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1 Introduction

We consider the following two Cauchy problems for partial differential equations of non-
Kowalevski type

$(\mathrm{A})_{\mathrm{R}}$ $\partial_{t}u(t, x)=\partial_{x}^{3}u(t, x)$ , $u(0, x)=\varphi(x)$ , $(t>0, x\in \mathbb{R})$

$(\mathrm{B})_{\mathrm{R}}$ $\partial_{t}u(t, x)=-\partial_{x}^{4}u(t, x)$ , $u(0, x)=\varphi(x)$ , $(t >0, x\in \mathbb{R})$

where the equation $(\mathrm{A})_{\mathrm{R}}$ is called the “Airy equation” and the equation $(\mathrm{B})_{\mathrm{R}}$ is called
the “Beam equation” , respectively.

The purpose in this note is to give the relationship between the “Classical solution”
and the “Borel sum” of each Cauchy problem in complex $\mathbb{C}^{2}$ plane. Precisely, we shall
show that the Classical solution of the Cauchy problem is derived from adeformation of
path of integration of the Borel sum in 0direction under some conditions for the Cauchy
data.

We state the contents of the following sections. In Section 2we shall give the “Classical
solution”. In Section 3we shall give the definition of Borel summability, known results
and the “Borel sum”. In Section 4our Claim which gives the relationship between the
Borel sum and the Classical solution will be stated and their proofs will be given. In
Section 5we shall give the sketch of proof of Proposition 3.4 on the kernel function of the
Borel sum. In Section 6we shall give ageneralization of our Claim as atheorem without
proof, which will be given in aforthcoming paper.

2Classical solution

Firstly, we shall give the “Classical solution”.
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When we consider the Classical solution, we always assume that $t>0$ , $x\in \mathbb{R}$ and for
the Cauchy data $\varphi\in S$ , the rapidly decreasing functions in Schwartz’ sense, for simplicity.
Then it is known that the Cauchy problem $(\mathrm{A})_{\mathbb{R}}$ is uniquely solvable in $S$ and the solution
is given by

(2.1) $u_{c}^{A}(t, x)= \frac{1}{(3t)^{1/3}}\int_{-\infty}^{\infty}\varphi(x+y)Ai(\frac{y}{(3t)^{1/3}})dy$, $t$ $>0$ , $x\in \mathrm{R}$ .

Here $Ai$ denotes the Airy function which is defined by the following Airy’s integral

(2.2) $Ai(z)= \frac{1}{2\pi i}\int_{\gamma}\exp(zs-\frac{s^{3}}{3})ds$ , $z\in \mathbb{C}$ ,

where the path $\gamma$ is any curve which begins at infinity in the sector $7\pi/6<\arg z<3\pi/2$

and ends at infinity in the sector $\pi/2<\arg z<5\pi/6$ . (see Figure 1below)

Figure 1: Airy’s path 7

In asimilar way, the solution of $(\mathrm{B})_{\mathrm{R}}$ in $S$ is given by

(2.3) $u_{c}^{B}(t, x)= \frac{1}{(4t)^{1/4}}\int_{-\infty}^{\infty}\varphi(x+y)Be(\frac{y}{(4t)^{1/4}})dy$ ,

which is well-defined in ${\rm Re} t$ $>0$ and $x\in \mathbb{R}$ . Here Be is given by

(2.4) Be(s) $= \frac{1}{2\pi i}\int_{-\dot{l}\infty}^{\dot{l}\infty}\exp(zs-\frac{s^{4}}{4})ds$, $z\in \mathbb{C}$ .

We call these solutions (2.1) and (2.3) the “Classical solutions”
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3Borel sum
Next, we shall give the “Borel sum” Precisely, we shall give the Borel sums of divergent
solutions of the Cauchy problems $(\mathrm{A})_{\mathbb{C}}$ and $(\mathrm{B})_{\mathbb{C}}$ which are obtained from $(\mathrm{A})_{\mathbb{R}}$ and $(\mathrm{B})_{\mathbb{R}}$

by changing the real variables into the complex variables.
In order to do so, we consider the following Cauchy problem for partial differential

equations, which generalizes the Airy and the Beam equations.

$(\mathrm{C}\mathrm{P})_{\mathbb{C}}$ $\partial_{\tau}u(\tau, z)=\alpha\partial_{z}^{q}u(\tau, z)$ , $u(0, z)=\varphi(z)$ ,

where $(\tau, z)\in \mathbb{C}^{2}$ , $q\geq 2$ , $\alpha\in \mathbb{C}\backslash \{0\}$ and the Cauchy data $\varphi$ is assumed to be holomorphic
in aneighbourhood of the origin.

This Cauchy problem $(\mathrm{C}\mathrm{P})_{\mathbb{C}}$ has aunique formal solution

(3.1) \^u $( \tau, z)=\sum_{n\geq 0}\alpha^{n}\varphi^{(qn)}(z)\frac{\tau^{n}}{n!}=\mathrm{p}\mathrm{u}\mathrm{t}$ $\sum$ $u_{n}(z)\tau^{n}$ .

