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This is aresume of some recent results of the authors on optimal 2-unif0rm
convexity inequalities.

ABanach space $X$ is called $q$ -uniformly convex $(2\leq q<\infty)$ if there is $C>0$
such that

$\delta_{X}(\epsilon)\geq C\epsilon^{q}$ for all $\epsilon$ $>0$ , (1)

where $\delta_{x}(\epsilon)$ is the modulus of convexity,

$\delta_{X}(\epsilon)=\inf\{1-||\frac{x+y}{2}||$ : $||x||=||y||=1$ , $||x-y||=\epsilon\}$ . (2)

The $q$-unform convexity of $X$ is characterized by the $\mathrm{f}\mathrm{o}\mathrm{l}\mathrm{l}\mathrm{o}\mathrm{w}\mathrm{i}\mathrm{n}\mathrm{g}" q$ -uniform convexity
inequality”

$\frac{||x+y||^{q}+||x-y||^{q}}{2}\geq||x||^{q}+||Cy||^{q}$ , (3)

where $0<C\leq 1$ , independent on $x$ , $y\in X$ (cf. [1,2,4]).
Clarkson’s inequalities imply that $L_{q}(2\leq q<\infty)$ is $q$-uniformly convex and

$L_{p}(1<p\leq 2)$ is $p’$-uniformly convex, where $1/p+1/p’=1$ , whereas, as is well
known, $L_{p}(1<p\leq 2)$ is in fact 2-uniformly convex; Ball-Carlen-Lieb [1] gave a
proof which uses Hanner’s and Gross’ inequality. The optimal 2-uniform convexity
inequality for $L_{p}(1<p\leq 2)$ is the following:

$\frac{||f+g||_{p}^{2}+||f-g||_{p}^{2}}{2}\geq||f||_{p}^{2}+(p-1)||g||_{p}^{2}$, (4)

where the constant $p-1$ is optimal. This is equivalent to the following more sharp
inequality

$( \frac{||f+g||_{p}^{p}+||f-g||_{p}^{p}}{2})^{1/p}\geq(||f||_{p}^{2}+(p-1)||g||_{p}^{2})^{1/2}$ , (5)

where $p-1$ is optimal ([1]). (For $2\leq p<\infty$ these inequalities are reversed; see
Ball-Carlen-Lieb [1].) The inequality (5) yields the following best estimate in (1)
for $L_{p}(1<p\leq 2)$ :

$\delta_{L_{\mathrm{p}}}(\epsilon)\geq\{(p-1)/8\}\epsilon^{q}$ for all $\epsilon$ $>0$ .
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In the recent paper [5] Takahashi-Hashimoto-Kato presented some generaliza-
tions of the $q$-uniform convexity inequality (3), and showed that these inequalities
are inherited to the Lebesgue-Bochner space $L_{r}(X)$ . In this note, by using their
results, we shall present some generalizations of the optimal 2-uniform convexity
inequalities (4) and (5).

First we state the following inequalities which are fundamental in our discus-
sion:

Lemma 1([4, p.76]). Let $1<p\leq q<\infty$ and $\gamma=\sqrt{(p-1)}/(q-1)$. Then:
(i) For any $x$ , $y\in X$

$( \frac{||x+y||^{p}+||x-y||^{p}}{2})^{1/p}\leq(\frac{||x+y||^{q}+||x-y||^{q}}{2})^{1/q}$ (6)

(ii) For any $x$ , $y\in X$

$( \frac{||x+\gamma y||^{q}+||x-\gamma y||^{q}}{2})^{1/q}\leq(\frac{||x+y||^{p}+||x-y||^{p}}{2})^{1/p}$ (7)

Theorem 1(Takahashi-HashimotO-Kato [5]). Let $2\leq q<\infty$ and $1<t\leq\infty$ .
The following are equivalent.

(i) $X$ is $q$-uniformly convex.
(ii) For any $1<t\leq\infty$ there exists $0<C\leq 1$ such that

$( \frac{||x+y||^{t}+||x-y||^{t}}{2})^{1/t}\geq(||x||^{q}+||Cy||^{q})^{1/q}$ $\forall x$ , $y\in X$ . (8)

(iii) For some $1<t\leq\infty$ there exists $0<C\leq 1$ such that the inequality (8)
holds.

In particular, we have

Theorem 2(2-uniform convexity inequalities). The following are equiv-
alent.

(i) $X$ is 2-uniformly convex.
(ii) For any $1<t\leq\infty$ there exists $0<C\leq 1$ such that

$( \frac{||x+y||^{t}+||x-y||^{t}}{2})^{1/t}\geq(||x||^{2}+||Cy||^{2})^{1/2}$ $\forall x$ , $y\in X$ . (9)

(iii) For some $1<t\leq\infty$ there exists $0<C\leq 1$ such that (9) holds.

