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ABSTRACT. We present here an open problem concerning lipschitzian self map-
pings of closed convex subsets of Banach spaces.

Let $X$ be aBanach space with norm $||\cdot||$ and let $C$ be anonempty, convex
closed and bounded subset of $X$ . Alot of attention has been focused recently on
the behavior of lipschitzian self mappings of such sets $C$. Let us recall that the
mapping $T$ : $Carrow C$ is lipschitzian (satisfies Lipschitz condition) if there exists
$k\geq 0$ such that

(1) $||Tx-Ty||\leq k||x-y||$ ,

for all $x$ , $y\in C$ . The smallest $k$ for which (1) holds is said to be the Lipschitz constant
for $T$ and is denoted by $k(T)$ . If (1) holds we also say that $T$ is $k$ lipschitzian or
that $T$ is of class $L$ $(k)$ , $T\in \mathcal{L}(k)$ .

If $C$ is compact then due to the Schauder Fixed Point Theorem any continuous
(thus also any lipschitzian) mapping $T:Carrow C$ has apoint $x$ satisfying $x=Tx$,
a fixed point of $T$ . If $C$ is not compact, it is no longer true. The strongest known
result due to P. K. Lin and Y. Sternfeld [6] states:

\bullet If C is not compact then for any k $>$ 1 there exists amapping
T:C $arrow C$ of class L(k) such that,

(2) $d(T)= \inf\{||x-Tx|| : x\in C\}>0$ .
The number $d(T)$ defined by (2) is called the minimal displacement of $T$ and

mappings $T$ which satisfy (2) are called mappings with positive displacement.
Once we have alipschitzian mapping $T$ with positive displacement $d=d(T)>0$

we can define amodified mapping $\tilde{T}:Carrow C$ by

$\tilde{T}x=x+d\frac{Tx-x}{||Tx-x||}$ .

It is easy to observe that $\tilde{T}$ is also lipschitzian but the Lipschitz constant $k(\tilde{T})$ is
not necessarily the same as $k(T)$ .

This modified mapping has constant positive displacement equal $d$, which means
that for all $x\in C$ we have

$||x-\tilde{T}x||=d=d(T)>0$ .
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Now we can observe that for any $c\in(0,1]$ the convex combination of the mapping
$\tilde{T}$ with the identity mapping $I$ ,

$\tilde{T}_{c}=(1-c)I+c\overline{T}$ ,

is also of positive displacement equal $cd$ . Moreover, we have

$k(\tilde{T}_{c})=k((1-c)I+c\tilde{T})\leq 1-c+ck(\tilde{T})$

and consequently, $\lim_{carrow 1}k(\tilde{T}_{c})=1$ .
The above alows us to formulate an equivalent modification of the Lin Sternfeld

result.

\bullet If C is not compact then for any k $>1$ there exists amapping
T:C $arrow C$ of class L(k) with constant positive displacement.

From now on we shall discuss only mappings with constant positive displacement.
Suppose $T:Carrow C$ is such amapping with $d(T)=d>0$ . The iterated mapping
$T^{2}=T\circ T:Carrow C$ is not necessarily of constant displacement. For any $x\in C$ we
have an obvious inequality

$0\leq||T^{2}x-x||\leq||T^{2}x-Tx||+||Tx-x||=2d$.

If $||T^{2}x-x||=2d$ then the line consisting of two linear segments $[x, Tx]$ and
$[Tx, T^{2}x]$ is isometric to the segment $[x, T^{2}x]$ and consequently to the interval
$[0, 2d]$ . If $||T^{2}x-x||<2d$ it means that the vector $T^{2}x-Tx$ is in some metric
sense $” \mathrm{r}\mathrm{o}\mathrm{t}\mathrm{a}\mathrm{t}\mathrm{e}\mathrm{d}" \mathrm{w}\mathrm{i}\mathrm{t}\mathrm{h}$ respect to the vector $Tx-x$ . For this reason it is natural to
introduce two coefficients

$a_{-}(T)= \inf\{\frac{1}{d}||T^{2}x-x||$ : $x\in C\}$

and

$a_{+}(T)= \sup\{\frac{1}{d}||T^{2}x-x||$ : $x\in C\}$ .

Intuitively, they represent the minimal metric rotation and global metric rotation.
It is understood in the sense that if $a_{-}(T)<2$ then for any $\epsilon>0$ there are some
$x\in C$ for which the vector $T^{2}x-Tx$ of length $d$ is rotated with respect to the
vector $Tx-x$ of the same length in such away that

(3) $||(T^{2}x-Tx)+(Tx-x)||<(a_{-}(T)+\epsilon)d$ .

If $a_{+}(T)<2$ , then (3) holds for all $x\in C$ . Especially if $a_{+}(T)=0$ then $T$ is an
involution, $T^{2}=I$ on $C$.