By Cauchy’s integral formula, we can see that the coefficients $u_{n}(z)$ have the following
estimates: There exist positive constants $C$ and $K$ for afixed $r>0$ such that the following
estimates hold
(3.2) $\max|z|\leq r|u_{n}(z)|\leq CK^{n}((q-1)n)!$ , $n=0,1,2$ , $\ldots$ .

By the assumption $q\geq 2$ , the formal solution \^u $(\tau, z)$ is divergent. Precisely, the formal
solution \^u $(\tau, z)$ is called the formal power series of Gevrey order $(q-1)$ in $\tau$ variable.

We shall study the Borel summability of the divergent solution and we shall give the
Borel sum of the divergent solution.

Before stating the results, let us prepare some notations and definitions (cf. [Bal]).

3,1 Notations and Definitions

1. Sector. For d $\in \mathbb{R}$ , $\beta>0$ and $\rho(0<\rho\leq\infty)$ , we define asector $5(\mathrm{d}, \beta, \rho)$ by

(3.3) $S(d, \beta, \rho):=\{\tau\in \mathbb{C};|\arg\tau-d|<\frac{\beta}{2},0<|\tau|<\rho\}$ ,

where $d$ , $\beta$ and $\rho$ are called the direction, the opening angle and the radius of this sector,
respectively.

2. Gevrey Formal Power Series. We denote by C) $[[\tau]]$ the ring of formal power series
in $\tau$-variable with coefficients in $O$ (the set of holomorphic functions at $z=0$).
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For k $>0$ , we define $O[[\tau]]_{1/k}$ , the ring of formal power series of Gevrey order $1/k$ in
$\tau$-variable, in the following way: $\hat{f}(\tau, z)=\Sigma_{n=0}^{\infty}f_{n}(z)\tau^{n}\in O[[\tau]]_{1/k}(\subset O[[\tau]])$ if and only

if the coefficients $f_{n}(z)$ are holomorphic on acommon closed disk $B_{r}:=$ {z $\in \mathbb{C};|z|\leq r\}$

and there exist positive constants C and K such that for any n, we have

(3.4) $\max|f_{n}(z)||z|\leq r\leq CK^{n}\Gamma(1+\frac{n}{k})$ ,

where $\Gamma$ denotes the gamma function.
By using this terminology, we see that for our formal solution \^u $(\tau, z)$ of $(\mathrm{C}\mathrm{P})\mathrm{c}$

(3.5) \^u $(\tau, z)\in \mathcal{O}[[\tau]]_{q-1}$ .

3. Gevrey Asymptotic Expansion. Let $k>0,\hat{f}(\tau, z)=\Sigma_{n=0}^{\infty}f_{n}(z)\tau^{n}\in \mathcal{O}[[\tau]]_{1/k}$

and $f(\tau, z)$ be an analytic function on $S(d, \beta, \rho)\cross B_{r}$ . Then we define that

(3.6) $f(\tau, z)\cong_{k}\hat{f}(\tau, z)$ in $S=S(d, \beta, \rho)$ ,

if for any relatively compact subsector $S’$ of $S$ , there exist some positive constants $C$ and
$K$ such that for any $N$ , we have

(3.7) $\max|z|\leq r|f(\tau, z)-\sum_{n=0}^{N-1}f_{n}(z)\tau^{n}|\leq CK^{N}|\tau|^{N}\Gamma(1+\frac{N}{k})$ , $\tau\in S’$ .

4. Borel Summability. For $k>0$ , $d\in \mathbb{R}$ and $\hat{f}(\tau, z)\in \mathcal{O}[[\tau]]_{1/k}$ , we define that $\hat{f}(\tau, z)$

is $k$-summable or Borel summable in $d$ direction if there exist asector $S=S(d, \beta, \rho)$ with
$\beta>\pi/k$ and an analytic function $f(\tau, z)$ on $S\cross B_{r}$ such that $f(\tau, z)\cong_{k}\hat{f}(\tau, z)$ in $S$ .

Remark 3.1 Let $\hat{f}(\tau, z)\in\cdot \mathcal{O}[[\tau]]_{1/k}$ be give
(i) If $\beta\leq\pi/k$ , then for any direction $d$, there are infinitely many analytic func-

tions $f(\tau, z)$ on $S(d, \beta, \rho)\cross B_{r}$ satisfying $f(\tau, z)\cong_{k}\hat{f}(\tau, z)$ in $S(d, \beta, \rho)$ by some positive
constants $\rho$ and $r$ .

(ii) If $\beta>\pi/k$ , then there does not exist such a function in general. But if such $a$

function exists, then it is unique. In this sense, such a function $f(\tau, z)$ is called the Borel
sum of $\hat{f}(\tau, z)$ in $d$ direction. We write it by $f_{B}^{d}(\tau, z)$ and we say that $\hat{f}(\tau, z)$ is Borel
summmable in $d$ direction.

