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\S 1. Rigid local systems and integral representations of their sections.

Let $t_{1},$
$\ldots,$

$t_{p}$ be $p$ points in $\mathrm{C}$ , and set $X=\mathrm{P}^{1}\backslash \{t_{1}, \ldots, t_{p}, \infty\}$ . Alocal system $\mathcal{F}$ on $X$

of rank $n$ can be specified by a $(p+1)$-tuple $(A_{1}, \ldots, A_{p}, A_{p+1})$ of matrices in $\mathrm{G}\mathrm{L}(n, \mathrm{C})$

satisfying $A_{p+1}\cdots A_{1}=I_{n}$ , if we associate $\gamma_{j}\in\pi_{1}(X, x_{0})$ given by Figure 1with the
matrix $A_{j}$ for $j=1,$ $\ldots,$ $p$ . Thus we denote $\mathcal{F}=(A_{1}, \ldots, A_{p}, A_{p+1})$ .

Alocal system $\mathcal{F}=$ $(A_{1}, \ldots, A_{p+1})$ is said to be rigid if it is determined by the conjugacy
classes of the $A_{j}’ \mathrm{s}$ uniquely up to isomorphisms of local systems. In other words $\mathcal{F}$ is rigid
if, for any local system ($;=(B_{1}, \ldots, B_{p+1})$ with $B_{p+1}\cdots B_{1}=I_{n}$ such that there exists
$C_{j}\in \mathrm{G}\mathrm{L}(n, \mathrm{C})$ such that $B_{j}=C_{j}A_{j}C_{j}^{-1}$ for each $j$ , there exists $D\in \mathrm{G}\mathrm{L}(n, \mathrm{C})$ such
that $B_{j}=DA_{j}D^{-1}$ for all $j$ . Local systems over $X$ corresponds to Fuchsian differential
equations over $X$ . In this correspondence rigid local systems correspond to Fuchsian
differential equations without accessory parameters.

It is easy to see whether alocal system $\mathcal{F}=$ $(A_{1}, \ldots, A_{p+1})$ is rigid. Define the index
of $\gamma\dot{\eta}.qidity\iota(\mathcal{F})$ by

$\iota(\mathcal{F})=(2-(p+1))n^{2}+\sum_{j=1}^{p+1}\dim Z(A_{j})$ ,

where $Z(A)$ denotes the centralizer of $A$ . If 7is irreducible, then $\iota(\mathcal{F})\leq 2$ holds, and in this
case $\mathcal{F}$ is rigid if and only if $\iota(\mathcal{F})=2$ ([Ka]). Katz [Ka] gave an algorithm for constructing
all rigid local systems, and Detteweiler and Reiter [DR] reformulated the algorithm into
down-t0-earth way. In this section we give another algorithm for constructing rigid local
systems, and show that there exist integral representations of their sections.

Let $\mathcal{F}=$ $(A_{1}, \ldots, A_{p+1})$ be an irreducible rigid local system. Rostov [Ko] showed that
there exists aFuchsian system of differential equations

$\frac{du}{dx},$
$=( \sum_{j=1}^{p}\frac{B_{j}}{x-t_{j}})w$ (1.1)
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whose monodromy representation coincides with the local system $\mathcal{F}$ . Note that $\exp B_{j}$ -

$A_{j}$ for $1\leq j\leq p$ and $\exp(-\sum_{j=1}^{p}B_{j})\sim A_{p+1}$ . We set $B_{p+1}=- \sum_{j=1}^{p}$ Bj. From now on
we assume that every $A_{j}$ is semi-simple (i.e. diagonalizable). We call such local system $\mathcal{F}$

and the corresponding system (1.1) of semi-simple type.
We are going to construct the Fuchsian system (1.1). Suppose for amoment that the

tuple $(B_{1}, \ldots, B_{p})$ is given. Set

$\hat{T}=(\begin{array}{lll}t_{1}I_{n} \ddots \mathrm{t}_{p}I_{n}\end{array})$ , $\hat{B}=(\begin{array}{lll}B_{1} B_{2} B_{p}B_{1} B_{2} B_{p}\vdots \vdots \vdots B_{1} B_{2} B_{p}\end{array})$ ,

and consider the system of differential equations

$(xI_{pn}- \hat{T})\frac{dU}{dx}=(\hat{B}+\lambda I_{pn})U$ (1.2)

