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ABSTRACT. We propose to study the dynamics of McCulloch-Pitts’neural network and general Boolean

networks at the most fundamental level. We propose to study Hopfield’s theorem for chaotic iteration and

its application to pattern recognition. We propose to furnish amathematical model of Hebb’s postulate of

learning. We propose to study the Jacobian problem for Boolean networks.

1. Introductory remarks

In 1943, the neurophysiologist W. McCulloch and aMathematician W. Pitts[6] claimed that the brain

could be modeled as anetwork of logical operations such as and, or, not, and so forth. It had been a

revolutionary idea at the time, and had proved to be immensely influential. McCulloch-Pitts model was the

first example of what now call aneural network. It was the first attempt to understand mental activity as a

form of information processing-an insight that provided the inspiration for artificial intelligence and cognitive

psychology. McCulloch-Pitts model was the first indication that anetwork of very simple logic gates could

perform exceedingly complex computation-an insight that was soon incorporated into the general theory of

computing machines. McCulloch-Pitts’paper influenced von Neumann to use idealized switch-delay elements

derived from the McCulloch-Pitts neuron in the construction of the EDVAC(Electronic Discrete Variable

Automatic Computer) (see Aspray and Burks[l]).

In this note, we propose to study the dynamics of McCulloch-Pitts’neural network and general Boolean

networks at the most fundamental level.

2. McCulloch-Pitts neural network and its dynamics

In anervous system, each neuron exhibits an impulse of one electric state, called action potential. The

state of each neuron can be distinguished by the existence and nonexistence of an action potential. Suppose
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that the nervous system consists of $n$ neurons, we can identify each neuron with an element of $\{1, 2, \cdots, n\}$ .

The state of the nervous system at time $t$ is expressed by apoint $x(t)=(x_{1}(t), \cdots, x_{n}(t))$ in $\{0, 1\}^{n}$ , the set

of all 01-strings of length $n$ . The neural network of McCulloch and Pitts is formulated as follows.

ABoolean function $f$ : $\{0, 1\}^{n}arrow\{0,1\}$ is called athreshold $funct\iota on$ if there exist $a\equiv(a_{1}, \cdots, a_{n})\in \mathrm{R}^{n}$

and athreshold value $\alpha\in \mathbb{R}$ such that $f(x)=Hev(\langle a, x\rangle-\alpha)$ , where $Hev(u)$ is the Heaviside function. Thus

$f$ is athreshold function if the sets $f^{-1}(1),$ $f^{-1}(0)$ can be separated by ahyperplane in $\mathrm{R}^{n}$ . ABoolean

function $F:\{0,1\}^{n}arrow\{0,1\}^{n}$ is athreshold function if each $f_{1}$. is threshold, i.e. there exist $A\in M_{n}(\mathrm{R})$ and

$b\in \mathrm{R}^{n}$ such that

$F(x)=Hev(Ax-b)$ .

The finite state space $\{0, 1\}^{n}$ is given ametric structure by the Hamming metric $\rho_{H}(\cdot, \cdot)$ , i.e.

$\rho_{H}(x,y)\equiv\#\{i;x_{i}\neq y_{i}\}$ .

Let $(i,j)$ denote asynapse, where $i,j\in\{1, \ldots, n\}$ , neuron $i$ being the postsynaptic neuron and neuron $j$ being

the ptesynaptic neuron. Each entry $w_{ij}$ expresses the efficiency of the synapse $(i,j)$ and $b_{:}$ expresses the

threshold value for the action potential of neuron $i$ . The matrix $A=(a_{1j}.)$ is called the synaptic matrix. Thus

the McCulloch-Pitts neural network ( $\equiv \mathrm{t}\mathrm{h}\mathrm{r}\mathrm{e}\mathrm{s}\mathrm{h}\mathrm{o}\mathrm{l}\mathrm{d}$ automata) is described by

$F(x(t))=Hev(Ax(t)-b)(t=0,1, \ldots)$ .

There are two important iteration modes to implement the updating of the states on the network: parallel and

sequential.

For parallel iteration mode (synchronous iteration mode)

$X:(t+1)=Hev[ \sum_{j=1}^{n}a_{ij}x_{j}(t)-b_{i}]$ $(i=1, \ldots, n)(t=0,1, \ldots)$ ,

Gole[2] proved the following:

Theorem (Gole). For parallel iteration mode, the attractors of a symrnetrical nettoork of threshold au-

tomata are cycles etyith length $\leq 2$ .