We give some preparations for the special functions
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5. The Generalized Hypergeometric Series, (cf. [Luk, p. 41])
For $\alpha=$ $(\alpha_{1},$

\ldots ,
$\alpha_{p})\in \mathbb{C}^{p}$ and $\gamma=(\gamma_{1},$

\ldots ,
$\gamma_{q})\in \mathbb{C}^{q}$ , we define

(3.9) $pqF(\alpha;\gamma;z)=Fpq$ $(\alpha\gamma z)$ $:= \sum_{n=0}^{\infty}\frac{(\alpha)_{n}}{(\gamma)_{n}}\frac{z^{n}}{n!}$ ,

where
$( \alpha)_{n}=\prod_{\ell=1}^{p}(\alpha_{\ell})_{n}$, $( \gamma)_{n}=\prod_{j=1}^{q}(\gamma_{j})_{n}$ , $(c)_{n}= \frac{\Gamma(c+n)}{\Gamma(c)}(c\in \mathbb{C})$ .

6. The Meijer $G$-Function. (cf. [MS, p. 2]) For $\alpha\in \mathbb{C}^{p}$ and $\gamma\in \mathbb{C}^{q}$ with $\alpha_{\ell}-\gamma_{j}\not\in \mathrm{N}$

$(\ell=1,$ 2, \ldots , n;j $=1,$2, \ldots , m), we define

(3.9) $G_{p,q}^{m,n}(z| \alpha\gamma)=\frac{1}{2\pi i}\int_{I}\frac{\prod_{j_{-}^{-}1}^{m}\Gamma(\gamma_{j}+s)\prod_{\ell_{-}^{-}1}^{n}\Gamma(1-\alpha_{\ell}-s)}{\Pi_{j=m+1}^{q}\Gamma(1-\gamma_{j}-s)\Pi_{\ell=n+1}^{p}\Gamma(\alpha_{\ell}+s)}z^{rightarrow s}ds$ ,

where the path of integration I runs from $\kappa-i\infty$ to $\kappa+i\infty$ for any fixed $\kappa\in \mathbb{R}$ in such a
manner that all poles of $\Gamma(\gamma_{j}+s)$ , $\{-\gamma_{j}-k;k\geq 0,j=1,2, \ldots, m\}$ , lie to the left of the
path and all poles of $\Gamma(1-\alpha_{\ell}-s)$ , $\{1-\alpha_{\ell}+k;k\geq 0,\ell=1,2, \ldots, n\}$ , lie to the right of
the path.

In the following, the integration $\int_{0}^{\infty(\theta)}$ denotes the integration from 0to $\infty$ along the
half line of argument 0.

3.2 Known Results

Now, we give atheorem for the Borel summability which is aspecial case in Miyake’s
paper [Miy].

Theorem 3.2 (Miyake) The formal solution \^u $(\tau, z)$ of $(\mathrm{C}\mathrm{P})\mathrm{c}$ is Borel summable in $d$

direction if and only if there exists a positive constant $\epsilon$ such that
(i) the Cauchy data $\varphi$ can be continued analytically in a domain

(3.10) $\Omega_{\epsilon}(d;q, \alpha):=\overline{\bigcup_{m=0}^{q1}}S(\frac{d+\arg\alpha+2\pi m}{q},$ $\epsilon$ , $\infty)$ ,

(ii) $\varphi$ has a growth condition of exponential order at most $q/(q-1)$ , that is, there
eist positive constants $C$ and 7such that the following growth estimate holds.

(3.11) $|\varphi(z)|\leq C\exp(\gamma|z|^{q/(q-1)})$ , $z\in\Omega_{\epsilon}(d;q, \alpha)$ .
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Figure 2: $\Omega_{\epsilon}(0,3,1)$ and 0, $(0, 4,$ $-1)$

Next, we give atheorem for the Borel sum which is aspecial case in the author’s paper
[Ich].

Theorem 3.3 (Ichinobe) Under the above conditions (i) and (ii) in Theorem 3.2, the
Borel sum $u_{B}^{d}(\tau, z)$ is given by the analytic continuation of the following function

(3.12) $u_{B}^{d}( \tau, z)=\int_{0}^{\infty((d+\arg\alpha)/q)}\Phi_{q}(z, \zeta)k_{q}(\tau, \zeta;\alpha)d\zeta$ ,

where $(\tau, z)\in 5(\mathrm{d}, \beta, \rho)\cross B_{f}$ with $\beta<(q-1)\pi$ ,

(3.13) $\Phi_{q}(z, \zeta)=\sum_{m=0}^{q-1}\varphi(z+\omega_{q}^{m}\zeta)$ , $\omega_{q}=\exp(2\pi i/q)$ ,

and the kernel function $k_{q}(\tau, \zeta;\alpha)$ is given by

(3.14) $k_{q}( \tau, \zeta;\alpha)=\frac{C_{q}}{\zeta}G_{0,q-1}^{q-1,0}(Z_{\alpha}|1/q,$

$2/q$ , $\ldots$ ,
$(q-1)/q)$ ,

with
$Z_{\alpha}= \frac{1}{q^{q}\alpha}.\frac{\zeta^{q}}{\tau}$ , $C_{q}= \frac{1}{\Pi_{j=1}^{q-1}\Gamma(j/q)}$ .

In special cases the kernel functions are given more explicitly (cf.[LMS], [Ich])
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Proposition 3.4 (i) When $(q, \alpha)=(2,1)$ , that is, the case of the heat equation, the
kernel function is given by

(3.15) $k_{2}( \tau, \zeta;1)=\frac{1}{\sqrt{4\pi\tau}}e^{-\zeta^{2}/4\tau}$ .

