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Abstract

We derive regions for $\mathrm{T}$-cubic and $\mathrm{a}\mathrm{r}\mathrm{c}/\mathrm{T}$ -cubic spirals to tw0-point Hermite interp0-
lation in terms of unit tangent vectors with help of Mathematica. The use of spirals gives
the designer an excellent and speedy control over the shape of curve that is produced be-
cause there are no internal curvature maxima, curvature minima, inflection points, loops
and cusps in aspiral segment.
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1Introduction and Preliminary results
Smooth curve representation is required for visualization of the scientific data. Smooth-

ness is one of the most important requirements for the visual pleasing display. Fair curves are
also important in computer-aided design (CAD) and computer-aided geometric design (CAGD).
Cubic splines, although smoother, are not always helpful since they might have $u$ nwanted in-
flection points and singularities (see [6], [7]). Spirals are visually pleasing curves of monotone
curvature; and they have the advantage of not containing curvature maxima, curvatue minima,
inflection points and singularities. Many authors have advocated their use in the design of fair
curves (see [5]). These spirals are desirable for applications such as the design of highway or
railway routes and trajectories of mobile robots. The benefit of using such curves in the design
of surfaces, in particular surfaces of revolution and swept surfaces, is the control of unwanted
flat spots and undulations (see [4]). Some advantages of spirals are that they are parametric
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curves, the arc length can be expressed as apolynomial function of the parameter, the curva-
ture can be expressed as arational function of the parameter and the offset curve is arational
function of the parameter. These last three properties result from the fact that the T-cubic
(the Tschirnhausen cubic) has aPythagorean hodograph and can be expressed as cubic NURBS
for compatibility with existing computer aided design software. Meek&Walton has considered
two point Hermite interpolating spirals by joining $\mathrm{T}$-cubic spirals $\mathrm{a}\mathrm{n}\mathrm{d}/\mathrm{o}\mathrm{r}\mathrm{a}\mathrm{r}\mathrm{c}/\mathrm{T}$ -cubic spirals
(see [1]). The $\mathrm{T}$-cubic spline has asimple representation for treatment of its curvature while the
numerator of the derivative of the curvature is quintic and difficult to treat even for the cubic
curve.

In Section 2, we obtain (if necessary, with help of Mathematica)the equivalent but very
simple results (the spiral regions for $\mathrm{T}$-cubic and $\mathrm{a}\mathrm{r}\mathrm{c}/\mathrm{T}$ -cubic spirals in terms of the unit tangent
vectors at the both endpoints) to the ones in [1]. Without loss of generality, assume the two
points of the Hermite data are $(0, 0)$ and (1) 0), and the tangent vector rotates counterclock-
wise as one traverses the spiral. Thus, the tangent vector at $(0, 0)$ points above the X-axis,
$r_{0}^{2}(-\cos\theta, \sin\theta)$ and the tangent vector at (-1, 0) points below the $X$-axis, $-r_{1}^{2}(\cos\psi, \sin\psi)$

which intersect at $(b, c)$ . We assume that $0<\psi$ $\leq\theta<\pi$ , $\theta+\psi$ $<\pi$ and $r_{0}$ , $r_{1}>0$ . We
presented aflow chart of an efficient algorithm to implement spirals for visualization of planar
data. Concluding remarks and future research problems are given in Section 3.

Figure 1: Aspiral matching geometric Hermite data in astandard form.

Theorem 1.1
If 4 $\sin\theta+\sin(2\theta+-\psi)\geq(or\leq)7\sin\psi$ and $0<\psi$ $\leq\theta$ , then aunique $T$-cubic spiral (or arc/T-
cubic spiral) with amonotone decreasing curvature exists that matches the Hermite data.

Proof of above theorem is given in next section and as aconsequence of this theorem, we obtain
Corollary ([1]) If $3b^{2}+4c^{2}\geq(or\leq)12(b^{2}+c^{2})^{2}$ , $b\geq-1/2$ , then aunique $\mathrm{T}$-cubic spiral (or
$\mathrm{a}\mathrm{r}\mathrm{c}/\mathrm{T}$-cubic spiral) with amonotone decreasing curvature exists that matches the Hermite data.