For sequential iteration mode (asynchronous iteration mode):

$x:(t+1)=Hev[ \sum_{j=1}^{i-1}a_{\dot{l}j}x_{j}(t+1)+\sum_{j=\dot{\iota}}^{n}a_{\dot{\iota}j}x_{j}(t)-b_{i}]$ $(i=1,2, \ldots, n)(t=0,1, \ldots)$ ,
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Hopfield[4] proved the following:

Theorem (Hopfield). For Gauss-Seidel iteration, the attractors of a symmetrical netrvork of threshold

automata are cycles utith nonnegative diagonal entnes are fixed points.

Hopfield’s theorem is seminal not only for his result about the asynchronous iteration of McCulloch-Pitts’

neural network but open awindow onto the essence of Pattern Recognition and lead to asolution of $\mathrm{I}\succ aveling$

Salesman Problem[53.

3. Hopfleld’s theorem for Chaotic iteration

We now study Hopfield’s theorem for chaotic iteration, an asynchronous iteration scheme in Discrete

iteration may go back to 1995 work of Robert[7]. To formulate the problem, let $F$ : $\{0, 1\}^{n}arrow\{0,1\}^{n}$ ,

$F=(f_{1}, \cdots, f_{n})$ . For $x\in\{0,1\}^{n},$ $i=1,$ $\ldots,$
$n$ , let

$F_{i}(x)\equiv\{\begin{array}{l}x_{1}\vdots f_{|}.(x)\vdots x_{n}\end{array}\}$

Let $F(x)\equiv Hev(Ax-\theta)$ be athreshold map from $\{0, 1\}^{n}$ into itself, and $N\equiv\{1, \ldots, n\}$ . For $m=1,2,$ $\ldots$ ,

let

$N^{m}\equiv\{i_{1}, \ldots, i_{m} ; i_{j}\in N, j=1, \ldots, m\}$

be the set of array of $m$ integers in $N$ . Let

$S\equiv\{h_{0;}h_{1;}h_{2}; \ldots\}$ ,

where $h_{j}\equiv j_{1},j_{2},$ $\ldots,j_{l(j)}\in N^{l(j)}(j=0,1, \ldots)$ . We call $S$ astrategy-set. The chaotic iteration for $F$ with

strategy-set $S=\{h_{0;}h_{1;}h_{2}; \ldots\}$ is defined by

$H_{t}(x(t))=x(t+1)(t=0,1, \ldots)$ , $(*)$

where

$H_{t}=F_{t_{1(t)}}\mathrm{o}F_{t_{l(t)-1}}\mathrm{o}\ldots \mathrm{o}F_{t_{2}}\mathrm{o}F_{t_{1}}$ .

If $H_{t}=F_{n}\circ F_{n-1}\circ\ldots\circ F_{1}(t=0,1, \ldots)$ , then $(*)$ becomes the Gauss-Seidel iteration. If $\pi$ is apermutation

on $N$ and $H_{t}=F_{\pi(n)}\mathrm{o}F_{\pi(n-1)}\circ\ldots\circ F_{\pi(1)}(t=0,1, \ldots)$ , then $(*)$ is called Gauss-Seidel type iteration. The

90



chaotic iteration with strategy-set can produce behaviors that are essentially unpredictable. Apoint 4is said

to be apoint attractor for achaotic iteration with astrategy-set if there exists an initial point $x(0)\in\{0,1\}^{n}$

and $T\geq \mathrm{O}$ such that $H_{t}(x(t))=x(t+1)=\xi$ for all $t\geq T$ . For chaotic iteration, apoint attractor could not

be afixed point and acycle might be anon-simple cycle, as the following example shows.