(ii) When $(q, \alpha)=(3,1)$ , that is, the case of the Airy equation, the kernel function is
given by

(3.16) $k_{3}( \tau, \zeta;1)=\frac{1}{(3\tau)^{1/3}}Ai(\frac{\zeta}{(3\tau)^{1/3}})$ .

(iii) When $(q, \alpha)=(4, -1)$ , that is, the case of the Beam equation, the kernel function
is given by

(3.17) $k_{4}( \tau, \zeta;-1)=\frac{1}{(4\tau)^{1/4}}\frac{1}{2\pi i}\int_{\gamma_{2}}\exp[(\frac{\zeta}{(4\tau)^{1/4}})s-\frac{s^{4}}{4}]ds$,

where the path $\gamma_{2}$ is any curve which begins at infinity in the sector $7\pi/8<\arg s<$

$9\pi/8$ and ends at infinity in the sector $3\pi/8<\arg s<5\pi/8$ (see Figure 3at Section
4.2).

The statement (i) was given by [LMS] and the statement (ii) was given by [Ich]. The
statement (iii) is anew expression which will be proved in Section 5.

4Main result

As we have shown the Classical solution and the Borel sum are different notion and the
integral representations of solutions are also completely different, but we shall show a
relationship between these solutions as follows.

Claim The Classical solutions $u_{c}(t, x)$ are obtained by deforming the paths of integrations

for the Borel sum $u_{B}^{0}(\tau, z)$ under some additional conditions for the Cauchy data, where
will be specified in each equation in the below.

4.1 Case of the Airy Equation

In Airy’s case, we recall the conditions for the Borel summability in 0direction for the
Cauchy data $\varphi(z)$ which is holomorphic in aneighbourhood of the origin.

The Cauchy data $\varphi(z)$ can be continued analytically in $\Omega_{\epsilon}(0;3,1)$ (see Figure 2) with
agrowth condition of exponential order at most 3/2 there
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We recall the integral repesentation of the Borel sum $u_{B}^{0}(\tau, z)$

(4.1) $u_{B}^{0}(\tau, z)$ $=$ $\frac{1}{(3\tau)^{1/3}}\{\int_{0}^{+\infty}\varphi(z+\zeta)Ai(X)d\zeta$

$+ \int_{0}^{\infty(2\pi/3)}\varphi(z+()Ai(X\omega_{3}^{-1})\omega_{3}^{-1}d\zeta$

$+ \int_{0}^{\infty(4\pi/3)}\varphi(z+\zeta)Ai(X\omega_{3}^{-2})\omega_{3}^{-2}d\zeta\}$ , $X= \frac{\zeta}{(3\tau)^{1/3}}$ ,

where $(\tau, z)\in S(0,2\pi, \rho)\cross B_{r}$ .
Now we assume the following additional conditions for the Cauchy data:

(1) $\varphi$ can be continued analytically in asector $S(\pi, 2\pi/3, \infty)$ with the same growth
condition as in the Borel summability.

(2) There exists apositive constant $\delta$ such that in the region $S(\pi, \delta, \infty)$ , $\varphi$ has a
decreasing condition of polynomial order, exactly, there exist positive constants $C$

and Asuch that
$|\varphi(z)|\leq C|z|^{-3/4-\lambda}$ , $z\in S(\pi, \delta, \infty)$ .

Under these assumptions, we can deform the paths of integrations as follows. First,
we restrict $\tau>0$ in the Borel sum $u_{B}^{0}(\tau, z)$ . Then in the second and the third integrations
of the expression (4.1) the paths of integrations can be deformed into the integrations on
the negative axis, because the Airy function has the following asymptotic expansion (cf.
[Erd, p. 96] $)$ .

(4.2) $Ai(z)= \frac{1}{2\sqrt{\pi}}z^{-1/4}\exp(-\frac{2}{3}z^{3/2})[1+O(z^{-3/2})]$ , $|\arg z|<\pi$ , $zarrow\infty$ .

Therefore we have

(4.3) $u_{B}^{0}(\tau, z)$ $=$ $\frac{1}{(3\tau)^{1/3}}[\int_{0}^{+\infty}\varphi(z+\zeta)Ai(X)d\zeta$

$+ \int_{0}^{-\infty}\varphi(z+\zeta)\{Ai(X\omega_{3}^{-1})\omega_{3}^{-1}+Ai(X\omega_{3}^{-2})\omega_{3}^{-2}\}d\zeta]$ ,

where $\tau>0$ and $z\in \mathbb{R}$ . Finally, by using the following functional equality of Airy
functions
(4.4) $w_{m}(z)+\omega_{3}w_{m+1}(z)+\omega_{3}^{2}w_{m+2}(z)=0$ , $w_{m}(z)=Ai(\omega_{3}^{m}z)$ ,

(cf. [Erd, p.96]), we have

(4.3) $Ai(X\omega_{3}^{-1})\omega_{3}^{-1}+Ai(X\omega_{3}^{-2})\omega_{3}^{-2}=-Ai(X)$ .