2 $\mathrm{T}$-cubic and $\mathrm{a}\mathrm{r}\mathrm{c}/\mathrm{T}$-cubic Spirals

We consider a $\mathrm{T}$-cubic spline $P(t),0\leq t\leq 1$ can be given with piecewise linear functions
$\mathrm{u}(t),v(t)$ as

$P(t)=(x(t),y(t))$ , $x’(t)=u(t)^{2}-v(t)^{2}$ , $y’(t)=2u(t)v(t)$ (1)

where

$u(t)=(1-t)r_{0}\sin(w/2)-tr_{1}\sin(\mathrm{w}/2)$
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(2)
$v(t)=(1-t)r_{0}\cos(w/2)+tr_{1}\cos(\psi/2)$ , $r_{0}$ , $r_{1}>0$

It is easy to check

Figure 2: Regions for $\mathrm{T}$-cubic and $\mathrm{a}\mathrm{r}\mathrm{c}/\mathrm{T}$ -cubic spirals with monotonic decreasing curvature, in
terms of unit tangent vectors.

$P’(0)=r_{0}^{2}(-c\mathrm{o}\mathrm{s}w, \sin w)$ , $P’(1)=r_{1}^{2}(-\cos\psi, -\sin\psi)$ (3)

Its signed curvature $\kappa(t)$ is given by

$\kappa(t)=\frac{(P’\cross P’)(t)}{||P(t)||^{3}},$ , $0\leq t\leq 1$ (4)

where ”
$\mathrm{x}$ ”and $||\bullet||$ mean the the cross product of the two vectors and the Euclidean norm,

respectively, i.e.,

$\kappa(t)=\frac{2r_{0}r_{1}\sin\{(w+\psi)/2\}}{\{r_{0}^{2}(1-t)^{2}+r_{1}^{2}t^{2}+2r_{0}r_{1}t(1-t)\cos\{(w+\psi)/2\}\}^{2}}$ (5)

from which follows the following spiral condition with the monotone decreasing curvature which
attains its maximum at anegative point:

$\frac{r_{1}}{r_{0}}\cos\frac{w+\psi}{2}\geq 1$ (6)

For $\mathrm{T}$-cubics and $\mathrm{a}\mathrm{r}\mathrm{c}/\mathrm{T}$ -cubics, we consider conditions: $P(0)=(p, q)$ and $P(1)=(-1,0)$ as

$3p=-3+r_{1}^{2} \cos\psi+r_{0}r_{1}\cos\frac{w-\psi}{2}+r_{0}^{2}\cos w$

(7)

$3q=r_{1}^{2} \sin\psi-r_{0}r_{1}\mathrm{s}.\mathrm{n}\frac{w-\psi}{2}-r_{0}^{2}$ s.nw
$\mathrm{T}$-cubic spiral: $((p, q)=(0,\mathrm{O}),w=\theta;4\sin\theta+\sin(2\theta+\psi)\geq 7\sin\psi)$ :

Solve (7) for $r_{0}$ , $r_{1}$ to obtain

$r_{0}= \frac{2\sqrt{3}\sin\psi}{\sqrt{\cos\theta+\cos\psi-2\cos(\theta+2\psi)+\sin\{(\theta+\psi)/2)\}\sqrt{2-2\cos\theta\cos\psi+14\sin\theta\sin\psi}}}$
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$\frac{r_{1}}{r_{0}}=\frac{2\sin\theta}{\sqrt{\sin^{2}\{(\theta-\psi)/2\}+4\sin\theta\sin\psi}-\sin\{(\theta-\psi)/2\}}$

Acombination of (6) and the second equation of (8) for $r_{1}/r_{0}$ gives the spiral conditions for the
$\mathrm{T}$-cubic spiral. To prove Corollary of Theorem 1.1 concerning the spiral region for the point
$(b, c)$ , note

($\sin\theta$,cos&) $=(c/\sqrt{b^{2}+c^{2}}, -b/\sqrt{b^{2}+c^{2}})$

$(\sin\psi,\cos\psi)=(c/\sqrt{(1+b)^{2}+c^{2}}, (1+b)/\sqrt{(1+b)^{2}+c^{2}})$

Since

4 $\sin\theta+\sin(2\theta+\psi)-7\sin\psi=\frac{2c(2\sqrt{b^{2}+c^{2}}\sqrt{(1+b)^{2}+c^{2}}-(b+4b^{2}+4c^{2}))}{(b^{2}+c^{2})\sqrt{(1+b)^{2}+c^{2}}}$

