oooooooooo 12970 20020 169-178

Estimation in a Mixed Proportional Hazards Model

JONG WOON KIM
Department of Industrial Engineering, Pusan National University, San 30 Changjeon-Dong Kumjeong-Ku,
Busan ,609-735, KOREA

timer@pusan.ac.kr

WON YOUNG YUN
Department of Industrial Engineering, Pusan National University, San 30 Changjeon-Dong Kumjeong-Ku,
Busan ,609-735, KOREA
wonyun@pusan.ac.kr

TADASHI DOHI
Department of Information Engineering, Graduate School of Engineering, Hirosima University, 1-4-1
Kagamiyama, Higashi-Hirosima 739-8527, JAPAN
dohi@rel.hiroshima-u.ac.jp

SUMMARY
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Cox’s proportional hazards model (PHM) has been widely applied in the analysis of lifetime data, and can be

characterized by covariates influencing lifetime of a system, where the covariates describe operating

environments (e.g. temperature, pressure, humidity). When environments are uncertain, the covariates may be

often modeled as random variables. We assume that a covariate is a discrete random variable, and propose a new

mixture type of PHM, called the mixed PHM. We develop the Expectation-Maximization(EM) algorithm to

estimate the model parameters. Two types of observations are considered; one type of observations is obtained

from experimental units, which are tested in laboratories and the other type of observations is obtained from field

units which are operated by customers. An illustrative example is given.
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1. Introduction

Notation

Sk

g

: a random variable of a covariate
: the kth element of a covariate

: the number of elements of s



n : the number of uncategorized field units

: the number of categorized experimental units whose covariates are s,

. 4
msum . i=1 m;

x; : the failure time of the jth uncategorized unit.

y; - the failure time of the jth unit among the categorized units whose covariates are s;.
6 : a vector of lifetime distribution parameters.

n : a vector of a regression parameter

¢ :(6)

v  :(p.n6)

An important problem in the failure data analysis is that all parts of the data have not always been collected
under similar conditions. For example, we often encounter the situation where a piece of equipment may
have been used in different environments or may have a different age or modification status. Such different
environments will affect the equipment’s inherent reliability characteristics obviously. Therefore, it may be
useful to take account of the environmental factors in equipment reliability modeling. The proportional hazards
model (PHM), which was proposed by Cox, has been considered as a useful tool tb deal with environmental
factors in the analysis of lifetime data. Solomon[17] indicated that significant effects for covariates would be
obtained even in the cases where the model was not wholly appropriate, and showed that the PHM is relatively
robust to departures from the proportional hazards assumption. The application of PHM to reliability data has
been considered by a number of authors, for example, Ansell & Phillips{1] and Jozwiak[8]. For a list of more
recent papers, see the review paper by Kumar and Klefsjo[10].
Let 7 be a non-negative randoin variable and denote the failure time of an item under consideration.
The failure nature of this item can be modeled by the hazard rate A(t):
Ple<T<t+HT 21)

h

The assumption in the PHM, in most cases, is that the hazard rate of a system is the product of an arbitrary and

Alr) = lim (1
unspecified baseline hazard rate A,(f) depending on only time, and a positive functional term a)(s;n), which is
basically independent of time. The function @(s;n) is introduced to incorporate the effects of a number of
covariates such as temperature, pressure and changes in design. Thus, the hazard rate in the PHM is given by
Altys) = wls:n )4, (1) @)
where s is a row vector consisting of the covariates and # is a column vector consisting of the regression

parameters. The reliability function and the density function in the generic PHM are given by

R(t;s)= exp[— .['10 (w)(s;n )du} 3)
fl65)= Alt:s)R(;s) “
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There are two ways to model the baseline hazard rate A, (t); parametric model and non-parametric model. In the
parametric model, we assume a suitable theoretical distribution for ﬂo(t) On the other hand, in the non-
parametric model, no specific distribution is assumed. Note that the non-parametric method cannot always
guarantee an accurate estimation because of the lack of knowledge on the lifetime distribution. In this paper, two
representative lifetime distributions; the exponential and the Weibull distributions, are assumed for Ay(). It is
also assumed in many cases that the functional form of as;n) is known. Various types of functional forms of
@(s;n) have been proposed in the past literature. Some of these are: the exponential form, exp(sn ); the logistic
form, log(l+exp(s7)); the inverse linear form, 1/(1+sn); and the linear form, 1+ sy . In this paper, we
assume the exponential form which has been most widely used in applications. Covariates are associated with
the equipment’s environmental and operational conditions and # is the effects of the covariates.