Therefore for $\tau>0$ and $z\in \mathbb{R}$ we obtain

(4.6) $u_{B}^{0}( \tau, z)=\frac{1}{(3\tau)^{1/3}}\int_{-\infty}^{+\infty}\varphi(z+\zeta)Ai(X)d\zeta$ , $X= \frac{\zeta}{(3\tau)^{1/3}}$ .
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4.2 Case of the Beam Equation

Before we give the integral representation of the Borel sum of the Beam equation $(\mathrm{B})_{\mathbb{C}}$ ,
we introduce the following functions.

(4.7) $v_{j}(z)= \frac{1}{2\pi i}\int_{\gamma_{j}}\exp(zs-\frac{s^{4}}{4})ds$ , $(1\leq j\leq 6)$ , $z\in \mathbb{C}$ ,

where $\gamma_{j}’ \mathrm{s}$ are given by the following figure.

Figure 3: $v_{j}’ \mathrm{s}$ paths

We remark that the functions $v_{j}’ \mathrm{s}$ have the following functional equalities.

(VI) $v_{2}+v_{3}=v_{6}$ , $v_{1}+v_{4}=-v_{6}$ ,
(V2) $v_{2}(z)=v_{1}(z\omega_{4})\omega_{4}=v_{3}(z\omega_{4}^{-1})\omega_{4}^{-1}=v_{4}(z\omega_{4}^{-2})\omega_{4}^{-2}$, $\omega_{4}=e^{2\pi}:/4$ .

Moreover, there are the following relations between the kernel functions and the function
$v_{j}’ \mathrm{s}$ , that is, the kernel function Be(z) of Classical solution (2.3) is $v_{6}(z)$

(4.8) Be(z) $=v_{6}(z)$ ,

and the kernel function (3.17) of the Borel sum is given by $v_{2}$

(4.9) $k_{4}( \tau, \zeta;-1)=\frac{C_{4}}{\zeta}G_{0,3}^{3,0}(-\frac{\zeta^{4}}{4^{4}\tau}|1/4,2/4,3/4)=\frac{1}{(4\tau)^{1/4}}v_{2}(\frac{\zeta}{(4\tau)^{1/4}})$ .
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From (4.8), the Classical solution is rewritten by

(4.10) $u_{c}^{B}(t, x)= \frac{1}{(4t)^{1/4}}\int_{-\infty}^{+\infty}\varphi(x+y)v_{6}(\frac{y}{(4t)^{1/4}})dy$ ,

where ${\rm Re} t>0$ and $x\in \mathbb{R}$ .
Next, from (4.9) and Theorem 3.3, the Borel sum $u_{B}^{0}(\tau, z)$ of $(\mathrm{B})_{\mathbb{C}}$ is given by

(4.11) $u_{B}^{0}(\tau, z)$ $=$ $\frac{1}{(4\tau)^{1/4}}\{\int_{0}^{\infty(\pi/4)}\varphi(z+\zeta)v_{2}(X)d\zeta$

$+ \int_{0}^{\infty(3\pi/4)}\varphi(z+\zeta)v_{2}(X\omega_{4}^{-1})\omega_{4}^{-1}d\zeta+\int_{0}^{\infty(5\pi/4)}\varphi(z+\zeta)v_{2}(X\omega_{4}^{-2})\omega_{4}^{-2}d\zeta$

$+ \int_{0}^{\infty(7\pi/4)}\varphi(z+\zeta)v_{2}(X\omega_{4}^{-3})\omega_{4}^{-3}d\zeta\}$ , $X= \frac{\zeta}{(4\tau)^{1/4}}$ ,

where $(\tau, z)\in S(0,3\pi, \infty)\cross B_{f}$ .
By using the functional equalities (V2), the Borel sum $u_{B}^{0}(\tau, z)$ is rewritten in the

following form.

(4.12) $u_{B}^{0}(\tau, z)$

$=$ $\frac{1}{(4\tau)^{1/4}}\{$ $\int_{0}^{\infty(\pi/4)}\varphi(z+\zeta)v_{2}(X)d\zeta+\int_{0}^{\infty(3\pi/4)}\varphi(z+\zeta)v_{1}(X)d\zeta$

$+ \int_{0}^{\infty(5\pi/4)}\varphi(z+\zeta)v_{4}(X)d\zeta+\int_{0}^{\infty(7\pi/4)}\varphi(z+\zeta)v_{3}(X)d\zeta\}$ .

We recall the conditions for the Borel summability in 0direction for the Cauchy data.
The Cauchy data $\varphi(x)$ can be continued analytically in $\Omega_{\epsilon}(0;4, -1)$ (see Figure 2)

with agrowth condition of exponential order at most 4/3 there.
We assume the following additional conditions for the Cauchy data:

$\bullet$
$\varphi$ can be continued analytically in asector $S(0, \pi/2, \infty)\cup S(\pi, \pi/2, \infty)$ , and has

the same growth condition as in the Borel summability.

Then by restricting ${\rm Re}\tau>0$ , we can deform the paths of integrations in the Borel sum
as follows. The paths of integrations of the arguments $\pi/4$ and $7\pi/4$ can be changed into
the integrations on the positive real axis, and the paths of integrations of the arguments
$3\pi/4$ and $5\pi/4$ can be changed into the integrations on the negative real axis. In fact,
it follows from the expression (4.9) and the fact that the $G$-function has the following
asymptotic expansion (cf. [Luk, p. 179]).

