On optimal 2－uniform convexity inequalities

九州工大工 加藤幹雄（Mikio Kato）
岡山県立大情報工 高 橋 泰 嗣（Yasuji Takahashi）

Abstract

This is a résumé of some recent results of the authors on optimal 2－uniform convexity inequalities．

A Banach space X is called q－uniformly convex $(2 \leq q<\infty)$ if there is $C>0$ such that

$$
\begin{equation*}
\delta_{X}(\varepsilon) \geq C \varepsilon^{q} \text { for all } \varepsilon>0 \tag{1}
\end{equation*}
$$

where $\delta_{X}(\varepsilon)$ is the modulus of convexity，

$$
\begin{equation*}
\delta_{X}(\varepsilon)=\inf \left\{1-\left\|\frac{x+y}{2}\right\|:\|x\|=\|y\|=1,\|x-y\|=\epsilon\right\} . \tag{2}
\end{equation*}
$$

The q－unform convexity of X is characterized by the following＂q－uniform convexity inequality＂

$$
\begin{equation*}
\frac{\|x+y\|^{q}+\|x-y\|^{q}}{2} \geq\|x\|^{q}+\|C y\|^{q} \tag{3}
\end{equation*}
$$

where $0<C \leq 1$ ，independent on $x, y \in X$（cf．$[1,2,4]$ ）．
Clarkson＇s inequalities imply that $L_{q}(2 \leq q<\infty)$ is q－uniformly convex and $L_{p}(1<p \leq 2)$ is p^{\prime}－uniformly convex，where $1 / p+1 / p^{\prime}=1$ ，whereas，as is well known，$L_{p}(1<p \leq 2)$ is in fact 2－uniformly convex；Ball－Carlen－Lieb［1］gave a proof which uses Hanner＇s and Gross＇inequality．The optimal 2－uniform convexity inequality for $L_{p}(1<p \leq 2)$ is the following：

$$
\begin{equation*}
\frac{\|f+g\|_{p}^{2}+\|f-g\|_{p}^{2}}{2} \geq\|f\|_{p}^{2}+(p-1)\|g\|_{p}^{2} \tag{4}
\end{equation*}
$$

where the constant $p-1$ is optimal．This is equivalent to the following more sharp inequality

$$
\begin{equation*}
\left(\frac{\|f+g\|_{p}^{p}+\|f-g\|_{p}^{p}}{2}\right)^{1 / p} \geq\left(\|f\|_{p}^{2}+(p-1)\|g\|_{p}^{2}\right)^{1 / 2} \tag{5}
\end{equation*}
$$

where $p-1$ is optimal（［1］）．（For $2 \leq p<\infty$ these inequalities are reversed；see Ball－Carlen－Lieb［1］．）The inequality（5）yields the following best estimate in（1） for $L_{p}(1<p \leq 2)$ ：

$$
\delta_{L_{p}}(\varepsilon) \geq\{(p-1) / 8\} \varepsilon^{q} \text { for all } \varepsilon>0
$$

In the recent paper [5] Takahashi-Hashimoto-Kato presented some generalizations of the q-uniform convexity inequality (3), and showed that these inequalities are inherited to the Lebesgue-Bochner space $L_{r}(X)$. In this note, by using their results, we shall present some generalizations of the optimal 2-uniform convexity inequalities (4) and (5).

First we state the following inequalities which are fundamental in our discussion:

Lemma 1 ([4, p.76]). Let $1<p \leq q<\infty$ and $\gamma=\sqrt{(p-1) /(q-1)}$. Then:
(i) For any $x, y \in X$

$$
\begin{equation*}
\left(\frac{\|x+y\|^{p}+\|x-y\|^{p}}{2}\right)^{1 / p} \leq\left(\frac{\|x+y\|^{q}+\|x-y\|^{q}}{2}\right)^{1 / q} \tag{6}
\end{equation*}
$$

(ii) For any $x, y \in X$

$$
\begin{equation*}
\left(\frac{\|x+\gamma y\|^{q}+\|x-\gamma y\|^{q}}{2}\right)^{1 / q} \leq\left(\frac{\|x+y\|^{p}+\|x-y\|^{p}}{2}\right)^{1 / p} \tag{7}
\end{equation*}
$$