$2\sqrt{b^{2}+c^{2}}\sqrt{(1+b)^{2}+c^{2}}-(b+4b^{2}+4c^{2})(=N_{1}-N_{2}))$

$N_{1}^{2}-N_{2}^{2}=3b^{2}+4c^{2}-12(b^{2}+c^{2})^{2}$

we obtain the $\mathrm{T}$-cubic spiral region for $(b, c)$ :

$3b^{2}+4c^{2}\geq 12(b^{2}+c^{2})^{2}$ (9)

$\mathrm{A}\mathrm{r}\mathrm{c}/\mathrm{T}$-Cubic Spiral: $(7\sin\psi>4\sin\theta+\sin(2\theta+\psi))$

We join the origin to the point $(p, q)$ by acircular arc and the point $(p,q)$ to (-1, 0) by aT-cubic
spline of the form (1) in a $G^{3}$ manner. We assume that the unit tangent vector at the joint
$(p, q)$ is $(-\cos w,\sin w)$ . Therefore, note that (i) the radius $r$ of the arc is equal to $1/\kappa(0)$ , (ii)
$\kappa’(0)=0$ and (Hi) its center is $-r(\sin\theta, \cos\theta)$ .
From which follows:

(i) $r= \frac{1}{2}r_{1}^{2}\cos^{2}\frac{w+\psi}{2}\cot\frac{w+\psi}{2}$

$w+\psi$

$r_{0}=r_{1}\cos\overline{2}$
(ii) (10)

(ii) $(p+r\sin\theta, q+r\cos\theta)=r(\sin w, \cos w)$

Letting $W=w+\psi$ , (if necessary, with help of Mathematica) 10(iii) gives the same two equations
([1]):

(i) $f(W)\cos(\psi-W)+g(W)\sin(\psi-W)+h(W)\cos\theta=0$

(11)

(ii) $r_{1}^{2}= \frac{12\sin W}{-f(W)\sin(\psi-W)+g(W)\cos(\psi-W)+h(W)\sin\theta}$

where

$f(W)=3(1-2\cos W-3\cos^{2}W)$ , $g(W)=4(1+2\cos W)\sin W$

$h(W)=3(1+\cos W)^{2}$
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Figure 3: An $\mathrm{a}\mathrm{r}\mathrm{c}/\mathrm{T}$ -cubic spiral.

Now we consider the existence of the solution $W$ on $(0, \theta+\psi)$ of 11(i) for which the denominator
of (ii) is positive. Replace $\tan(W/2)$ by $z$ to reduce 11(i) to

$\frac{4\{3(1+z^{2})\cos\theta-(3+3z^{2}+2z^{4})\cos\psi+2z^{3}(2+z^{2})\sin\psi\}}{(1+z^{2})^{3}}(=\frac{4q(z)}{(1+z^{2})^{3}})$ (12)

We show the existence of the solution of $q(z)=0$, its uniqueness being proved later. With
$z_{1}=\mathrm{t}\mathrm{m}$ $\frac{\theta+\psi}{2}$ ,

$q(0)=3(\cos\theta-\cos\psi)(<0)$

(13)

$q(z_{1})= \frac{z_{1}(1+z_{1}^{2})^{2}}{2}\{7\sin\psi-4\sin\theta-\sin(2\theta+\psi)\}(>0)$

Descartes’ rule of signs and intermediate value theorem show the existence of at least one or
three positive zeros of $q(z)$ belonging to $(0, z_{1})$ for which the denominator $d$ of $r_{1}^{2}$ is positive
since

$d= \frac{4\{2z^{3}(2+z^{2})\cos\psi+3(1+z^{2})\sin\theta+(3+3z^{2}+2z^{4})\sin\psi\}}{(1+z^{2})^{3}}$ (14)

Next, to show that the number of the positive zero of $q$ is just one, we have only to examine the
uniqueness of the positive zero of $q’(z)$ .