(4.13) $G_{0,3}^{3,0}(z|1/4,$

$2/4$ ,
$3/4)$ $=$ $\frac{2\pi}{\sqrt{3}}z^{1/6}\exp(-3z^{1/3})[1+O(z^{-1/3})]$ ,

$zarrow\infty$ , $|\arg z|\leq 4\pi-\delta$ , $\delta>0$ .
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Therefore we have

(4.14) $u_{B}^{0}(\tau, z)$ $=$ $\frac{1}{(4\tau)^{1/4}}[\int_{0}^{+\infty}\varphi(z+\zeta)\{v_{2}(X)+v_{3}(X)\}d\zeta$

$+ \int_{0}^{-\infty}\varphi(z+\zeta)\{v_{1}(X)+v_{4}(X)\}d\zeta]$ ,

where ${\rm Re}\tau>0$ and $z\in \mathbb{R}$ . Finally, by using the functional equalities (VI), we obtain

(4.15) $u_{B}^{0}( \tau, z)=\frac{1}{(4\tau)^{1/4}}\int_{-\infty}^{+\infty}\varphi(z+\zeta)v_{6}(X)d\zeta$ , $X= \frac{\zeta}{(4\tau)^{1/4}}$ .

Therefore $u_{c}^{B}(t, x)=u_{B}^{0}(t, x)$ by restricting $t>0$ and $x\in \mathbb{R}$ in the above formula.

5Sketch of Proof of Proposition 3.4, (iii)

We shall prove the statement (iii) of Proposition 3.4 which means

(5.1) $\frac{C_{4}}{\zeta}G_{0,3}^{3,0}(Z_{-1}|1/4,2/4,3/4)=\frac{1}{(4\tau)^{1/4}}\frac{1}{2\pi i}\int_{\gamma 2}\exp[(\frac{\zeta}{(4\tau)^{1/4}})s-\frac{s^{4}}{4}]ds$,

where $Z_{-1}=\zeta^{4}/(4^{4}e^{\pi i}\tau)$ (since $ce=-1=e^{\pi i}$ ) and $C_{4}= \prod_{j=1}^{3}\Gamma(j/4)$ .
We recall the following formula for the $G$-function(cf. [Luk, p. 150])

(5.2) $z^{\sigma}G_{p,q}^{m,n}(z|\alpha\gamma)=G_{\mathrm{p},q}^{m,n}(z|\alpha+\sigma\gamma+\sigma)$ ,

where $\alpha+\sigma=$ $(\alpha_{1}+\sigma, \alpha_{2}+\sigma, \ldots, \alpha_{p}+\sigma)$ . Then we have

$\frac{C_{4}}{\zeta}G_{0,3}^{3,0}(Z_{-1}|1/4,2/4,3/4)=\frac{1}{(4\tau)^{1/4}}\frac{C_{4}e^{-\pi i/4}}{4^{3/4}}Z_{-1}^{-1/4}G_{0,3}^{3,0}(Z_{-1}|1/4,2/4,3/4)$

$= \frac{1}{(4\tau)^{1/4}}\frac{C_{4}e^{-\pi i/4}}{4^{3/4}}G_{0,3}^{3,0}(Z_{-1}|0,1/4,2/4)$ .

Therefore it is enough to prove the following equality

(5.3) $\frac{C_{4}e^{-\pi\dot{l}/4}}{4^{3/4}}G_{0,3}^{3,0}(Z_{-1}|0,1/4,2/4)=\frac{1}{2\pi i}\int_{\gamma 2}\exp[(\frac{\zeta}{(4\tau)^{1/4}})s-\frac{s^{4}}{4}]ds$.

In order to do so, we shall show that the power series expansions of both sides are the
same ones. Precisely, we give the power series expansion at $Z_{-1}=0$ of the left hanc

58



side and at $\zeta/(4\tau)^{1/4}=X=0$ of the right hand side, respectively. We note the relation
between $Z_{-1}$ and $X$ ,

$Z_{-1}= \frac{1}{4^{3}e^{\pi i}}X^{4}$ (or $X=4^{3/4}e^{\pi i/4}Z_{-1}^{1/4}$).

First, from the integral representation of the $G$-function on the left hand side of (5.3)
we have the following expansion by calculating the residues of the left side of the path of
integration $I=\{{\rm Re} s=\kappa;\kappa>0\}$ .

(5.4) $G_{0,3}^{3,0}(Z_{-1}|0,$

$1/4$ ,
$2/4)= \frac{1}{2\pi i}\int_{I}\Gamma(s)\Gamma(1/4+s)\Gamma(2/4+s)Z_{-1}^{-s}ds$

$=$ $\sum_{\ell=1j}^{3}\prod_{=1,j\neq\ell}^{3}\Gamma(\frac{j-\ell}{4})Z_{-11}^{(\ell-1)/4}F_{3}((1+\ell)/4,$ $(2+\ell)/41$

, $(3+\ell)/4$
; $(-1)^{3}Z_{-1})$ .