with aparameter A. It is shown that the system (1.2) is free ffom accessory parameters
(we call such system also rigid) and irreducible for generic values of A. The system (1.2)
is of Okubo normal form (ONF, for short) ([O]). Yokoyama [Y] gave an algorithm for
constructing all irreducible rigid systems of ONF of semi-simple type: He defined two
kinds of operations –the extension and the restriction –for systems of ONF of semi-
simple type, and showed that every irreducible rigid system of ONF of semi-simple type
can be obtained from asystem $(x-t)du/dx=au$ of rank 1by afinite iteration of these
operations. The solutions of the systems obtained by these operations can be represented
by using the solutions of the original system ([H]). Here we roughly sketch how to obtain
the solutions.

Consider asystem $(\#)$ of ONF of semi-simple type with regular singular points
$t_{1}$ , $\ldots$ , $t_{p}$ , $\infty$ , and let $u(x)$ be its solution. We define afunction \^u(x, $y$ ) in two variables by
the integral

\^u $(x, y)= \int_{0}^{1}t^{\rho_{1}}(1-t)^{-\rho_{2}-1}u(x+(y-x)t)dt$.

It is shown that \^u $(x, y)$ satisfies aPfaffian system with singular locus $\bigcup_{j=1}^{p}(\{x=t_{j}\}\cup\{y=$

$t_{j}\})\cup\{x=y\}$ .

$Fi$ gure 2.
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Then the restrcition of \^u $(x, y)$ to aregular locus $y=y_{0}(y_{0}\neq t_{j})$ gives asolution of the
extension of $(\#)$ , and the restriction of \^u(x, $y$ ) to asingular locus $y=t_{j}$ gives asolution
of the restriction of the extension of $(\#)$ . Thus the solutions of these systems can be
represented by the integrals whose integrand contain $u(x)$ . Since we start from the system
$(x-t)du/dx=au$ which has asolution $u(x)=(x-t)^{a}$ , we conclude that the solutions
of every rigid system of ONF of semi-simple type have an integral representation of Euler
type. Thus the system (1.2) is constructed by Yokoyama’s algorithm, and its solutions
have an integral representation of Euler type.

The system (1.1) is obtained from (1.2) by the specialization A $=-1$ .

Proposition 1.1. We assume that $\det B_{p+1}\neq 0$ , ancl set

$Q:=(^{B_{p+}}$ $I_{n}I_{n}I_{n}1..\cdot-1B_{1}$

$B_{p+1,-I_{n}}^{-1},B_{2}$

$B_{p+1}^{-1}B_{3}-I_{n}$

. .. $B_{p+1}^{-1}B_{p}-I_{n}$).
If A $=-1$ , the system (1.2) becomes reducible. In fact, if we set

$W(x):=Q(xI_{pn}-\hat{T})U(x)$ , (1.2)

the system (1.2) has a solution $U(x)$ such that

$W(x)=pn-n\{n\{(_{0}^{w(x)})$ ,

and $w(x)$ satisfies the system (1.1).

We illustrate the above process in Figure 3.

$Fi$gure 3.

An integral representation of the solutions of the system (1.1) is derived from one of
the system (1.2) also by the specialization A $=-1$ . Let

$U(x)=$
a

$j \prod_{=1}^{m}P_{j}(s)^{\alpha_{j}}\eta$ (1.4)
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be an integral representation of the solution of (1.2), where $P_{j}(s)$ is apolynomial in the
integral variables $s=$ $(s_{1}, \ldots, s_{k})$ and 7is avector of twisted cocycles. We note that the
exponents $\alpha_{j}’ \mathrm{s}$ are linear functions of the eigenvalues of the residue matrices at the singular
points of (1.2). Then the parameter $\lambda$ , which is an eigenvalue of the residue matrix at $\infty$ ,
appears linearly in the exponents $\alpha_{j}’ \mathrm{s}$ . If none of the exponents $\alpha_{j}$ becomes anegative
integer when we put $\lambda=-1$ , the integral representation (1.4) with $\lambda=-1$ gives an integral
representation of solutions of (1.2) via the transformation (1.3). Suppose that some of the
$\alpha_{j}’ \mathrm{s}$ become negative integers by the specialization $\lambda=-1$ . In this case the integral (1.4)
has apole at $\lambda=-1$ as afunction in $\lambda$ , and by taking the residue we still get an integral
representation of the system (1.2) with $\lambda=-1$ and hence of the system (1.1). Thus we
get the following theorem.

