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SUMMARY

Cox’s proportional hazards model (PHM) has been widely applied in the analysis of lifetime data, and can be

characterized by covariates influencing lifetime of asystem, where the covariates describe operating

environments (e.g. temperature, pressure, humidity). When environments are uncertain, the covariates may be

often modeled as random variables. We assume that acovariate is adiscrete random variable, and propose anew

mixture type of PHM, called the mixed PHM. We develop the Expectation-Maximization(EM) algorithm to

estimate the model parameters. Two types of observations are considered; one type of observations is obtained

ffom experimental units, which are tested in laboratories and the other type of observations is obtained ffom field

units which are operated by customers. An illustrative example is given.

Keywords:Proportional hazards model, Mixture model, Estimation, EM algorithm, Failure data analysis.

1. Introduction

Notation

$s$ :random variable of acovariate

$s_{k}$ :the $h\mathrm{h}$ element ofacovariate

$g$ :the number of elements $\mathrm{o}\mathrm{f}s$
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$n$ :the number of uncategorized field units

$m_{i}$ :the number categorized experimental units whose covariates are $s_{i}$

$m_{sum}$ : $\sum_{j=1}^{g}m_{i}$

$x_{j}$ :the failure time of theyth uncategorized unit.

$y_{j},\cdot$ :the failure time of theyth unit among the categorized units whose covariates are $s_{j}$ .
$\theta$ :avector lifetime distribution parameters.

$\eta$ :avector ofa regression parameter

$\emptyset$ : $(\eta,\theta)$

$\psi$ : $(\mathrm{p},\eta,\theta)$

An important problem in the failure data analysis is that all parts of the data have not always been collected

under similar conditions. For example, we often encounter the situation where apiece of equipment may

have been used in different environments or may have adifferent age or modification status. Such different

environments will affect the equipment’s inherent reliability characteristics obviously. Therefore, it may be

useffil to take account of the environmental factors in equipment reliability modeling. The proportional hazards

model (PHM), which was proposed by Cox, has been considered as auseffil tool to deal with environmental

factors in the analysis of lifetime data. Solomon[17] indicated that significant effects for covariates would be

obtained even in the cases where the model was not wholly appropriate, and showed that the PHM is relatively

robust to departures ffom the proportional hazards assumption. The application of PHM to reliability data has

been considered by anumber of authors, for example, Ansell&Phillips[l] and Jozwiak[8]. For alist of more
recent papers, see the review paper by Kumar and Klefsj6[10].

Let $T$ be anon-negative random variable and denote the failure time of an item under consideration.

The failure nature this item can be modeled by the hazard rate $\lambda(t)$ :

$\lambda(t)=\lim_{harrow 0}\frac{P(t\leq T<t+h|T\geq t)}{h}$ (1)

The assumption in the PHM, in most cases, is that the hazard rate of asystem is the product of an arbitrary and

unspecified baseline hazard rate $\lambda_{0}(t)$ depending on only time, and apositive ffinctional term $\omega(s;\eta)$ , which is

basically independent of time. The function $\omega(s;\eta)$ is introduced to incorporate the effects of anumber of

covariates such as temperature, pressure and changes in design. Thus, the hazard rate in the PHM is given by
$\lambda(t;s)=\omega(s;\eta)\lambda_{0}(t)$ (2)

where $s$ is arow vector consisting of the covariates and $\eta$ is acolumn vector consisting of the regression

parameters. The reliability ffinction and the density ffinction in the generic PHM are given by

$R(t;s)=\exp[-\mathrm{J}$ $\lambda_{0}(u\mathcal{M}s;\eta \mathrm{W}u]$ (3)

$f(t;s)=\lambda(t;s)R(t;s)$ (4)
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There are two ways to model the baseline hazard rate $\lambda_{0}(t)$ ;parametric model and non-parametric model. In the

parametric model, we assume asuitable theoretical distribution for $\lambda_{0}(t)$ . On the other hand, in the non-

parametric model, no specific distribution is assumed. Note that the non-parametric method cannot always

guarantee an accurate estimation because of the lack of knowledge on the lifetime distribution. In this PaPer, two

representative lifetime distributions; the exponential and the Weibull distributions, are assumed for $\lambda_{0}(t)$ . It is

also assumed in many cases that the functional form of $\mathrm{a}\langle s;\eta$ ) is known. Various types of functional forms of

$a \int s;\eta$ $)$ have been proposed in the past literature. Some of these are: the exponential form, $\exp(s\eta)$ ;the logistic

form, $\log(1+\exp(s\eta))$ ;the inverse linear form, l/(l+s\eta ); and the linear form, $1+s\eta$ . In this paper, we

assume the exponential form which has been most widely used in applications. Covariates are associated with

the equipment’s environmental and operational conditions and $\eta$ is the effects of the covariates.