Next, on the right hand side of (5.3), by expanding $e^{Xs}$ in the integrand into its power
series and by termwise integrating, we have

$\frac{1}{2\pi i}\int_{\gamma 2}\exp[Xs-\frac{s^{4}}{4}]ds=\frac{1}{2\pi i}\sum_{n=0}^{\infty}\frac{X^{n}}{n!}\int_{\gamma 2}s^{n}\exp(-\frac{s^{4}}{4})ds$ .

We choose the path of integration $\gamma_{2}$ as the summation of two rays with the arguments
$\pi/2$ and $\pi$ . Then these integrals can be expressed in terms of the gamma functions.

$\frac{1}{2\pi i}\sum_{n=0}^{\infty}\frac{X^{n}}{n!}\int_{\gamma 2}s^{n}\exp(-\frac{s^{4}}{4})ds$

$=$ $\frac{1}{2\pi i}\sum_{n=0}^{\infty}\frac{X^{n}}{n!}\{\int_{0}^{\infty(\pi/2)}-\int_{0}^{\infty(\pi)}\}_{1}s^{n}\exp(-\frac{s^{4}}{4})ds$

$=$ $\frac{1}{2\pi i}\sum_{n=0}^{\infty}\frac{X^{n}}{n!}\{e^{\pi i(n+1)/2}-e^{\pi i(n+1)/4}\}4^{(n-3)/4}\Gamma(1+\frac{n-3}{4})$

$=$ - $\sum_{n=0}^{\infty}\frac{X^{n}}{n!}\frac{4^{(n-3)/4}e^{3\pi i(n+1)/4}}{\Gamma(1-(n+1)/4)}$ .

The third equality is obtained from the following relations

$e^{\pi i(n+1)/2}-e^{\pi i(n+1)/4}$ $=$ $-e^{3:(n+1)/4}(\pi e^{\pi i(n+1)/4}-e^{-\pi i(n+1)/4})$

$=$ $-e^{3\pi i(n+1)/4}2i \mathrm{s}.\mathrm{n}(\frac{n+1}{4}\pi)$

$2\pi ie^{3\pi i(n+1)/4}$

$=$

$-_{\overline{\Gamma((n+1)/4)\Gamma(1-(n+1)/4)}}$
.
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When $n=4k+3$ in the above summation, we notice $1/\Gamma(1-(n-1)/4)=1/\Gamma(-k)=0$ .
Therefore by calculating carefully, we have

(5.5) - $\sum_{n=0}^{\infty}\frac{X^{n}}{n!}\frac{4^{(n-3)/4}e^{3\pi i(n+1)/4}}{\Gamma(1-(n+1)/4)}$

$=$ - $\sum_{\ell=0}^{2}\sum_{k=0}^{\infty}\frac{X^{4k+\ell}}{(4k+\ell)!}\frac{4^{k+(\ell-3)/4}e^{3\pi i(\ell+1)/4}(-1)^{k}}{\Gamma(1-k-(\ell+1)/4)}$

$=$ - $\sum_{\ell=0}^{2}\frac{e^{3\pi 1(\ell+1)/4}4^{(\ell-3)/4}X^{\ell}}{\Gamma((3-\ell)/4)\ell!}1F3((\ell+2)/4,$ $(\ell+3)/41$
, $(\ell+4)/4$

; $\frac{X^{4}}{4^{3}})$

$=$ - $\sum_{\ell=1}^{3}\frac{e^{3\pi i\ell/4}4^{(\ell-4)/4}X^{\ell-1}}{\Gamma((4-\ell)/4)(\ell-1)!}1F3$ ( $(\ell+1)/4$ ,
$(\ell+2)/41$

, $(\ell+3)/4$
; $\frac{X^{4}}{43}$).

The second equality is obtained from the relations

$(4k+\ell)!$ $=$ $4^{4k}( \frac{\ell+1}{4})_{k}(\frac{\ell+2}{4})_{k}(\frac{\ell+3}{4})_{k}(\frac{\ell+4}{4})_{k}\ell!$,

$\Gamma(1-\frac{\ell+1}{4}-k)$ $=$ $\Gamma(\frac{3-\ell}{4}-k)=\Gamma(\frac{3-\ell}{4})/(-1)^{k}(\frac{\ell+1}{4})_{k}$ ,

and by employing the representation (3.8) of the generalized hypergeometric series.
At the end the proof is comlete by examing the following relations.

$(-1)^{3}Z_{-1}= \frac{\zeta^{4}}{4^{4}t}=\frac{X^{4}}{4^{3}}(X=\frac{\zeta}{(4\tau)^{1/4}})$ , $Z_{-1}^{1/4}= \frac{1}{4^{3/4}e^{\pi i/4}}X$,

and

$C_{4} \cross\prod_{j=1,j\neq\ell}^{3}\Gamma(\frac{j-\ell}{4})$ $= \prod_{j=1}^{3}\Gamma(\frac{j}{4})\cross\prod_{j=1,j\neq\ell}^{3}\Gamma(\frac{j-\ell}{4})$

$=$ $\frac{(-1)^{\ell-1}4^{\ell-1}}{(\ell-1)!}\frac{1}{\Gamma(1-\ell/4)}=\mathrm{i}_{\frac{1}{\Gamma(1-\ell/4)}}e^{(\ell-1)\pi}4^{\ell-1}(\ell-1)!$

which is obtained from the multiplication formula for the gamma function (cf. [Luk, $\mathrm{p}$ ,

11])

(5.6) $\Gamma(mz)=(2\pi)^{-(m-1)/2}m^{mz-1/2}\prod_{j=0}^{m-1}\Gamma(z+\frac{j}{m})$ ,

where $z+j/m\not\in \mathbb{Z}_{\leq 0}:=\{0,$-1, -2, . . ,} (j $=0,$ 1, \ldots , m-1).
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6Generalization of our Claim

In this section, we shall give ageneralization of our claim $(q=3,4)$ as atheorem without
proof which will be given in aforthcoming paper.