Example. Define athreshold map and astrategy-set as follows:

$F(x)\equiv Hev((\begin{array}{lll}-1 0 01 -1 00 0 -1\end{array})x-(\begin{array}{l}-0.5-.0.5-0.5\end{array}))$ ,

$S_{1}=\{1,2;3,3;1,1,2,3,3;3,3,1,1;2;2,2;2,2,2j2,2,2,2;\ldots\}$. Then $F_{2}\circ F_{1}(010)=110,$ $F_{3}\circ F_{3}(110)=110,$ $F_{3^{\mathrm{O}}}$

$F_{3}\mathrm{o}F_{2}\mathrm{o}F_{1}\mathrm{o}F_{1}(110)=110,$ $F_{1}\mathrm{o}F_{1}\mathrm{o}F_{3}\mathrm{o}F_{3}(110)=110,$ $F_{2}(110)=110,$ $\ldots$ .Thus 110 is apoint attractor for

this chaotic iteration with strategy-set $S_{1}$ . However, $F(110)\neq 110$ . On the other hand, with another strategy-

set $S_{2}=\{1;3;3;1;1;3;3j1;1;3;3;1;1;3;3;1;1;3;3;1;\ldots\}$ , we have $F_{1}(010)=110,$ $F_{3}(110)=111,$ $F_{3}(111)=$

$110,$ $F_{1}(110)=010,$ $F_{1}(010)=110,$ $F_{3}(110)=111,$ $F_{3}(111)=110,$ $F_{1}(110)=010$ . The question now under

consideration is how to get order out of disorder, complexity from simplicity. Now, let us introduce the

following notion. The strategy-set is said to be regular if there exists asubset $\{k_{0}, k_{1}, \ldots, k_{2^{n}}\}\subset \mathrm{N}\cup\{0\}$

with

$0=k_{0}<k_{1}<\ldots<k_{2^{n}}$

such that the resulting set $\{h_{k_{j}}, h_{k_{j}+1}, \ldots, h_{k_{\mathrm{j}+1}-1}\}$ is equal to $\{1, 2, \ldots, n\}$ $(j=0,1, \ldots, 2^{n}-1)$ . Thus $S_{1}=$

$\{1,2,3;1,2,3;1,2,3;1,2,3;1,2,3;\ldots\}$ and $S_{2}=\{1,2,3;3;2,1;1,1;3;2;2,1,3;1,2,2;3;2;2,1j3;3,2,1;1,2;3j2;2j$

$2;2;2;2;\ldots\}$ are regular strategy-sets, and $S_{3}=\{1;2;3;1,2,3;1,2,3;1;2;1;2;1,2;1,2;1;1;1;1;1;\ldots\}$ is an ir-

regular strategy-set.

Both parallel and sequential iteration are powerful for both brains and artificial networks. The difference

between Gauss-Seidel iteration and chaotic iteration is like the difference between the regular repetition of a

pattern and the rich, coherent variation.

With the notations and notions stated above, we have the following result of Shih and Tsai[10].

Theorem 1. If $A=(a_{ij})$ is symmetric etzith $a_{ii}\geq 0(i=1,2, \ldots, n)$ and $S=\{h_{0};h_{1} ; \ldots\}$ is a regular

strategy-set utith $h_{i}\in N^{1(i)}(i=0,1, \ldots)$ , then the sequence $\{x(t)\}$ generated by $(*)$ converges to a fixed point

of $F$ for any initial point $x(0)\in\{0,1\}^{n}$ .
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Problem: Determine the optimality of the length of regular strategy-set.

By Hopfield’s theorem, we have the following existence of fixed points.

Theorem 2. If $A=(a_{ij})$ is symmetric with $a_{ii}\geq 0(i=1,2, \ldots, n)$ , then $F(x)\equiv Hev(Ax-\theta)$ has $a$

fixed point.

Problem: Does there exist a $combinator\dot{\tau}al$ lemma which serves as a basis for the direct proof of Theorem

27

4. Inverse Dynamics Problem

Let us begin with the following general inverse problem[ll]:

“ Given an arbitrary set of configurations in $\{0, 1\}^{n}$ , is it possible to $constn4ct$ a network of automata for

etthich this set of configurations is the set of attractors $?$”

Applying Theorem 1, we have the following partial solution of above problem.

Theorem 3. Let $M\equiv\{\xi^{(1)}, \ldots,\xi^{(m)}\}$ be a set of configurations in $\{0, 1\}^{n}$ such that $M$ is orthogonal $(i.e$ .

