilon}\right)$. Then $g_{j}^{\prime}=1$ over $Y^{192 \epsilon}$. Secondly, if g_{j} is of type (2), then let $g_{j}^{\prime}=g_{j}$. Then the new deformation is geometric over $Y^{106 \epsilon}$ and defines a geometric isomorphism of D with a geometric submodule of $D_{i}^{\prime} \oplus T_{i}^{\prime}$ lying over $Y^{106 \epsilon}$. We can delete D_{i} and the corresponding submodule to get an 86ϵ-simple isomorphism

$$
\bar{f}_{i}: C_{i} \oplus T_{i} \rightarrow E_{i}
$$

where E_{i} is the submodule of $D_{i}^{\prime} \oplus T_{i}^{\prime}$ generated by the basis elements corresponding to the basis elements of $C_{i} \oplus T_{i}$. We define the boundary map $d_{E}: E_{i} \rightarrow E_{i-1}$ by the 173ϵ morphism $\bar{f}_{i-1} \circ\left(d_{C} \oplus d_{T}\right) \circ \bar{f}_{i}^{-1}$. The composition d_{E}^{2} is $(86 \times 3+2) \epsilon$ homotopic to 0 , and therefore $\left(E, d_{E}\right)$ is a 173ϵ chain complex. Note that $f_{i}^{\prime}=f_{i}$ outside of $Y^{(20+86 \times 3) \epsilon}$; therefore, d_{E} is equal to $f_{i-1} \circ\left(d_{C} \oplus d_{T}\right) \circ f_{i}$ outside of $Y^{(20+86 \times 4) \epsilon}$, and it is 172ϵ homotopic to the boundary map of T^{\prime} there, since f is an 86ϵ chain map. Replace the boundary map d_{E} by the boundary map of T^{\prime} outside of $Y^{(20+86 \times 4) \epsilon}$. Now E splits as the sum of a free chain complex $F=\left\{E_{i}\left(Y^{(20+86 \times 5) \epsilon}\right)\right\}$ and a trivial chain complex $T^{\prime \prime}=\left\{E_{i}\left(X-Y^{(20+86 \times 5) \epsilon}\right)\right\}$, and \bar{f} is a $(1+86 \times 3) \epsilon$-simple isomorphism between $C \oplus T$ and $F \oplus T^{\prime \prime}$. This completes the proof.

2. Controlled L-theory

In [2], Pedersen, Quinn, and Ranicki established the controlled surgery exact sequence when the local fndamental group of the control map is trivial. One of the key ingredients was the splitting of quadratic Poincaré complexes. In this section we discuss an obstruction for splitting in the general case.

Fix a control map p_{B} on a metric space B and fix $n \geq 3$. Let (D, ψ) be an n-dimensional quadratic Poincaré complex on p_{B} of radius $<\delta([4][6])$, and let W be a subset of B. One can construct pairs $\left(C \rightarrow D^{\prime}\right),\left(C \rightarrow D^{\prime \prime}\right)$ such that D^{\prime} and $D^{\prime \prime}$ lie over $B-W$ and W^{γ} respectively and the union $D^{\prime} \cup_{C} D^{\prime \prime}$ is equivalent to $D . C$ is Ranicki's algebraic boundary of $D^{\prime \prime}$. As it stands, it has two flaws:
(1) It may lie all over $B-W$.
(2) It may be non-trivial in degrees n and -1 .

The second flaw is easy to remedy. Homologically, C is ($n-1$)-dimensional, and one can use the usual folding argument to make it into a strictly ($n-1$)-dimensional complex. Here we need $n \geq 3$. The first flaw is harder to remedy, but C is strongly contractible away from $V=W^{\gamma} \cap(B-W)$, and defines an element $\xi \in W h(B-W, V ; p, n-1, \gamma)$, where $p=p_{B} \mid(B-W)$. Recall from [5] that there is a constant $\kappa>1$ and a homomorphism

$$
\partial: W h(B-W, V ; p, n-1, \gamma) \longrightarrow \widetilde{K}_{0}\left(V^{\kappa \gamma}, p \mid V^{\kappa \gamma}, n-1, \kappa \gamma\right) .
$$

The image $\partial(\xi)$ is the obstruction for splitting. Roughly speaking C is equivalent to a projective chain complex P lying over $V^{\kappa \gamma}$, and this represents $\partial(\xi)$. If this element is 0 , then C is equivalent to a free chain complex lying over $V^{\kappa \gamma}$, and we get the desired splitting.

When the local fundamental group of the control map is trivial, the absolute Wh groups and \widetilde{K}_{0} groups are stably trivial (see 8.1 and 8.2 of [5] when $\mathrm{p}=1$). Therefore there is no obstruction. In fact, since the sequence

$$
\cdots \longrightarrow W h(B-W ; p, n-1, \gamma) \longrightarrow W h(B-W, V ; p, n-1, \gamma) \longrightarrow \widetilde{K}_{0}\left(V^{\kappa \gamma}, p \mid V^{\kappa \gamma}, n-1, \kappa \gamma\right)
$$

is stably exact (5.3 of [5]), the relative Whitehead group also vanishes stably, and hence $[C]=$ $0 \in W h\left(B-W, V^{\lambda \gamma} ; p, n-1, \lambda \gamma\right)$ for some $\lambda>0$. By the main theorem, there exist ($n-1$)dimensional trivial chain complexes T and T^{\prime} and an ($n-1$)-dimensional free $\alpha \lambda \gamma$ chain complex F on $p_{B} \mid V^{(1+\alpha) \lambda \gamma}$ such that $C \oplus T$ and $F \oplus T^{\prime}$ are $\alpha \lambda \gamma$-simple isomorphic. This F can be used as the center piece for the splitting. This is essentially the proof for splitting in [2]. And from this the stability (squeezing) of controlled L-theory follows.

References

[1] E. K. Pedersen, Controlled algebraic K-theory, a survey, Geometry and topology:Aarhus (1998), 351 - 368, Contemp. Math., 258, Amer.math. Soc., Providence, RI, 2000.
[2] E. Pedersen, F. Quinn and A. Ranicki, Controlled surgery with trivial local fundamental groups, (preprint).
[3] F. Quinn, Ends of maps I., Annals of Maths. 110, 275 - 331 (1979).
[4] A. Ranicki and M. Yamasaki, Symmetric and quadratic complexes with geometric control, Proc. of TGRC-KOSEF vol.3, 139-152 (1993), available electronically on WWW from http://math.josai.ac.jp/~yamasaki/.
[5] A. Ranicki and M. Yamasaki, Controlled K-theory, Topology Appl. 61, 1 - 59 (1995).
[6] M. Yamasaki, L-groups of crystallographic groups, Invent. Math. 88, 571-602 (1987).

Dept. of Mathematics
Josai University
Sakado, Saitama 350-0295, Japan
yamasaki@math.josai.ac.jp