Theorem 1 (Takahashi-Hashimoto-Kato [5]). Let $2 \leq q<\infty$ and $1<t \leq \infty$. The following are equivalent.
(i) X is q-uniformly convex.
(ii) For any $1<t \leq \infty$ there exists $0<C \leq 1$ such that

$$
\begin{equation*}
\left(\frac{\|x+y\|^{t}+\|x-y\|^{t}}{2}\right)^{1 / t} \geq\left(\|x\|^{q}+\|C y\|^{q}\right)^{1 / q} \quad \forall x, y \in X \tag{8}
\end{equation*}
$$

(iii) For some $1<t \leq \infty$ there exists $0<C \leq 1$ such that the inequality (8) holds.

In particular, we have
Theorem 2 (2-uniform convexity inequalities). The following are equivalent.
(i) X is 2-uniformly convex.
(ii) For any $1<t \leq \infty$ there exists $0<C \leq 1$ such that

$$
\begin{equation*}
\left(\frac{\|x+y\|^{t}+\|x-y\|^{t}}{2}\right)^{1 / t} \geq\left(\|x\|^{2}+\|C y\|^{2}\right)^{1 / 2} \quad \forall x, y \in X \tag{9}
\end{equation*}
$$

(iii) For some $1<t \leq \infty$ there exists $0<C \leq 1$ such that (9) holds.

Remark 1. In Theorem 2 (ii) and (iii) we have $0<C \leq \min \{1, t-1\}$, where equality holds if X is a Hilbert space.

Proposition 1. Assume that the following 2-uniform convexity inequality

$$
\begin{equation*}
\max \{\|x+y\|,\|x-y\|\} \geq\left(\|x\|^{2}+C\|y\|^{2}\right)^{1 / 2} \tag{10}
\end{equation*}
$$

holds in X. Then,

$$
\begin{equation*}
\delta_{X}(\epsilon) \geq \frac{C}{8} \epsilon^{2} \quad \text { for all } 0<\epsilon<2 \tag{11}
\end{equation*}
$$

One should note that for $1<t<\infty$

$$
\max \{\|x+y\|,\|x-y\|\} \geq\left(\frac{\|x+y\|^{t}+\|x-y\|^{t}}{2}\right)^{1 / t}
$$

Now, 2-uniform convexity inequality is inherited to $L_{r}(X)$ as follows.
Theorem 3. Let $1<p, r \leq 2$. Assume that the inequality

$$
\begin{equation*}
\left(\frac{\|x+y\|^{p}+\|x-y\|^{p}}{2}\right)^{1 / p} \geq\left(\|x\|^{2}+C\|y\|^{2}\right)^{1 / 2} \tag{12}
\end{equation*}
$$

holds in X. Then

$$
\begin{equation*}
\left(\frac{\|f+g\|_{r}^{p}+\|f-g\|_{r}^{p}}{2}\right)^{1 / p} \geq\left(\|f\|_{r}^{2}+C^{\prime}\|g\|_{r}^{2}\right)^{1 / 2} \tag{13}
\end{equation*}
$$

holds in $L_{r}(X)$, where

$$
C^{\prime}= \begin{cases}C & \text { if } p \leq r \leq 2 \\ \{(r-1) /(p-1)\} C & \text { if } 1<r<p\end{cases}
$$

Remark 2. The constant C^{\prime} is optimal in general.
Since X is isometrically embedded into $L_{r}(X)$, it is trivial that any inequality valid in $L_{r}(X)$ holds in X. The next result asserts that from a 2-uniform convexity inequality in $L_{r}(X)$ we have a stonger one in X.

