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Introduction

The purpose of this short note is to give acharacterization of geometric module chain complexes

representing the trivial element in the relative $p_{X}^{-1}(\epsilon)$ -controlled Whitehead group $Wh(X,$ $\mathrm{Y};p_{X}$ ,
$n$ , $\epsilon)$ of apair $(X, \mathrm{Y})$ of metric spaces. These groups were introduced in [5]. Here $px$ : $Warrow X$ is

agiven control map, and $n$ is the restriction on the dimensions of chain complexes. For different
n’s, $Wh(X, \mathrm{Y};p_{X}, n, \epsilon)$ are in general different abelian groups, but they are all the same after

stabilization (Propositions 4.6, 4.7, and the comment after 4.7 of [5]).

Main Theorem. There exist a positive constant $\alpha$ such that the following holds: For any chain

complex $C$ representing the trivial element of $Wh(X, \mathrm{Y},px, n, \epsilon)$ , there exist $n$ -dimensional trivial

chain complexes $T$ , $T’$ and an $n$ -dimensional free $\alpha\epsilon$ chain complex $F$ on $p\mathrm{x}|\mathrm{Y}^{\alpha\epsilon}$ such that CAT
and $F\oplus T’$ are $\alpha\epsilon$ -simple isomorphic. Actually $\alpha=500$ works.

In the first section, we review some facts from [5] and give the proof of the main theorem.

The main ingredient of the proof is the restriction operation of simple isomorphisms described

in [3]. In the second section we discuss how this can be used in the theroy of controlled L-theory.

1. Proof of the Main Theorem

We first review the definition of the controlled Whitehead group of apair. Let $(X, \mathrm{Y})$ be apair

of metric spaces, and $px$ : $Warrow X$ be acontinuous map. $Wh(X, \mathrm{Y};p_{X}, n, \epsilon)$ is the set of equiv-

alence classes of $n$-dimensional free $\epsilon$ chain complexes on $px$ which are strongly $\epsilon$ contractible

over $X$ -Y. The equivalence relation is generated by $n$-stable $40\epsilon$-simple equivalences away from
$\mathrm{Y}^{20\epsilon}$ . Here the term “stable” means that we allow taking sums with trivial chain complexes

. . . $arrow 0arrow FF\underline{1}arrow 0arrow\ldots$ ,
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the term “away from $\mathrm{Y}^{20\epsilon}$ ” means that we allow taking sums with free chain complexes lying

over the specified set, the prefix $n$ indicates that all the complexes involoved should be strictly
$n$-dimensional( $i.e$ . $C_{i}=0$ for $i<0$ and $i>n$), and the prefix 406 indicates that everything

involved should have appropriate size control. The following is immediate from 4.1 of [5].

Proposition 1. If $[C]=0\in Wh(X, \mathrm{Y},p_{X},$n,$\epsilon)$ , then there exist trivial chain complexes T, $T’$

on $p_{X}$ , free $86\epsilon$ chain completes $D$ , $D’$ on $p_{X}|\mathrm{Y}^{20\epsilon}$ , and an $86\mathrm{e}$ equivalence $f$ : $C\oplus D\oplus Tarrow$

$D’\oplus T’$ .

For each $i$ , the $86\mathrm{e}$ isomorphism $f_{i}$ : $C_{i}\oplus D_{i}\oplus T_{i}arrow D_{i}’\oplus T_{i}’$ is the composition of an $86\mathrm{e}$

deformation

$C_{i}\oplus D_{i}\oplus T_{i}=G_{0}\mathit{9}arrow G_{1}1arrow g_{2}\cdotsarrow G_{m}\mathit{9}m=D_{i}’\oplus T_{i}’$

Each $g_{j}$ is either

(1) an elementary automorphism of the form $(\begin{array}{ll}1 h0 1\end{array})$ : $\mathbb{Z}[S_{1}]\oplus \mathbb{Z}[S_{2}]arrow \mathbb{Z}[S_{1}]\oplus \mathbb{Z}[S_{2}]$ , or
(2) ageometric isomorphism $\mathbb{Z}[S]arrow \mathbb{Z}[S’]$ made up of paths with coefficient dbl which give a

one-t0-0ne correspondence of the basis elements $S$ and $S’$ .
Make anew $86\mathrm{e}$ deformation $G_{0}arrow g_{1}’G_{1}arrow g_{2}^{J}$ . . . $arrow g_{\acute{m}}G_{m}$ as follows. Firstly, if $g_{j}$ is of type (1)

above, then define $g_{j}’$ by the matrix $(\begin{array}{ll}1 h’0 1\end{array})$ , where $h’$ : $\mathbb{Z}[S_{2}]arrow \mathbb{Z}[S_{1}]$ is obtained from $h$ by

deleting paths whose starting points are in $p_{X}^{-1}(\mathrm{Y}^{(20\dagger 86\mathrm{x}2)\epsilon})$ . Then $g_{j}’=1$ over $\mathrm{Y}^{192\epsilon}$ . Secondly,

if $g_{j}$ is of type (2), then let $g_{j}’=g_{j}$ . Then the new deformation is geometric over $\mathrm{Y}^{106\epsilon}$ and

defines ageometric isomorphism of $D$ with ageometric submodule of $D_{i}’\oplus T_{i}’$ lying over $\mathrm{Y}^{106\epsilon}$ .
We can delete $D_{i}$ and the corresponding submodule to get an $86\epsilon$-simple isomorphism