We consider asituation where equipment’s environmental and operational conditions are various. In Martorell,

Sanchez&Serrade11,[12], it was reported that the equipment at nuclear power plants works under very different

operating conditions. In addition, very different environmental conditions appear in anuclear power plant. That

is, some components are placed in avery hard environment, for instance, under high temperature and doses of

radiation, while others remain in acomfortable environment. In such acase, the covariates can be modeled as

variables. Also, we cannot figure out the condition under which aproduct is operated before installing it. These

variability and uncertainty of the covariates make us consider the covariates as random variables.

For notational and computational convenience, suppose that the number of the covariates for one unit, is only

one. Define the probability mass function of the random covariate $s$ by

$p_{1}$

$p(s)=$ .$\cdot$.
$-p_{g}$

when $s=s_{1}$... (5)

when $s=s_{g}$

It is assumed in this section that the support of the random variable, $s$ , is known.

Under these assumptions, the probability density function of the time to failure is represented in the following

finite mixture form,

$f(t)= \sum_{-i1}f(t,s_{i})=\sum_{i-=1}p_{i}f(t;s_{i})=\sum_{i_{-}^{-}1}p_{i}\lambda_{0}(t\mu_{s_{i};\eta})\exp[-\int h$($u\ltimes\{s_{i};\eta \mathrm{k}^{y}]$ (6)

The main purpose of this article is to estimate lifetime distributions of the products whose failures phenomena

can be modeled by the mixed PHM. We assume that data are collected ffom two types of observations; one tyPe

of observations is obtained from experimental units, which are tested at laboratories and the other tyPe of

observations is obtained ffom field units which are operated by customers. It is also assumed that the covariate of

an experimental unit is known before testing and so $m_{i}$ ’s are constant;however, for afield unit we don’t know

the value of the covariate but know the support of it’s discrete probability mass ffinction.

It represents the real-world condition that products are tested in laboratories under all possible stress levels of the

real fields. For an example of air-conditioners, they might be tested under various temperatures at laboratories.

The assumption that the support of the covariate is known, describes that atemperature under which asold

product is operated is one among temperatures under which products are tested at laboratories. Generally
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temperatures can be controlled at laboratories, and so we can know it for each air-conditioner. However, it is
very difficult to investigate the temperature for every air-conditioner failed at fields, and so we may not know the

temperatures for field units.

With these two types of observations, we develop maximum likelihood techniques of model parameters;

distribution parameters, mixing proportions and aregression parameter, based on the EM algorithm.

The mixed PHM is akind of mixture model. The extensive applicability of the mixed distributions has generated

many research problems. The existing results for estimating model parameters in the mixture model were
classified and introduced by Titterington et $\mathrm{a}1[19]$ , Everitt&Hann[2], and McLachlan&Basford[14]. The finite

mixed exponential distribution and the finite mixed Weibull distribution are good candidates to represent failure

times. McClean[13] considers the fitting of mixed exponential distribution to the grouped follow-up data when

the number of components is known. Lau[ll] estimates hazard rate in both mixture of geometries and mixture of

exponentials model. Jiang &Kececioglu[6] and Jiang &Murthy[5] use graphical approaches and Jiang &

Kececioglu[7] propose maximum likelihood estimates(MLE) ffom censored data for estimation of the mixed

Weibull distributions. Jaisingh et $\mathrm{a}1[4]$ considere the influence of the work environment using aWeibull &

inverse Gaussian mixture. Hirose[3] deals with the power-law mixture model which extends the power law in

accelerated life testing. Sy &Taylor[18] and Peng &Dear[16] involve the mixture models in PHM for

estimating cure rate. They assumed no specific theoretical distribution for the baseline hazard ffinction and use
two non-parametric mixture models.

2. Estimation.

2.1 Maximum Likelihood Estimation

In this section we introduce the maximum likelihood method for estimating parameters of the mixed proportional

hazards model. Not only is it appealing on intuition grounds, but it also possesses desirable statistical properties.