We consider a situation where equipment’s environmental and operational conditions are various. In Martorell,
Sanchez & Serradell,[12], it was reported that the equipment at nuclear power plants works under very different
operating conditions. In addition, very different environmental conditions appear in a nuclear power plant. That
is, some components are placed in a very hard environment, for instance, under high temperature and doses of
radiation, while others remain in a comfortable environment. In such a case, the covariates can be modeled as
variables. Also, we cannot figure out the condition under which a product is operated before installing it. These
variability and uncertainty of the covariates make us consider the covariates as random variables.

For notational and computational convenience, suppose that the number of the covariates for one unit, is only

one. Define the probability mass function of the random covariate s by

p, when s=s,
pls)=4 : : ®)
p, Wwhen s=s,
It is assumed in this section that the support of the random variable, s, is known.
Under these assumptions, the probability density function of the time to failure is represented in the following
finite mixture form,
10=570.5)=5 n1t6s)=F patlssmend - [Aludabssnaa] —©
The main purpose of this article is to estimate lifetime distributions of the products whose failures phenomena
can be modeled by the mixed PHM. We assume that data are collected from two types of observations; one type
of observations is obtained from experimental units, which are tested at laboratories and the other type of
observations is obtained from field units which are operated by customers. It is also assumed that the covariate of
an experimental unit is known before testing and so m; ’s are constant ; however, for a field unit, we don’t know
the value of the covariate but know the support of it’s discrete probability mass function.
It represents the real-world condition that products are tested in laboratories under all possible stress levels of the
real fields. For an example of air-conditioners, they might be tested under various temperatures. at laboratories.
The assumption that the support of the covariate is known, describes that a temperature under which a sold

product is operated is one among temperatures under which products are tested at laboratories. Generally,



temperatures can be controlled at laboratories, and so we can know it for each air-conditioner. However, it is
very difficult to investigate the temperature for every air-conditioner failed at fields, and so we may not know the
temperatures for field units.

With these two types of observations, we develop maximum likelihood techniques of model parameters;
distribution parameters, mixing proportions and a regression parameter, based on the EM algorithm.

The mixed PHM is a kind of mixture model. The extensive applicability of the mixed distributions has generated
many research problems. The existing results for estimating model parameters in the mixture model were
classified and introduced by Titterington et al[19], Everitt & Hann[2], and McLachlan & Basford[14]. The finite
mixed .exponential distribution and the finite mixed Weibull distribution are good candidates to represent failure
times. McClean[13] considers the fitting of mixed exponential distribution to the grouped follow-up data when
the number of components is known. Lau[11] estimates hazard rate in both mixture of geometrics and mixture of
exponentials model. Jiang & Kececioglu[6] and Jiang & Murthy[S] use graphical approaches and Jiang &
Kececioglu[7] propose maximum likelihood estimates(MLE) from censored data for estimation of the mixed
Weibull distributions. Jaisingh et al[4] considere the influence of the work environment using a Weibull &

inverse Gaussian mixture. Hirose[3] deals with the power-law mixture model which extends the power law in
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accelerated life testing. Sy & Taylor[18] and Peng & Dear[16] involve the mixture models in PHM for -

estimating cure rate. They assumed no specific theoretical distribution for the baseline hazard function and use

two non-parametric mixture models.

2. Estimation.

2.1 Maximum Likelihood Estimation
In this section we introduce the maximum likelihood method for estimating parameters of the mixed proportional
hazards model. Not or;ly is it appealing on intuition grounds, but it also possesses desirable statistical properties.
For example, under very general conditions the estimators obtained by the method are consistent and they are
asymptotically normally distributed
As mentioned before, we consider both the observations in laboratories and the observations in field. Both of
them are incomplete, because the values of the covariates are missed in field units and it is impossible to
estimate the mixing proportions using observations from only experimental units. Consider a sample consisting
of both n independent field units and m,,, independent experimental units.
The observed full likelihood function for this sample is defined by

1)=T15 0/l T bsss) ™

i=l j= i<l je

The problem is to obtain the estimates § which maximize L(y). However, it is not easy to find the MLEs in
the traditional way of differentiating L with respect to y and setting it equal to zero, because the likelihood
function often becomes a complex multi-modal function. An alternative way is to apply an iterative algorithm
such as the EM algorithm.
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The estimate of p, can be calculated by the similar method to the generic mixture distributions. To maximize
this likelihood subject to the constraint, z p. =1, we introduce a Lagrange multiplier and maximize

logL(V’)=ik)g(ipjf(xi;¢ssj))+iilogf(yy;¢9si)_ ipi _]) (8)
i=1 j=I

i=l j=l i=l

This yields

2eetl)_3 s i) S i) 7= Slstssgn )7 =0 o

=1 j=l

The Lagrange multiplier, % can be founded by multiplying (9) by p, and summing over k to give n—y = 0.