Remark 1. In Theorem 2(ii) and (iii) we have $0<C \leq\min\{1,$t-1}, where
equality holds if X is aHilbert space
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Proposition 1. Assume that the following 2-uniform convexity inequality

$\max\{||x+y||, ||x-y||\}\geq(||x||^{2}+C||y||^{2})^{1/2}$ (10)

holds in $X$ . Then,
$\delta_{X}(\epsilon)\geq\frac{C}{8}\epsilon^{2}$ for all $0<\epsilon<2$ . (11)

One should note that for $1<t<\infty$

$\max\{||x+y||, ||x-y||\}\geq(\frac{||x+y||^{t}+||x-y||^{t}}{2})^{1/t}$

Now, 2-uniform convexity inequality is inherited to $L_{r}(X)$ as follows.

Theorem 3. Let $1<p$ , $r\leq 2$ . Assume that the inequality

$( \frac{||x+y||^{p}+||x-y||^{p}}{2})^{1/p}\geq(||x||^{2}+C||y||^{2})^{1/2}$ (12)

holds in $X$ . Then

$( \frac{||f+g||_{r}^{p}+||f-g||_{r}^{p}}{2})^{1/p}\geq(||f||_{r}^{2}+C’||g||_{r}^{2})^{1/2}$ (13)

holds in $L_{r}(X)$ , where

$C’=\{$

$C$ $ifp\leq r\leq 2$ ,

$\{(r-1)/(p-1)\}Cif1<r<p$ .

Remark 2. The constant $C’$ is optimal in general.

Since $X$ is isometrically embedded into $L_{r}(X)$ , it is trivial that any inequality
valid in $L_{r}(X)$ holds in $X$ . The next result asserts that from a2-uniform convexity
inequality in $L_{r}(X)$ we have astonger one in $X$ .

Theorem 4. Let $1<r\leq 2$ and $r<p$ . Assume that

$( \frac{||f+g||_{r}^{p}+||f-g||_{r}^{p}}{2})^{1/p}\geq(||f||_{r}^{2}+C||g||_{r}^{2})^{1/2}$ (14)

holds in $L_{r}(X)$ . Then

$( \frac{||x+y||^{r}+||x-y||^{r}}{2})^{1/r}\geq(||x||^{2}+C||y||^{2})^{1/2}$ (15)
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holds in $X$ .

Indeed take any non-zero $x$ , $y\in X$ and put $f=(x, x)$ , $g=(y, -y)\in\ell_{r}^{2}(X)\subset$

$L_{r}(X)$ in (14).

By Theorems 3and 4 we have the following optimal 2-uniform convexity in-
equality for $L_{r}$ (use the parallelogram law for scalars).

Theorem 5(Optimal 2-uniform convexity inequality for $L_{r}$ , $1<r\leq 2$).
Let $1\leq r\leq 2$ and $1<p\leq\infty$ . Then

$( \frac{||f+g||_{r}^{p}+||f-g||_{r}^{p}}{2})^{1/p}\geq(||f||_{r}^{2}+C||g||_{r}^{2})^{1/2}$ (16)

holds in $L_{r}$ , where $C= \min\{p-1, r-1\}$ .

Remark 3. (i) The constant C in (16) is best possible.
(ii) The inequality (16) for $L_{p}$ , $1<p\leq 2$ with C $=p$ -1, that is,

$( \frac{||f+g||_{p}^{p}+||f-g||_{p}^{p}}{2})^{1/p}\geq(||f||_{p}^{2}+(p-1)||g||_{p}^{2})^{1/2}$ (5)

was proved in Ball-Carlen-Lieb [1]. Their proof used Hanner’s inequality and
Gross’ inequality, whereas we derived (5) ffom Theorems 3and 4and the paral-
lelogram law for scalars.

Theorem 3yields the following

Theorem 6(Optimal 2-uniform convexity inequality for $L_{r}(L_{s})$ , $1<$

r, s $\leq 2)$ . Let $1\leq r$ , s $\leq 2$ and $1<p\leq\infty$ . Then

$( \frac{||f+g||_{r}^{p}+||f-g||_{r}^{p}}{2})^{1/p}\geq(||f||_{r}^{2}+C||g||_{r}^{2})^{1/2}$ (17)

holds in $L_{r}(L_{s})$ , where $C= \min\{p-1, r-1, s-1\}$ . In particular, if $1<p\leq$
$\min\{r, s\}$ , then $C=p-1$ .

Remark 4. The constant C in (17) is best possible.
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