For example, under very general conditions the estimators obtained by the method are consistent and they are
asymptotically normally distributed

As mentioned before, we consider both the observations in laboratories and the observations in field. Both of

them are incomplete, because the values of the covariates are missed in field units and it is impossible to

estimate the mixing proportions using observations ffom only experimental units. Consider asample consisting

ofboth $n$ independent field units and $m_{sum}$ independent experimental units.

The observed full likelihood ffinction for this sample is defined by

$L( \psi)=\prod_{i\overline{-}1}^{n}\sum_{j\overline{-}1}p_{j}f(x_{j}$ ; $s_{j}, \phi)\cross\prod_{i\overline{-}1}\prod_{j\overline{-}1}^{m}’ f(y_{ij}$ ; $s_{j},\phi)$ (7)

The problem is to obtain the estimates $\hat{\psi}$ which maximize $L(\psi)$ . However, it is not easy to find the MLEs in

the traditional way of differentiating $L$ with respect to $\psi$ and setting it equal to zero, because the likelihood

ffinction often becomes acomplex multi-modal ffinction. An alternative way is to aPPly an iterative algorithm

such as the EM algorithm.
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The estimate of $p_{k}$ can be calculated by the similar method to the generic mixture distributions. To maximize

this likelihood subject to the constraint, $\sum p_{k}=1$ , we introduce aLagrange multiplier and maximize

$\log L(\psi)=\sum_{i=1}^{n}\log(\sum_{j=1}^{g}p_{j}f(x_{i};\phi,s_{j}))+\sum_{i=1}^{g}\sum_{-,j-,1}^{m}’\log f(y_{ij};\phi,s_{i})-\gamma(\sum_{i=1}^{g}p_{i}-1)$ (8)

This yields

$\frac{\partial 1\mathrm{o}\mathrm{g}L(\psi)}{\delta p_{k}}=\sum_{i=1}^{n}(f(x_{i};\phi,s_{k}/)\sum_{j=1}p_{j}f(x_{i};\phi,s_{j}))-r=\sum_{-i-1}^{n}(f(x_{i};\phi,s_{k})/f(x_{i}))-\gamma=0$ (9)

The Lagrange multiplier, $\gamma$, can be founded by multiplying (9) by $p_{k}$ and summing over $\mathrm{k}$ to give $n-\gamma=0$ .

The posterior probability that the covariate for theyth field unit become $s_{i}$, is given by

$\hat{\tau}_{ij}=\tau_{i}$ ($x_{j}$ ; $\psi)=p_{i}f(x_{j}|s_{i}$ ; $\theta)/\sum_{k=1}p_{k}f(x_{j}|s_{k};\theta)$ (10)

Ifwe multiply (9) by $p_{k}$ , we can express the MLE, $\hat{p}_{k}$ in the following form:

$\hat{p}_{k}=\sum_{j=1}^{n}\hat{\tau}_{kj}/n$ for $k=1,\ldots,g$ (11)

The above relation is used in the following EM algorithm.

2.2 EM Algorithm

The EM algorithm is abroadly applicable approach to the iterative computation of maximum likelihood

estimates, useful in avariety of incomplete-data problems. The EM algorithm finds estimate by iteratively

performing two steps :the expectation step ($\mathrm{E}$-step)and the maximization step(M-step). In the E-step we

calculate the conditional expectation of the $\log$ likelihood function for complete data. In the M-step, we search

parameter values maximizing the conditional expectation. Similar to the classical mixture models, the EM

algorithm can be applied to the mixed PHM by augmenting the observed data with the unobserved indicator

variables which are the values of the covariates of field units. That is, in order to pose this problem as an

incomplete-data one, we now introduce as the unobservable or missing data, the vector

$z$
$=(z_{\mathrm{J}}^{\mathrm{r}},\ldots$ , $z_{n}^{T}$ ) (12)

where $z_{j}$ is a $\mathrm{g}$-dimensional vector of zer0-0ne indicator variables and where $z_{ij}$ is one or zero according as

whether the covariate for $x_{j}$ is $s_{i}$ or not and $z_{j}^{T}$ is the transpose $\mathrm{o}\mathrm{f}z_{j}$ .