The posterior probability that the covariate for the jth field unit become s, is given by

T _T( J’W P, |S‘,9/2Pkf |sk’ (10)

If we multiply (9) by p, , we can express the MLE, p, in the following form:
pe=2 % /n for k=1,....8 (11
=1

The above relation is used in the following EM algorithm.

2.2 EM Algorithm

The EM algorithm is a broadly applicable approach to the iterative computation of maximum likelihood
estimates, useful in a variety of incomplete-data problems. The EM algorithm finds estimate by iteratively
performing two steps : the expectation step (E-step) and the maximization step(M-step). In the E-step we
calculate the conditional expectation of the log likelihood function for complete data. In the M-step, we search
parameter values maximizing the conditional expectation. Similar to the classical mixture models, the EM
algorithm can be applied to the mixed PHM by augmenting the observed data with the unobserved indicator
variables which are the values of the covariates of field units. That is, in order to pose this problem as an

incomplete-data one, we now introduce as the unobservable or missing data, the vector

z=(z,’,...,z,f)’ (12)

where z; is a g-dimensional vector of zero-one indicator variables and where z; is one or zero according as
whether the covariate for x; is s, or not and z;" is the transpose of z;.

Then the log likelihood for the complete data is given by

logLC y/) 2"22:’] logp,+logf 1a¢’sl +2211°gf()’.,,¢’ (13)
=1 j=1 i=1 j=|

The w-th E-step requires the calculation of the expectation of the complete data log likelihood, logL. (y/),

conditional on the observed data and the current fit ™) for ¥ .
oy, )= Elog L, w)x.v; )
n (14)

—ﬁZE( y|xj,l//(“‘")X10gp,+logf 1,¢, +ﬁzlogf(y”,¢,s,

i=l j=1 i=l j=1



This step is affected here simply by replacing each indicator variable z; by its expectation conditional on x;

which is given by

Eley v = 7, (e, 0 ) (15)

On the w-th M-step, the intent is to choose the new value of ¥/, say y/("’) that maximize Q(l//, l//(w")) which,
from the E step, is equal here to log L. (l//) with each z; replaced by 7, ( X; ,y/(w - )

2.3 An application to known functions
In this section, we apply an exponential functional form of w(s;r/) and the Weibull functions for the baseline
hazard function because they are most general. The lifetime density function for a field unit is given by
= i p,ABP e exp(—- ﬂtﬁe""’) (16)
i=l
The likelihood function and the log likelihood function are
= n i p jes"’,lﬂx,-ﬁ - exp(— Ax e’ )x ﬁ H e APy, A1 exp(— Ayij’g e’ ) an

i=1 j=1 i=1 j=l

log L(y)= i log{i p jes""lﬂx,.ﬂ - exp(- x P )}
i=1 =1

(18)
iz 10gﬂ+log/1+(ﬂ )logyy.'.s” /1y B S,-f]}

=l j=1
respectively. As mentioned in Section 2.1 and 2.2, the EM algorithm is applied for estimating the parameters. On
the w-th E-step and M-step, the expectation of the complete data log likelihood conditional on the observed data

and the current fit is given by
0ly.y )= Efog Le (W)X, vy}

iZE ,] J,y/(““‘ Xlogp,+]ogﬂ+log/1+(ﬂ 1logx; +s,7- Ax; 4 ’v") (19)

i=l j=1

+ f i (logﬂ +logA+(B-1)logy; + 5,7~ gyyﬂew)

i=l j=1
In the E-step, we calculate E (zi/, | X;; W(w—l)) as

p, g™ glom1) glo-t), A0 exp( Aty A sn‘"‘”)
8= (20)
f P et A glw-t)y jﬂ(w_l)_l exp(— AWy jﬂ(H) eser™™ )

k=1

In the M-step, we find the new values of ¥, say ™, that maximize Q(;U, ™ ) One nice feature of the EM
algorithm is that the solution to the M-step often exists in a closed form. However, we can’t obtain the closed

form of y, in our case.