Theorem 1.2. Every Fuchsian system of differential equations over $\mathrm{P}^{1}$ whose monodromy
representation is $i$ reducible, rigid and of semi-simple type can be obtained from a rank 1
system by a finite iteration of Yokoyama’s operations together with a specialization of an
exponent. The solutions of such system have an integral representation of Euler type.

We call the Fuchsian systems of differential equations which have integral representa-
tions of solutions integral We also call the corresponding local systems integral. Then we
can sum up what we have shown in the following figure.

Example. Let $B_{1}$ , $B_{2}$ be $5\cross 5$-matrices such that

$B_{1}\sim(\begin{array}{lll}a_{1}I_{2} a_{2}I_{2} a_{3}\end{array})$ , $B_{2}\sim(\begin{array}{lll}b_{1}I_{2} b_{2}I_{2} b_{3}\end{array})$ ,

$B_{1}+B_{2}\sim(\begin{array}{lll}\mu_{1}I_{2} \mu_{2}I_{2} \mu_{3}\end{array})$ .

It is shown that the system

$\frac{dw}{dx}=(\frac{B_{1}}{x-t_{1}}+\frac{B_{2}}{x-t_{2}})w$ (1.5)
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is rigid and irreducible for generic values of the parameters. Following Theorem 1.2, we
get the integral representation of the solutions of (1.5)

$w(x)=(x-t_{1})^{a_{1}-1}(x-t_{2})^{b_{2}} \int_{\triangle}(1-\frac{x-t_{1}}{t_{2}-t_{1}}s_{4})^{\mu_{1}-a_{1}-b_{1}}s_{4^{a_{1}+b_{1}-\mu_{2}}}$

$\cross(s_{3}+s_{4}-s_{3}s_{4})^{\mu_{2}-a_{2}-b_{1}}(s_{2}+s_{3}-s_{2}s_{3})^{\mu_{1}-a_{1}-b_{2}}$

$\cross s_{2^{a_{2}+b_{2}-\mu_{1}}}(s_{1}-s_{2})^{\mu_{2}-a_{2}-b_{2}}$

$\mathrm{x}$ $s_{1^{a_{1}+a_{2}+b+1+b+2-\mu_{2}-\mu_{3}}}(1-s_{1})^{a_{1}+a_{2}+b_{2}+b_{3}-\mu_{1}-\mu \mathrm{s}}\eta$,

where $\eta$ is a5-vector of twisted cocycles.

\S 2. Non-rigid integral local systems.

It will be much interesting to study non-rigid integral local systems. It may be very hard
to see whether agiven non-rigid local system is integral or not, however, it is very easy
to obtain non-rigid integral local systems if we start from integral representations. In this
section we give one such example from [DF].

Let $\Phi$ be the following product of power functions in si, $s_{2}$ :

$\Phi:=s_{1^{a}}(s_{1}-1)^{b}(s_{1}-x)^{c}s_{2^{a}}(s_{2}-1)^{b}(s_{2}-x)^{c}(s_{1}-s_{2})^{g}$ .

We consider the vector $\mathrm{Y}(x)$ of functions given by the integral

$\mathrm{Y}(x)=\int_{\triangle}\Phi$ $(\begin{array}{l}\varphi_{1}\varphi_{2}\varphi_{3}\end{array})$ , (2.1)

where

$\varphi_{1}=\frac{ds_{1}\Lambda ds_{2}}{s_{1}s_{2}}$ , $\varphi_{2}=\frac{ds_{1}\wedge ds_{2}}{(s_{1}-1)(s_{2}-1)}$ , $\varphi_{3}=\frac{ds_{1}\wedge ds_{2}}{s_{1}(s_{2}-1)}+\frac{ds_{1}\wedge ds_{2}}{(s_{1}-1)s_{2}}$ .

Then $\mathrm{Y}(x)$ satisfies the system of differential equations

$\frac{d\mathrm{Y}}{dx}=(\frac{A}{x}+\frac{B}{x-1})\mathrm{Y}$ (2.2)

with

$A=(\begin{array}{lll}2a+2c+g 0 b0 0 00 2b+g a+c\end{array})$ , $B=(\begin{array}{lll}0 0 00 2b+2c+g 2a+g 0 b+c\end{array})$ .
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It is easy to see that

$A\sim(\begin{array}{lll}2a+2c+g a+c 0\end{array})$ , $B\sim(\begin{array}{lll}2b+2c+g b+c 0\end{array})$ ,

$A+B\sim(\begin{array}{lll}2a+2b+2c+g a+b+2c+g 2c\end{array})$ .