$\langle\xi^{(:)},\xi^{(j)}\rangle=0(i\neq J),$ $\xi^{(:\rangle}\neq 0\forall i)$ . Let $A \equiv\sum_{i=1}^{m}\xi^{(i)}\xi^{(:)^{T}},$ $b \equiv(\frac{1}{2}, \ldots, \frac{1}{2})^{T}$ and $F(x)\equiv Hev(Ax-b)$ . Then

$\xi^{(:)}(i=1, \ldots, m)$ are fxed points of $F$ and $\xi^{(i)}(i=1, \ldots, m)$ are point attractors under chaotic iteration

utith regular strategy-set.

Theorem 3has two defects. First, we do not know the domains of attractions. Second, orthogonality of

$M$ is required. To overcome these defects, let us propose another solution.

Our new solution is based on Hebb’s postulate of learning[3]. Quoting ffom Hebb’s book ([3], p.62):

When an axon of cell $A$ is near enough to excite a cell $B$ and repeatedly or persistently takes part in firing it,

some growth process or metabolic changes take place in one or both cells such that $A$ ’s efficiency as one of the

cells firing $B$, is increased.

We now propose to furnish amathematical model which may be viewed as amathematical model of Hebb’s

postulate of learning by the following construction[ll].

Let $\mathrm{M}\equiv\{\xi^{(1)}, \ldots,\xi^{(m)}\}$ be an orthogonal set in $\{0, 1\}^{n},$ $\mathrm{A}\equiv\sum_{i=1}^{m}\xi^{(i)}\xi^{(i)^{T}},$ $\mathrm{b}\equiv(\frac{1}{2}, \ldots, \frac{1}{2})^{T}$ , a$\mathrm{n}$d $F(x)\equiv$

$Hev(Ax-b)$ . Define

$(0, 1)$ -span(M)\equiv $\{\sum_{i=1}^{m}\alpha_{1}.\xi^{(1)}. ; \alpha:\in\{0,1\}\}$ ,

$U_{1}$. $\equiv\{x\in\{0,1\}^{n} ; 0<x\leq\xi^{(:)}\}(i=1, \ldots, m)$ ,

$x\leq y\Leftrightarrow x:\leq y$: $(i=1, \ldots,n)$ ,
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$x<y\Leftrightarrow x\leq y$ and $x\neq y$ ,

$\mathrm{U}_{0}\equiv(0,1)$-span{e ; $\langle e_{i},$ $\xi^{(j)}\rangle=0(j=1,$
$\ldots,$

$m),\mathrm{i}=1,2,\ldots,\mathrm{n}$ } ; $(0,1)$-span{\emptyset }= $\{0\}.$

We list some elementary results.

Fact.

1. $\#(0,1)- \mathrm{s}\mathrm{p}\mathrm{a}\mathrm{n}(\mathrm{M})=2^{m}$ ,

2. $\{\{\sum_{\dot{\iota}=0}^{m}\alpha_{i}\mathrm{U}:\} ; \alpha_{0}=1, \alpha_{t}\in\{0,1\}, i=1, \ldots, m\}$ is apartition of $\{0, 1\}^{n}$ ,

3. For all $x\in(0,1)$-span(M), $F(x)=x$ ,

4. $F$ has aunique fixed point in $\sum_{\dot{\iota}=0}^{m}\alpha_{i}\mathrm{U}:(\alpha 0=1, \alpha_{i}\in\{0,1\}, i=1, \ldots, m)$ .

Theorem 4. For each x $\in U_{0}+\sum_{i=1}^{m}\alpha:U_{1}$. $(\alpha_{i}\in\{0,1\},$i $=1,$\ldots ,m), $F(x)=. \sum_{1=1}^{m}\alpha:\xi^{(:)}$ .

As an illustration of Theorem 4, we have the following computer experiments.

–

–

93



5. Dynamics of Boolean networks

Let us begin with some notions and notations. Let $F$ : $\{0, 1\}^{n}arrow\{0,1\}^{n}$ . For $x\in\{0,1\}^{n}$ , denote by

$F’(x)$ and $\rho(F’(x))$ the Boolean derivative of $F$ evaluated at $x$ (i.e. $F’(x)=(f_{ij}(x))$ , where $f_{ij}(x)=1$ if

$f_{i}(x)\neq f_{i}(\overline{x}^{j}),$ $f_{ij}(x)=0$ otherwise, here $\overline{x}^{j}=x_{1}\ldots\overline{x_{j}}\ldots x_{n}$ ) and the spectral radius of $F’(x)$ , respectively.