$q’(z)=2z\{5z^{3}\sin\psi-4z^{2}\cos\psi$ $+6z$ $\sin\psi+3(\cos\theta-\cos\psi)\}(=2zg(z))$ (13)

First note $g(0)<0$ and $g(z_{1})>0$ as

$g(0)=3(\cos\theta-\cos\psi)<0$

(16)

$g(z_{1})= \frac{1}{4}z_{1}(1+z_{1}^{2})$ {31 $\sin\psi-14$ sin57 -3 $\sin(2\theta+\psi)$ }

$> \frac{1}{2}z_{1}(1+z_{1}^{2})(5\sin\psi-\sin\theta)>0$ (17)

where

$0<7\sin\psi-4\sin\theta-\sin(2\theta+\psi)=(6+2\sin^{2}\theta)\sin\psi-2(2+\cos\theta\cos\psi)\sin\theta$

$<2(4\sin\psi-\sin\theta)$
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i.e., 4 $\sin\psi>\sin\theta$

Depending on the shape of the curve $g’(z)$ , we consider the following cases:
(i) $g’(z)$ has no real zeros
(ii) $g’(z)$ has two real (positive) zeros $\alpha$ , $\beta(\alpha<\beta)$ staisfying either

(a) $\alpha>z_{1}$ , (b) $\alpha<z_{1}<\beta$ , or (c) $0<\alpha$ , $\beta<z_{1}$

Since $g’(0)<0$ , $g’(z_{1})>0$ , the unique positive zero of $g’(z)$ can be easily obtained except the
case $\mathrm{i}\mathrm{i}(\mathrm{c})$ . For the above $\mathrm{i}\mathrm{i}(\mathrm{c})$ ,

53 $\cos 2\psi$ $>37$ , $\frac{4\cos\psi+\sqrt{-37+53\cos(2\psi)}}{15\sin\psi}<\tan\frac{\theta+\psi}{2}$ (18)

Asimple calculation gives with $(p, q)=( \tan\frac{\theta}{2}, \tan 4)2$

Figure 4: Flow chart to implement $\mathrm{T}$-cubic and $\mathrm{A}\mathrm{r}\mathrm{c}/\mathrm{T}$-cubic spirals.

$p> \frac{2-17q^{2}+\sqrt{4-98q^{2}+4q^{4}}}{q(17-2q^{2}+\sqrt{4-98q^{2}+4q^{4}})}>\frac{2-17q^{2}}{q(17-2q^{2})}$

$q< \frac{53-3\sqrt{265}}{2\sqrt{106}}(\approx 0.202199)$

With help of Mathematica,

$g( \alpha)=3\cos\theta-\frac{37\cos\psi}{15}+\frac{2\alpha(37-53\cos 2\psi)}{45\sin\psi}$ (19)

Note

3 $\cos\theta-\frac{37\cos\psi}{15}=\frac{3(1-p^{2})}{1+p^{2}}-\frac{37(1-q^{2})}{15(1+q^{2})}$
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$<- \frac{8(1-q)(1+q)(41-982q^{2}+41q^{4})}{15(1+q^{2})(4+217q^{2}+4q^{4})}<0$ (20)

where $41-982q^{2}+41q^{4}=0$ has apositive root $\sqrt{41/(491+30\sqrt{266})}(\approx 0.204511)$ .
Since $g(\alpha)<0$ and $g(z_{1})>0$ , $g$ i.e., $q’$ has just one positive zero, (13) implies the unique positive
zero of $q$ on $(0, z_{1})$ . In this case, we obtain the region for $(b, c)$ :

$3b^{2}+4c^{2}\leq 12(b^{2}+c^{2})^{2}$ , $b>-1/2$ (21)

where note $\theta>\psi$ .
Flow chart for implementation of $\mathrm{T}$-cubic and $\mathrm{a}\mathrm{r}\mathrm{c}/\mathrm{T}$ -cubic of section 2is given in figure 4

where as demonstration is referred to [1].

3Concluding Remarks and Future Direction
Fair curves can be designed interactively using tw0-point Hermite interpolating spiral.

The spiral segments are either spirals taken from the $\mathrm{T}$-cubic curve or spirals created by joining
circular arcs to segments of the $\mathrm{T}$-cubic in a $G^{3}$ fashion. The main result of this paper is
avery simple proof that any geometric Hermite data that can be matched with a(general)
spiral can be matched with aunique $\mathrm{T}$-cubic spiral or aunique $\mathrm{a}\mathrm{r}\mathrm{c}/\mathrm{T}$ -cubic spiral. In other
words, the $\mathrm{T}$-cubic spiral or the $\mathrm{a}\mathrm{r}\mathrm{c}/\mathrm{T}$-cubic spiral can be used in any situation where aspiral
is possible. Due to simple algorithm, these spirals can be easily implemented. Our future work
directions are to revise this paper for $G^{2}$ case and investigate the existance and uniqueness
of Pythagorean hodograph quintic spiral (see $[2],[3],[4]$ ) in simple way and develop efficient
algorithm for implementation.
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