$\overline{f}_{i}$ : $C_{i}\oplus T_{i}arrow E_{i}$ ,

where $E_{i}$ is the submodule of $D_{i}’\oplus T_{i}’$ generated by the basis elements corresponding to the

basis elements of $C_{i}\oplus T\%$ . We define the boundary map $d_{E}$ : $E_{i}arrow E_{i-1}$ by the $173\mathrm{c}$ morphism
$\overline{f_{i-1}}\circ(dc\oplus d_{T})\circ\overline{f_{i}}^{-1}$ . The composition $d_{E}^{2}$ is $(86\cross 3+2)\epsilon$ homotopic to 0, and therefore $(E, d_{E})$

is a $173\mathrm{e}$ chain complex. Note that $f_{i}’=f_{i}$ outside of $\mathrm{Y}^{(20+86\cross 3)\epsilon}$ ; therefore, $d_{E}$ is equal to
$f_{i-1}\circ(d_{C}\oplus d_{T})\circ f_{i}$ outside of $\mathrm{Y}^{(20+86\mathrm{x}4)\epsilon}$ , and it is $172\mathrm{e}$ homotopic to the boundary map of $T’$

there, since $f$ is an $\mathrm{S}6\mathrm{e}$ chain map. Replace the boundary map $d_{E}$ by the boundary map of $T’$

outside of $\mathrm{Y}^{(20+86\mathrm{x}4)\epsilon}$ . Now $E$ splitg as the sum of afree chain complex $F=\{E_{i}(\mathrm{Y}^{(20+86\mathrm{x}5)\epsilon})\}$

and atrivial chain complex $7”’=\{E_{i}(X-\mathrm{Y}^{(20+86\mathrm{x}5)\epsilon})\}$ , and $\overline{f}$ is a $(1 +86\mathrm{x}3)\epsilon$-simple

isomorphism between $C\oplus T$ and $F\oplus T’$ . This completes the proof. $\square$
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2. Controlled L-theory

In [2], Pedersen, Quinn, and Ranicki established the controlled surgery exact sequence when the

local fndamental group of the control map is trivial. One of the key ingredients was the splitting

of quadratic Poincare complexes. In this section we discuss an obstruction for splitting in the
general case.

Fix acontrol map $pB$ on ametric space $B$ and fix $n\geq 3$ . Let $(D, \psi)$ be an n-dimensional

quadratic Poincare complex on $p_{B}$ of radius $<\delta([4][6])$ , and let $W$ be asubset of $B$ . One can
construct pairs $(Carrow D’)$ , $(Carrow D’)$ such that $D’$ and $D’$ lie over $B-W$ and $W^{\gamma}$ respectively

and the union $D’\cup cD’$ is equivalent to D. $C$ is Ranicki’s algebraic boundary of $D’$ . As it

stands, it has two flaws:
(1) It may lie all over $B-W$.
(2) It may be non-trivial in degrees $n\mathrm{a}\mathrm{n}\mathrm{d}-1$ .

The second flaw is easy to remedy. Homologically, $C$ is $(n-1)$-dimensional, and one can
use the usual folding argument to make it into astrictly $(n-1)$-dimensional complex. Here

we need $n\geq 3$ . The first flaw is harder to remedy, but $C$ is strongly contractible away from
$V=W^{\gamma}\cap(B-W)$ , and defines an element $4\in Wh(B-W, V;p, n-1, \gamma)$ , where $p=p_{B}|(B-W)$ .
Recall from [5] that there is aconstant $\kappa>1$ and ahomomorphism

$\partial:Wh(B-W, V;p, n-1, \gamma)arrow\tilde{K}_{0}(V^{\kappa\gamma},p|V^{\kappa\gamma}, n-1, \kappa\gamma)$ .

The image $\partial(\xi)$ is the obstruction for splitting. Roughly speaking $C$ is equivalent to aprojective

chain complex $P$ lying over $V^{\kappa\gamma}$ , and this represents $\partial(\xi)$ . If this element is 0, then $C$ is

equivalent to afree chain complex lying over $V^{\kappa\gamma}$ , and we get the desired splitting.

When the local fundamental group of the control map is trivial, the absolute $Wh$ groups and
$\overline{K}_{0}$ groups are stably trivial (see 8.1 and 8.2 of [5] when $\mathrm{p}=1$ ). Therefore there is no obstruction.

In fact, since the sequence

. . . $arrow Wh(B-W;p, n-1, \gamma)arrow Wh(B-W, V;p, n-1, \gamma)arrow\tilde{K}_{0}(V^{\kappa\gamma}, p|V^{\kappa\gamma}, n-1, \kappa\gamma)$

is stably exact (5.3 of [5]), the relative Whitehead group also vanishes stably, and hence $[C]=$

$\mathrm{O}\in Wh(B-W, V^{\lambda\gamma}; p, n-1, \lambda\gamma)$ for some $\lambda>0$ . By the main theorem, there exist $(n-1)-$

dimensional trivial chain complexes $T$ and $T’$ and an $(n-1)$-dimensional free $\alpha\lambda\gamma$ chain complex

$F$ on $p_{B}|V^{(1+\alpha)\lambda\gamma}$ such that $C\oplus T$ and $F\oplus T’$ are $\alpha\lambda\gamma$-simple isomorphic. This $F$ can be used

as the center piece for the splitting. This is essentially the proof for splitting in [2]. And from

this the stability (squeezing) of controlled $L$-theory follows
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