Theorem 4. Let $1<r \leq 2$ and $r<p$. Assume that

$$
\begin{equation*}
\left(\frac{\|f+g\|_{r}^{p}+\|f-g\|_{r}^{p}}{2}\right)^{1 / p} \geq\left(\|f\|_{r}^{2}+C\|g\|_{r}^{2}\right)^{1 / 2} \tag{14}
\end{equation*}
$$

holds in $L_{r}(X)$. Then

$$
\begin{equation*}
\left(\frac{\|x+y\|^{r}+\|x-y\|^{r}}{2}\right)^{1 / r} \geq\left(\|x\|^{2}+C\|y\|^{2}\right)^{1 / 2} \tag{15}
\end{equation*}
$$

holds in X.
Indeed take any non-zero $x, y \in X$ and put $f=(x, x), g=(y,-y) \in \ell_{r}^{2}(X) \subset$ $L_{r}(X)$ in (14).

By Theorems 3 and 4 we have the following optimal 2 -uniform convexity inequality for L_{r} (use the parallelogram law for scalars).

Theorem 5 (Optimal 2-uniform convexity inequality for $L_{r}, 1<r \leq 2$). Let $1 \leq r \leq 2$ and $1<p \leq \infty$. Then

$$
\begin{equation*}
\left(\frac{\|f+g\|_{r}^{p}+\|f-g\|_{r}^{p}}{2}\right)^{1 / p} \geq\left(\|f\|_{r}^{2}+C\|g\|_{r}^{2}\right)^{1 / 2} \tag{16}
\end{equation*}
$$

holds in L_{r}, where $C=\min \{p-1, r-1\}$.
Remark 3. (i) The constant C in (16) is best possible.
(ii) The inequality (16) for $L_{p}, 1<p \leq 2$ with $C=p-1$, that is,

$$
\begin{equation*}
\left(\frac{\|f+g\|_{p}^{p}+\|f-g\|_{p}^{p}}{2}\right)^{1 / p} \geq\left(\|f\|_{p}^{2}+(p-1)\|g\|_{p}^{2}\right)^{1 / 2} \tag{5}
\end{equation*}
$$

was proved in Ball-Carlen-Lieb [1]. Their proof used Hanner's inequality and Gross' inequality, whereas we derived (5) from Theorems 3 and 4 and the parallelogram law for scalars.

Theorem 3 yields the following
Theorem 6 (Optimal 2-uniform convexity inequality for $L_{r}\left(L_{s}\right), 1<$ $r, s \leq 2)$. Let $1 \leq r, s \leq 2$ and $1<p \leq \infty$. Then

$$
\begin{equation*}
\left(\frac{\|f+g\|_{r}^{p}+\|f-g\|_{r}^{p}}{2}\right)^{1 / p} \geq\left(\|f\|_{r}^{2}+C\|g\|_{r}^{2}\right)^{1 / 2} \tag{17}
\end{equation*}
$$

holds in $L_{r}\left(L_{s}\right)$, where $C=\min \{p-1, r-1, s-1\}$. In particular, if $1<p \leq$ $\min \{r, s\}$, then $C=p-1$.

Remark 4. The constant C in (17) is best possible.

References

[1] K. Ball, E. A. Carlen and E. H. Lieb, Sharp uniform convexity and smoothness inequalities for trace norms, Invent. Math. 115 (1994), 463-482.
[2] B. Beauzamy, Introduction to Banach Spaces and Their Geometry 2nd Ed., 1985.
[3] M. Kato and Y. Takahashi, Type, cotype constants and Clarkson's inequalities for Banach spaces, Math. Nachr. 186 (1997), 187-196.
[4] J. Lindenstrauss and L. Tzafriri, Classical Banach Spaces II, 1979.
[5] Y. Takahashi, K. Hashimoto and M. Kato, On sharp uniform convexity, smoothness, and strong type, cotype inequalities, J. Nonlinear Convex Anal. 3 (2002), 267-281.
[6] Y. Takahashi and M. Kato, Clarkson and Random Clarkson inequalities for $L_{r}(X)$, Math. Nachr. 188 (1997), 341-348.

Department of Mathematics, Kyushu Institute of Technology, Kitakyushu 804-8550, Japan e-mail: katom@tobata.isc.kyutech.ac.jp
Department of System Engineering, Okayama Prefectural University, Soja 719-1197, Japan
e-mail: takahasi@cse.oka-pu.ac.jp