There are several open problems and questions concerning mutual relations be-
tween constants $k(T)$ , $a_{-}(T)$ and $a_{+}(T)$ . Here is the first observation
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Let $T:Carrow C$ be amapping of class $\mathcal{L}(k)$ with constant displacement $d(T)=d$.
Take any point $x\in C$ and put $u= \frac{1}{2}(Tx+T^{2}x)$ , $v= \frac{1}{2}(x+Tx)$ . Then we have

$d=||u-Tu||=|| \frac{1}{2}(Tx+T^{2}x)-Tu||\leq$

$\leq\frac{1}{2}||Tx-Tu||+\frac{1}{2}||T^{2}x-Tu||\leq$

$\leq\frac{k}{2}||x-u||+\frac{k}{2}||Tx-u||\leq$

$\leq\frac{k}{2}||x-v||+\frac{k}{2}||v-u||+\frac{k}{2}||Tx-u||=$

$= \frac{k}{4}d+\frac{k}{4}||x-T^{2}x||+\frac{k}{4}d=$

$= \frac{k}{2}d+\frac{k}{4}||x-T^{2}x||$ .

The conclusion of it can be written in the form

$\frac{||x-T^{2}x||}{d}\geq 2(\frac{2}{k}-1)$

and this shows that the rotation constants and Lipschitz constant of $T$ must satisfy

(4) $a_{+}(T) \geq a_{-}(T)\geq 2(\frac{2}{k(T)}-1)$ .

In other words we have
\bullet If T : C $arrow C$ is alipschitzian mapping with constant positive dis-

placement then

(5) $k(T) \geq\frac{4}{a_{-}(T)+2}$ .

The above evaluation is probably not sharp. The main open problem connected
with mappings of constant displacement can be described as follows.

Problem 1. For any $a\in[0,2]$ find the value

$\chi$ $(a)= \inf$ { $k$ :there exists a mapping $T:Carrow C$ with $k(T)=k$ and $a_{-}(T)$ $=a$ }
The evaluation (5) shows that

(6) $JC$ $(a) \geq\frac{4}{a+2}$ .

The above has been shown without taking into account any geometrical properties
of the set $C$ . One can restrict himself to some particular situation of agiven set
$C$ and define relative function $r\sigma_{C}$ $(a)$ . We shall stay here with the general case.
However to estimate $y\zeta$ $(a)$ from above we have to discuss aconcrete construction.

Let $X=C[0,1]$ with the usual uniform norm and let the set $K$ be defined by

$K=\{x\in C[0,1] : 0=x(\mathrm{O})\leq x(t)\leq x(1)=1\}$ .
Let $e$ be the identity function on $[0, 1]$ , $e(t)\equiv t$ . Any function $\alpha\in K$ generates a
mapping $T_{\alpha}$ : $Karrow K$ defined for $x\in K$ by

$(T_{\alpha}x)(t)=(\alpha\circ x)(t)=\alpha(x(t))$ .
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If $\alpha$ is lipschitzian, so is $T_{\alpha}$ and we have

$k(T_{\alpha})=k( \alpha)=\sup\{\frac{|\alpha(t)-\alpha(s)|}{|t-s|}s$ $t$ , $s\in[0,1]$ , $t\neq s\}$ .

Moreover, since any $x\in K$ takes all the values between 0and 1, we have

$||x-T_{\alpha}x||= \max|x(t)-\alpha(x(t))|=\max|s-\alpha(s)|=||e-\alpha||$ .
$t\in[0,1]$ $s\in[\mathit{0},1]$

Thus for $\alpha\neq e$ , $T_{\alpha}$ has constant positive displacement $d(T_{\alpha})=||e-\alpha||>0$ .
The iterated mapping $T_{\alpha}^{2}=T_{\alpha}\mathrm{o}T_{\alpha}=T_{\alpha 0\alpha}$ is of the same type with $k(T_{\alpha}^{2})=$

$k$ (a $0\alpha$ ) $\leq k(\alpha)^{2}$ and $d(T_{\alpha}^{2})=||e-\alpha\circ\alpha||>0$ . In this case

(7) $a_{+}(T_{\alpha})=a_{-}(T_{\alpha})= \frac{k(T_{\alpha}^{2})}{k(T_{\alpha})}=\frac{||e-\alpha\circ\alpha||}{||e-\alpha||}$ .

The relation between Lipschitz and rotation constants in this case can be evaluated
as follows. There exists at least one point $t\in[0,1]$ such that

$|\alpha(\alpha(t))-\alpha(t)|=||e-\alpha||=d(T_{\alpha})>0$ .

Let us assume that at this point $\alpha(\alpha(t))>\alpha(t)$ . The case with converse inequality
can be treated the same way. Let to be the minimal point for which the above
holds. It means that

(8) $t_{0}= \min\{t : \alpha(\alpha(t))-\alpha(t)=||e-\alpha||=d(T_{\alpha})\}$ .
Obviously

a(a $(t_{0})$ ) $-\alpha(t_{0})=||e-\alpha||$ .