Motivated by the well-known Markus-Yamabe problem about global stability of dynamical system, Shih

and HO[8] proved that

Theorem 5. Let $F:\{0,1\}^{n}arrow\{0,1\}^{n}$ . If $\rho(F’(x))=0$ for all $x\in\{0,1\}^{n}$ , and $F’(x)$ has at rnost one

1in each column for all $x\in\{0,1\}^{n}$ , then $F$ has a unique fied point $\xi$ and there eists $p\leq 2^{n}$ such that

$F^{\mathrm{p}}(x)=\xi$ for any $x\in\{0,1\}^{n}$ .

Motivated by the long-standing Jacobian conjecture, Shih and HO[8] made the following conjecture.

Combinatorial Fixed Point Conjecture. If the cube mapping $F$ : $\{0, 1\}^{n}arrow\{0,1\}^{n}$ is such that

$\rho(F’(x))=0$ for all $x\in\{0,1\}^{n}$ , then $F$ has a unique fixed point.

Recently Dong and Shih[9] proved this conjecture. Our approach to this conjecture is to make acoherent

behavior in the whole cube by way of understanding collective behavior in the subcubes. Now let us introduce

the following notation. Let $x\in\{0,1\}^{n}$ . For each $k=1,2,$ $\ldots,$ $n-1$ and for each choice of $k+1$ distinct

integers $i_{1},$
$\ldots,$

$i_{k+1}$ (which are arranged in any order) from $\{1, \ldots, n\}$ , we define

$x[\{i_{1}, \ldots, ik\}|i_{k+1}]\equiv$ { $y\in\{0,1\}^{n};y_{i_{k+1}}=x:_{k+1},$ $yj=x_{j}$ for all $j\neq i_{1},$ $\ldots,ik$ }.

The following lemma will play aprominent role in the proof of the conjecture. And the kernel of the lemma

reveals an unexpected regularity hidden in the spectral condition.

Lemma. Let $F$ : $\{0, 1\}^{n}arrow\{0,1\}^{n}$ . If $\rho(F’(x))=0$ for all $x\in\{0,1\}^{n}$ , then for each $x\in\{0,1\}^{n}$ and

for each $k=1,$ $\ldots,$ $n-1$ and for each choice of $k+1$ distinct integers $i_{1},$ $\ldots,i_{k+1}$ (which are amnged in

any order) from $\{1, \ldots, n\}$ , there exists a unique point $\alpha\in x[\{i_{1}, \ldots, ik\}|ik+1]$ such that $f_{j}(\alpha)=\alpha_{j}$ for all

$j=i_{1},$ $\ldots,i_{k}$ .

For along time we intend to prove that such $p$ in Theorem 5should be lesser or equal to $n$ (i.e. the

optimal transient length of 4is $n$) by establishing the following conjecture :Conditions “$\rho(F’(x))=0$

for all $x\in\{0,1\}^{n}$”, and “$F’(x)$ has at most one 1in each column for all $x\in\{0,1\}^{n}$”together imply that

$\sup$ $\{F’(x)\}$ contains a zero row. Note that the condition “$F’(x)$ has at most one 1in each column for all
$x\in\{0,1\}^{n}$

$x\in\{0,1\}^{n}$”is equivalent to the condition “$F$ is anonexpansive map with respect to Hamming metric, i.e.
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$\rho_{H}(F(x), F(y))\leq\rho_{H}(x, y)$ for all $x,$ $y\in\{0,1\}^{n}.$”Recently Dong and Shih[9] proved that if $n\leq 4$ the answer

to the conjecture is affirmative. The proof is based on the above lemma. The case $n\geq 5$ of the conjecture

remains open.

Let us mention in conclusion that the spectral condition “$\rho(F’(x))=0$ for all $x\in\{0,1\}^{n}$”implies that $F$

leaves aunique point invariant. And on toward microscopic perspectives: the spectral condition also implies

that for each $k=1,$ $\ldots,$ $n-1$ and for each $k$-subcube the boolean function $F$ leaves aunique point in the

$k$-subcube having $k$ components invariant in avery regular pattern indeed. This phenomenon is of exceptional

interesting feature, perhaps because we can easily find aboolean function $F:\{0,1\}^{n}arrow\{0,1\}^{n}$ leaves aunique

point invariant but there exists a $k$-subcube for which $F$ does not leave apoint in the $k$-subcube having $k$

components invariant.
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