Then the $\log$ likelihood for the complete data is given by

$\log L_{C}(\psi)=\sum_{j\underline{-}1}\sum_{j\overline{-}1}^{n}z_{ij}(\log p_{i}+\log f(x_{j};\phi,s_{i}))+\sum_{i=1}m\sum_{j\overline{-}1}\log f(y_{jj};\phi,s_{i})$
(13)

The $w$-th $\mathrm{E}$-step requires the calculation of the expectation of the complete data $\log$ likelihood, $\log L_{C}(\psi)$ ,

conditional on the observed data and the current fit $\psi^{(_{\mathrm{m}1})}$ for $\psi$ .
$Q(\psi,\psi^{(\mathrm{w}1)})=E\mathrm{t}\mathrm{o}\mathrm{g}L_{C}(\psi 1^{X,\mathrm{Y};\psi^{(_{\mathcal{V}}-1)\}}}$

(14)
$= \sum_{i\underline{-}1}\sum_{-,j-1}^{n},E(z_{ij}|x_{j}$ ; $\psi^{(\infty 1)\int\log p_{i}+\log f(x_{j};\phi,s_{i}))+\sum_{i=1}\sum_{-1}\log f(y_{ij}}j-m$

,

; $\phi,s_{i})$
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This step is affected here simply by replacing each indicator variable $ztj$ by its expectation conditional on $x_{j}$

which is given by

$E(_{z_{ij}1x_{j};\psi^{(m1))=\tau_{i}(_{X_{j};\psi^{(}}w-1))}}$ (15)

On the $w$-th $\mathrm{M}$-step, the intent is to choose the new value of $\psi$ , say $\psi^{(_{w})}$ , that maximize $Q(\psi,\psi^{(w-1)})$ which,

ffom the $\mathrm{E}$ step, is equal here to $\log L_{C}(\psi)$ with each $z_{ij}$ replaced by $\tau_{i}(x_{j}$ ; $\psi^{(w-1)})$ .

2.3 An application to known functions

In this section, we aPPly an exponential functional form of $\omega(s,\cdot\eta)$ and the Weibull ffinctions for the baseline

hazard ffinction because they are most general. The lifetime density ffinction for afield unit is given by

$f(t)=\mathrm{Z}i=1p_{i}\lambda\beta^{\beta-1}e^{s_{j}\eta}\exp(-\mathcal{A}t^{\beta}e^{s_{j}\eta})$ (16)

The likelihood function and the $\log$ likelihood ffinction are

$L( \psi)=\prod_{i=1}^{n}\mathrm{Z}_{1i=1}j=p_{j}e^{s_{j}\eta}\lambda\beta_{i}^{\beta-1}\exp(-\lambda\kappa_{i}^{\beta}e^{s_{j}\eta)_{\mathrm{X}}\mathrm{n}}\prod_{j=1}^{m}e^{s_{i}\eta}\lambda ffi_{\iota j}^{\beta-1}.\exp(-\lambda y_{ij}^{\beta}e^{s_{j}\eta)}$ (17)

$\log L(\psi)=\sum_{i=1}^{n}\log\{_{j=1}\sum p_{j}e^{s_{j}\eta}\lambda\beta_{i}^{\beta-1}\exp(-\lambda x_{i}^{\beta}e^{s_{J}\eta)\}}$

(18)

$+ \sum_{i=1}\sum_{j=1}^{m_{j}}\{\log\beta+\log\lambda+(\beta-1)\log y_{ij}+s_{i}\eta-\lambda y_{ij}^{\beta}e^{s_{i}\eta\}}$

respectively. As mentioned in Section 2.1 and 2.2, the EM algorithm is applied for estimating the parameters. On

the w-th $\mathrm{E}$ step and $\mathrm{M}$-step, the expectation of the complete data $\log$ likelihood conditional on the observed data

and the current fit is given by

$Q(\psi,\psi^{(w-1)})=E\iota_{\mathrm{o}\mathrm{g}L_{C}(\psi}1^{X,\mathrm{Y};\psi^{(w-1)\}}}$

$= \xi\sum_{ji=1=1}^{n}E(z_{ij}|x_{j}$ ; $\psi^{(w-1)}\int\log p_{i}+\log\beta+\log\lambda+(\beta-1)\log x_{j}+s_{i}\eta-\lambda\kappa_{j}^{\beta}e^{s_{j}\eta)}$ (19)

$+ \S m\sum_{ji=1=1}(\log\beta+\log\lambda+(\beta-1)\log y_{rj}\cdot+s_{i}\eta-\lambda y_{ij}^{\beta}e^{s_{j}\eta)}$