174




175

Differentiating the function Q of Equation (19) with respect to A, and 7, and setting them equal to zero
yields

d Sl <
L5544t Jr 25 e’ )= @y

i=l j=1 i=l j=I

g g m
3—Q—=Z %,j[—;?+long - ﬂxjﬂe""’ long]+22(-l—+ log y; — ﬂ.y,-jﬂe""” logy,-jj=0 (22)

h~

(5, - As,y,Pe)=0 (23)
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Equation (21), (22), and (23) do not give the closed forms for the values maximizing Equation (19); instead we

use the following simple procedure to find them.

Step 1: Set initial values of 4, = A", B, =8"" and 7,, = 7™,

Step 2 : Calculate A, from Equation (21) and replace A,, with 4,,,

ﬂ’new = (n + msum/[i Z 1-‘1 x] ﬂold es lotd + iz yy ﬂnld esirlnld J (24)

i=l j=1 i=l j=1

Step 3 : Find f3,,,, from Equation (22) using a line search and set f3,;; = [,
Step 4: Find 7,,, from Equation (23) using a line search and set 77, =7],., -

Step 5: If |¢,,ew - ¢o,d| < € , terminate the procedure, otherwise go to Step 2.

Theorem 1.
For fixed (p,3,7), the function Q of Equation (19) is concave with respect to A and for fixed (p,4,7) or
(p, A, B), the function Q is concave with respectto § or 77.

Proof : The second order conditions for the parameters 4, B and 7 are derived as

0’ 1
—al—g=—7(n+m) <0

i=1 j=1 i=l j=1

3,52 -iz y( ——/'lxﬂe”’ logx ]+ii[———ﬂy,}ﬂ ’”(logyy.)z)<0
aQ iZfﬁ(‘ﬂs x”e"”)+ i( as7y,le)<0

They are negative in 4, fand 7, respectively. =

Theorem 1 guarantees the accuracy and effectiveness of the line search techniques in step 2 and 3. It is well
known that even if the M-step is numerically performed, the accuracy for the solution of the EM is not crucial.
piw) is obtained from the relation of Equation (11), that is :

p =Y %, /n for k=1,....8 (25

Jj=1



We can also have the same result by differentiating the Q(l//, l//““‘”) with respectto p.
Note that the maximization procedure and Equation (25) do not give the estimators explicitly; instead they must

be solved using the general EM iterative procedure.

3. An Example

An example is made with the sample given by Nelson[15] to illustrate the practical application of results
obtained here. The data in Nelson[15](pp.129) are the times to oil breakdown under high test voltage and they
are used as an example for accelerated testing. The data under 30, 34, 38kv have been selected from the data
under 26, 28, 30, 32, 34, 36, and 38kv, that is the number of groups is three. The data are considered as the
experimental data in this example. Since the field data are indispensable for this model but there are no
uncategorized data in the data in Nelson[15], the artificial field data are randomly selected from the experimental
data with p, =03, p, =0.5 and p, =0.2. Data for this example are given below.

Experimental data

Group Covariate Data
1 30KV 7.74 17.05 2046 21.02 22.66 4340 4730 139.07 14412 17588 194.90
0.19 078 096 131 278 316 4.15 4.67 4.85 6.50 7.35
2 34KV
8.01 827 12,06 31.75 3252 3391 3671 7289
3 38KV 0.09 039 047 073 074 113 140 238
Field data
0.47 0.96 1.13 4.15 8.01 12.06 20.46 31.75 434 139.07

It is intended in the example to estimate the lifetime distribution of the field units which is modeled by the mixed
proportional hazards model. Before estimating the parameters, the probability plot can be roughly used to test the
fitness of the model to a given set of data. The experimental data are plotted in Figure 1. The conditional
probability of the lifetime given a covariate follows the Weibull distribution with a different scale parameter and
a same shape parameter from it’s baseline distribution because the covariate just'changes the scale parameter in
the case of the Weibull baseline hazard rate in this model. Therefore, data should be nearby three straight lines
and the straight lines should be parallel. Figure 1 shows that these conditions are nearly satisfied in this example.
Using the proposed method, we have A=5.89x10", §=0.9208, 7=0492, (p,, p,,p;)=(0.27,0.53,0.2).
The probability density function for the example is graphed in Figure 2.
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Figure 1. Weibull probability plot Figure 2. Probability density function
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