Since the monodromy matrices at $x=0,1$ , $\infty$ have the same spectral types as $A$ , $B$ , $A+B$ ,
respectively, the index of rigidity of the corresponding local system is calculated to be 0.
Then the system (2.2) is non-rigid, and has one accessory parameter. Precisely speaking,
the integral system (2.2) is obtained from asystem containing one accessory parameter by
putting some special value into the accessory parameter. We are going to see what is the
special value.

It is convenient to consider asingle differential equation instead of the system (2.2).
The differential equation satisfied by the first element $y_{1}(x)$ of $\mathrm{Y}(x)={}^{t}(y_{1}(x), y_{2}(x),$ $y_{3}(x))$

is calculated as
$x^{2}(x-1)^{2}y’+\overline{p}(x)y’+\overline{q}(x)y’+\overline{r}(x)y=0$, (2.3)

where

$\overline{p}(x)=x(x-1)[(3-3a-3b-6c-2g)x-(3-3a-3c-g)]$ ,
$\overline{q}(x)=(1-3a+2b^{2}-3b+4ab+2b^{2}-6c+126\mathrm{c}+126\mathrm{c}+12c^{2}-2g$

$+3ag+3bg+8cg+g^{2})x^{2}+(-2+6a-4a^{2}+4b-4ab+10c$

$-16ac-8bc-12c^{2}+3g-4ag-2bg-8cg-g^{2})x$
$+(a+c-1)(2a+2c+g-1)$ ,

$\overline{r}(x)=-2c(a+b+2c+g)(2a+2b+2c+g)x$

$+c(2a+2c+g-1)(2a+2b+2c+g)$ .

Then we get the Riemann scheme of the equation (2.3):

$\{\begin{array}{lll}x=0 x=1 x=\infty 0 0 -2_{\mathrm{C}}a+c b+c+1 -(a+b+2c+g)2a+2c+g 2b+2c+g+2 -(2a+2b+2c+g)\end{array}\}$ (2.4)

Conversely we shall start from the Riemann scheme

$\{\begin{array}{lll}x=0 x=1 x=\infty 0 0 \lambda\alpha \gamma \mu\beta \delta \nu\end{array}\}$ , (2.5)
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and determine the corresponding differential equation. Then we get

$x^{2}(x-1)^{2}y’+p(x)y’+q(x)y’+r(x)y=0$ , (2.6)

where
$p(x)=p_{1}x+p_{2}x^{2}+p_{3}x^{3}$ ,
$q(x)=q_{0}+q_{1}x+q_{2}x^{2}$ ,
$r(x)=r_{0}+r_{1}x$ ,

and the coefficients of these polynomials are given by

$p_{1}=3-\alpha-\beta$ ,
$p_{2}=2\alpha+2\beta+\gamma+\delta-9$ ,
$p_{3}=\lambda+\mu+\nu$ $+3$ ,
$q_{0}=(\alpha-1)(\beta-1)$ ,
$q_{1}=-\alpha\beta+\gamma\delta-\lambda\mu-\mu\nu$ $-\nu\lambda$ $+2\alpha+2\beta-4$ ,
$q_{2}=\lambda\mu+\mu\nu$ $+\nu\lambda$ $+\lambda+\mu+\nu$ $+1$ ,
$r_{1}=\lambda\mu\nu$.

Note that the value of the coefficient $r_{0}$ is arbitrary, which means that $r_{0}$ is the accessory
parameter.

Now we put the values of $\alpha$ , $\ldots$ , $\nu$ so that the Riemann schemes (2.4) and (2.5) coincide
(i.e. $\alpha=a+c$ , etc.), and compare the coefficients of the differential equations (2.3) and
(2.6). Then we see that the differential equation (2.3) is obtained from (2.6) by taking the
value of the accessory parameter

$r_{0}=c(2a+2c+g-1)(2a+2b+2c+g)$ . (2.7)

We think that the differential equation (2.6) does not have an integral representation
of solutions for generic values of the accessory parameter $r_{0}$ . Then it will be avery
interesting problem how we can determine the values of accessory parameters so that the
differential equation becomes integral. Ithink $p$-adic approach and the deformation theory
of differential equations will be helpful.
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