In the $\mathrm{E}$-step, we calculate $E$ ($z_{ij}|x_{j}$ ; $\psi^{(w-1)}$ ) as

$\hat{z}$ .
$=\underline{p_{i}^{(_{w}-1)}e^{s_{i}\eta^{(w-1)}}\lambda^{(w-1)}\beta^{(w-1)}x_{j}^{\beta^{(w-1)}-1}\exp(-\lambda^{(w-1)}x_{j}^{\beta^{(w-1)}}e^{s_{j}\eta^{(w-1)}})}$

(20)
$iJ$

$\mathrm{Z}p_{k}^{(w-1)}e^{s_{k}\eta^{(\mathrm{m}1)}}\lambda^{(_{w}-1)}\beta^{(_{w}-1)}x_{j}^{\beta^{(_{w}-1)}-1}\exp(-\lambda^{(}w-1)x_{j}e^{s_{k}\eta^{(w-1)}})k=1\beta^{(_{w}-1)}$

In the $\mathrm{M}$-step, we find the new values of $\psi$ , say $\psi^{(w)}$ , that maximize $Q(\psi,\psi^{(w-1)})$ . One nice feature of the EM

algorithm is that the solution to the $\mathrm{M}$-step often exists in aclosed form. However, we can’t obtain the closed

form of $\psi$ , in our case
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Differentiating the function $Q$ of Equation (19) with respect to $\lambda$ , $\beta$ and $\eta$ , and setting them equal to zero

yields

$\frac{\partial Q}{\delta\lambda}=\sum_{j_{-1}^{-}}^{\mathrm{g}}\sum_{-,j-1}^{n},\hat{\tau}_{ij}(\frac{1}{\lambda}-e^{s_{l}\eta}x_{j}^{\beta)_{i-}}+\S-$$1j-,,1 \sum_{-}^{m}(\frac{1}{\lambda}-e^{s,\eta}y_{ij}^{\beta})=0$ (21)

$\frac{\partial Q}{\partial\beta}=\sum_{i=1}^{g}\sum_{j\overline{-}1}^{n}\hat{\tau}_{jj}(\frac{1}{\beta}+\log x_{j}-\lambda\kappa_{j}^{\beta}e^{s,\eta}\log x_{j})+\sum_{j=1}^{g}\sum_{j\overline{-}1}^{m_{j}}(\frac{1}{\beta}+\log y_{ij}-\lambda y_{ij}^{\beta}e^{s,\eta}\log y_{ij})=0$
(22)

$\frac{\partial Q}{\delta\eta}=\sum_{i=1}\sum_{j=1}^{n}\hat{\tau}_{ij}(s_{i}-\lambda s_{i}x_{j}^{\beta}e^{s_{j}\eta})+\sum_{i=1}m\sum_{j=1}(s_{i}-\lambda s_{j}y_{jj}^{\beta}e^{s_{j}\eta})=0$
(23)

Equation (21), (22), and (23) do not give the closed forms for the values maximizing Equation (19); instead we

use the following simple procedure to find them.

Step 1: Set initial values of $\lambda_{od},=\lambda^{(\infty 1)}$ , $\beta_{od},=\beta^{(\infty 1)}$ and $\eta_{\mathit{0}/d}=\eta^{(_{w-}1)}$ .

Step 2:Calculate $\lambda_{new}$ ffom Equation (21) and replace $\lambda_{old}$ with $\lambda_{new}$

(24)

Step 3:Find $\beta_{new}$ ffom Equation (22) using aline search and set $\beta_{oM}=\beta_{nm}$ .

Step 4: Find $\eta_{new}$ ffom Equation (23) using aline search and set $\eta_{od},=\eta_{new}$ .

Step 5: If $|\phi_{new}-\phi_{old}|<\epsilon$ , terminate the procedure, otherwise go to Step 2.

Theorem 1.

For fixed $(\mathrm{p},\beta,\eta)$ , the function $Q$ of Equation (19) is concave with respect to $\lambda$ and for fixed $(\mathrm{p},\lambda,\eta)$ or

$(\mathrm{p},\lambda,\beta)$ , the function $Q$ is concave with respect to $\beta$ or $\eta$ .