Observe that at to we have $\alpha$ (to) $\geq \mathrm{t}0.$ . $\mathrm{I}\mathrm{n}\mathrm{d}\mathrm{e}\mathrm{e}\mathrm{d},\mathrm{s}\mathrm{i}\mathrm{n}\mathrm{c}\mathrm{e}\alpha(0)=0$, if $t_{1}=\alpha$ (to)<to
then $\alpha(t_{1})=\alpha(\alpha(to))>\alpha$ (to) implies existence of apoint $t_{2}<t_{0}$ for which
$\alpha(\mathrm{t})=\alpha$ (to). For this point we would have $\alpha(\alpha(t2))-\alpha(t2)=||e-\alpha||$ which
contradicts (8).

Now, assume that $\alpha$ is lipschitzian with $k(\alpha)=k$ . Then, we have

$\alpha(\alpha(t_{0}))-\alpha(t_{0})\leq||\alpha 0\alpha-\alpha||=||T_{\alpha}\alpha-T_{\alpha}e||\leq k||\alpha-e||=k(\alpha (\mathrm{t}\mathrm{o})-t_{0})$ .

Consequently

$||\alpha 0\alpha-e||\geq\alpha(\alpha(t_{0}))-t_{0}=[\alpha(\alpha(t_{0}))-\alpha(t_{0})]+[\alpha(t_{0})-t_{0}]\geq$

$\geq(1+\frac{1}{k})[\alpha(\alpha(t_{0}))-\alpha(t_{0})]=(1+\frac{1}{k})||\alpha-e||$

and finally, in view of (7)

(9) $2 \geq a_{+}(T_{\alpha})=a_{-}(T_{\alpha})\geq 1+\frac{1}{k}$ .

Both inequalities in (9) are sharp. The case $a_{+}(T_{\alpha})=2$ occurs for any function
$\alpha$ of the form

$\alpha(t)=\{$

$(1+ \frac{\epsilon}{b})t$ for $0\leq t\leq b<1$

$t+\epsilon$ for $b<t\leq 1-\in$

1for $1-\epsilon$ $<t\leq 1$

where $b\in(0,1)$ is arbitrary and $\epsilon$ is sufficiently small
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The equalities $k(\alpha)=k>1$ and $a_{-}(T_{\alpha})=1+ \frac{1}{k}$ are satisfied for specially
chosen family of functions

$\alpha_{k}(t)=\{$
$kt$ for $0 \leq t\leq\frac{1}{k}$

1for $\frac{1}{k}<t\leq 1$

In this setting the family of mappings $T_{k}=T_{\alpha_{k}}$ , $k\geq 1$ fulfils the conditions

$k(T_{k})=k$ , with $d(T_{k})=1- \frac{1}{k}$ ,

$k(T_{k}^{2})=k$ , with $d(T_{k})=1- \frac{1}{k^{2}}$ ,

(10) $a_{+}(T_{\alpha})=a_{-}(T_{\alpha})=1+ \frac{1}{k}$ .

Comparing (10) with the definition of the function $zc$ $(a)$ (see 1) and substituting
$a=1+ \frac{1}{k}$ we get

(11) $\chi$ $(a) \leq\frac{1}{a-1}$

for all $a\in(1,2]$ .
Summing up the estimates (6)and (11) we conclude with

(12) $\frac{4}{a+2}\leq zc$ $(a)\leq\{$
$+\infty$ if $a\in[0, 1]$

$\frac{1}{a-1}$ if $a\in(1,2]$

The gap between the lower and upper bound given by (12) is large. Both inequalities
are probably not sharp. The main problem of finding exact formula for $\kappa(a)$ (see
Problem 1) leads to some more specific, seemingly simpler, but still remaining
without answer partial questions.

Problem 2. Find better then (12) estimate for rr (a).

Problem 3. Is $\chi$ $(a)<\infty$ on [0, 1]? If not, then for which a $\in[0,$ 1], $\chi$ $(a)<\infty$?

In other words. Can one construct an example of abounded closed convex set
$C$ and alipschitzian mapping with constant positive displacement $T:Carrow C$ such
that $a_{-}(T)$ $\leq 1$?The same with $a_{+}(T)\leq 1$?

Problem 4. Is $\chi$ (0) $<\infty$?

More specifically, does there exist abounded closed and convex set $C$ and a
lipschitzian mapping $T$ : $Carrow C$ of constant minimal displacement and such that
$a_{-}(T)=0$ ? Replacing $a_{-}(T)$ in the last question to $a_{+}(T)$ we obtain the last

$,,\mathrm{e}\mathrm{x}\mathrm{o}\mathrm{t}\mathrm{i}\mathrm{c}$ ”question.

Problem 5. Does there eists a bounded, closed and convex set C for which there is

a9 lipschitzian involution (T:C $arrow C, T^{2}=I)$ having constant positive displacement

The notion of rotation constant and rotative mappings has been introduced by
K. Goebel and M. Koter in [2] and [3]. More informations about these notions can
be found in an expository article [4] and books [5] and [1]
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