We consider the following Cauchy problems

$(\mathrm{C}\mathrm{P})_{\mathrm{R}}$ $\partial_{t}u(t, x)=\alpha\partial_{x}^{q}u(t, x)$ , $5(0, x)=\varphi(x)$ , $t>0$ , $x\in \mathbb{R}$ ,
$(\mathrm{C}\mathrm{P})_{\mathbb{C}}$ $\partial_{\tau}u(\tau, z)=\alpha\partial_{z}^{q}u(\tau, z)$ , $u(0, z)=\varphi(z)$ , $\tau$ , $z\in \mathbb{C}$ ,

where $q\geq 4$ , $\alpha=1$ if $q\not\in 4\mathbb{Z}$ and $ce=-1$ if $q\in 4\mathbb{Z}$ .
Under the above assumptions the Cauchy problem $(\mathrm{C}\mathrm{P})\mathrm{r}$ is uniquely solvable in $S$

and the Classical solution $u_{c}(t, x)$ is given by

(6.1) $uc(t, x)= \int_{-\infty}^{+\infty}\varphi(x+\mathrm{u}\mathrm{c}(\mathrm{t}, y)dy,$ $t>0$ , $x\in \mathbb{R}$ .

Here the kernel function $E(t, y)$ is given by

(6.2) $E(t, y)=\{$

$\frac{1}{(qt)^{1/q}}\frac{1}{2\pi i}\int_{\mathrm{y}},\exp(\frac{y}{(qt)^{1/q}}s-\frac{s^{q}}{q})ds$, if $q\neq 4n+2$ ,

$\frac{1}{(qt)^{1/q}}\frac{1}{2\pi i}\int_{-i\infty}^{+i\infty}\exp(\frac{y}{(qt)^{1/q}}s+\frac{s^{q}}{q})ds$ , if $q=4n+2$ ,

where $\gamma$ is given as follows:

(I) When $q=4n-1$ , the path $\gamma$ is any curve which begins at oo in the sector
$3\pi/2-\pi/q<\arg s<3\pi/2$ and ends at $\infty$ in the sector $\pi/2<\arg s<\pi+\pi/q$ .

(II) When $q=4n$ , the path $\gamma$ runs $\mathrm{f}\mathrm{r}\mathrm{o}\mathrm{m}-i\infty \mathrm{t}\mathrm{o}+i\infty$.

( $(\mathrm{I})$ When $q=4n+1$ , the path $\gamma$ is any curve which begins at oo in the sector
$3\pi/2<\arg s<3\pi/2+\pi/q$ and ends at $\infty$ in the sector $\pi/2-\pi/q<\arg s<\pi/2$ .

Now, our theorem for the relationship between the Classical solution $u_{c}(t, x)$ which is
given by (6.1) and the Borel sum $u_{B}^{0}(\tau, z)$ which is given by (3.12) is stated as follows.

Theorem 6.1 Under the additional conditions for the Cauchy data which are stated be-
low, the expressions (6.1) of the Classical solutions $u_{c}(t, x)$ are obtained by deforming the
paths of integrations (3.12) for the Borel sum $u_{B}^{0}(\tau, z)$ .

(I) (Generalization of Airy equation) When $q=4n-1$ , the Cauchy data $\varphi$ can be
continued analytically in a sector $S(0, \pi-3\pi/q, \infty)\cup S(\pi, \pi-\pi/q, \infty)$ with the
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same growth condition as in the Borel summability in Theorem 3.3 and there exists
a positive constant $\delta$ such that in the region $S(\pi, \delta, \infty)$ , $\varphi$ has a decreasing condition

of polynomial order, exactly, there exist positive constants $C$ and Asuch that

(6.3) $|\varphi(z)|\leq C|z|^{-3/2(q-1)-\lambda}$ .

(II) (Generalization of the heat equation) When $q=2n$ , the Cauchy data $\varphi$ can be
continued analytically in a sector $S(0, \pi-2\pi/q, \infty)\cup S(\pi, \pi-2\pi/q, \infty)$ $with$ the
same growth condition as in the Borel summability in Theorem 3.3.

(II) When $q=4n+1$ , the Cauchy data $\varphi$ can be continued analytically in a sector
$5(0, \pi-\pi/q, \infty)\cup S(\pi, \pi-3\pi/q, \infty)$ with the same growth condition as in the Borel
summability in Theorem 3.3 and there exists a positive constant $\delta$ such that in the
region $S(0, \delta, \infty)$ , $\varphi$ has the same decreasing condition (6.3) as in the case $q=4n-1$ .
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