Proof The second order conditions for the parameters $\lambda$ $\beta$ and $\eta$ are derived as

$\frac{\partial^{2}Q}{\partial\lambda^{2}}=-\frac{1}{\lambda^{2}}(n+m)<0$

$\frac{\partial^{2}Q}{\partial\beta^{2}}=\sum_{i\overline{-}1}\sum_{j\overline{-}1}^{n}\hat{\tau}_{ij}(-\frac{1}{\beta^{2}}-\mathcal{A}x_{j}^{\beta}e^{s_{j}\eta}(\log x_{j}t)$
$+ \sum_{-i1}\sum_{-,j1}^{m_{1}},(---\frac{1}{\beta^{2}}-\lambda y_{ij}^{\beta}e^{s,\eta}(\log y_{ij}f)$$<0$

$\frac{\partial^{2}Q}{\partial\eta^{2}}=\sum_{-i1}\sum_{j-=1}^{n}\hat{\tau}_{jj}(-\mathrm{k}_{i}^{2\beta}x_{j}e^{s,\eta})+\sum_{-i-1}m\sum_{j\overline{-}1}(-\Lambda s_{i}^{2}y_{ij}^{\beta}e^{s,\eta})<0$

They are negative in $\lambda$ , $\beta$ and $\eta$, respectively. @

Theorem 1guarantees the accuracy and effectiveness of the line search techniques in step 2and 3. It is well

known that even if the $\mathrm{M}$-step is numerically performed, the accuracy for the solution of the EM is not crucial.

$p_{k}^{(w)}$ is obtained from the relation ofEquation (11), that is:

$p_{k}^{(w)}= \sum_{j\overline{-}1}^{n}\hat{\tau}_{kj}/n$ for $k$ $=1,\ldots,g$ (25)
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We can also have the same result by differentiating the $Q(\psi,\psi^{(\iota\iota-1)})$ with respect to $\mathrm{p}$ .

Note that the maximization procedure and Equation (25) do not give the estimators explicitly; instead they must

be solved using the general EM iterative procedure.

3. An Example
An example is made with the sample given by Nelson[15] to illustrate the practical application of results

obtained here. The data in Nelson[15](pp. 129) are the times to oil breakdown under high test voltage and they

are used as an example for accelerated testing. The data under 30, 34, $38\mathrm{k}\mathrm{v}$ have been selected ffom the data

under 26, 28, 30, 32, 34, 36, and $38\mathrm{k}\mathrm{v}$, that is the number of groups is three. The data are considered as the

experimental data in this example. Since the field data are indispensable for this model but there are no

uncategorized data in the data in Nelson[15], the artificial field data are randomly selected from the experimental

data with $p_{1}=0.3$ , $p_{2}=0.5$ and $p_{3}=0.2$ . Data for this example are given below.

Experimental data

Group Covariate Data

1 $30\mathrm{K}\mathrm{V}$ 7.74 17.05 20.46 21.02 22.66 43.40 47.30 139.07 144.12 175.88 194.90

0.19 0.78 0.96 1.31 2.78 3.16 4.15 4.67 4.85 6.50 7.35
2 $34\mathrm{K}\mathrm{V}$

8.01 8.27 12.06 31.75 32.52 33.91 36.71 72.89

3 $38\mathrm{K}\mathrm{V}$ 0.09 0.39 0.47 0.73 0.74 1.13 1.40 2.38

Field data

0.47 0.96 1.13 4.15 8.01 12.06 20.46 31.75 43.4 139.07

It is intended in the example to estimate the lifetime distribution of the field units which is modeled by the mixed

proportional hazards model. Before estimating the parameters, the probability plot can be roughly used to test the

fitness of the model to agiven set of data. The experimental data are plotted in Figure 1. The conditional

probability of the lifetime given acovariate follows the Weibull distribution with adifferent scale parameter and

asame shape parameter ffom it’s baseline distribution because the covariate just changes the scale parameter in

the case of the Weibull baseline hazard rate in this model. Therefore, data should be nearby three straight lines

and the straight lines should be parallel. Figure 1shows that these conditions are nearly satisfied in this example.

Using the proposed method, we have $\hat{\lambda}=5.89\cross 10^{-9},\hat{\beta}=0.9208$ , $\eta\wedge=0.492$ , $(\hat{p}_{1},\hat{p}_{2},\hat{p}_{3})=(0.27,0.53,0.2)$ .
The probability density function for the example is graphed in Figure 2.
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$\not\subset\epsilon\frac{\mathrm{o}}{\emptyset}$

Figure 1. Weibull probability plot Figure 2. Probability density ffinction
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