大阪教育大学 平木 彰
Osaka Kyoiku University．Akira Hiraki

1 Definitions

Let $\Gamma=(V \Gamma, E \Gamma)$ be a connected graph with usual distance ∂_{Γ} ．
Let $d=\max \left\{\partial_{\Gamma}(x, y) \mid x, y \in V \Gamma\right\}$ denote the diameter of Γ ．For vertex u ，let $\Gamma_{j}(u):=\left\{x \in V \Gamma \mid \partial_{\Gamma}(u, x)=j\right\}$ the set of vertices which are at distance j from u ．

For $x, y \in V \Gamma$ with $\partial_{\Gamma}(x, y)=i$ ，let

$$
\begin{aligned}
C(x, y) & :=\Gamma_{i-1}(x) \cap \Gamma_{1}(y) \\
A(x, y) & :=\Gamma_{i}(x) \cap \Gamma_{1}(y) \\
B(x, y) & :=\Gamma_{i+1}(x) \cap \Gamma_{1}(y) .
\end{aligned}
$$

A graph Γ is said to be distance－regular if

$$
c_{i}=|C(x, y)|, \quad a_{i}=|A(x, y)| \quad \text { and } \quad b_{i}=|B(x, y)|
$$

depend only on $i=\partial_{\Gamma}(x, y)$ rather than individual vertices．
Then c_{i}, a_{i}, b_{i} are called the intersection numbers of Γ and the array

$$
\iota(\Gamma)=\left\{\begin{array}{cccccccc}
* & c_{1} & c_{2} & \cdots & c_{j} & \cdots & c_{d-1} & c_{d} \\
a_{0} & a_{1} & a_{2} & \cdots & a_{j} & \cdots & a_{d-1} & a_{d} \\
b_{0} & b_{1} & b_{2} & \cdots & b_{j} & \cdots & b_{d-1} & *
\end{array}\right\}
$$

is called the intersection array of Γ ．Let

$$
\ell(c, a, b):=\left|\left\{i \mid\left(c_{i}, a_{i}, b_{i}\right)=(c, a, b)\right\}\right| .
$$

For example the dodecahedron is a distance－regular graph with

$$
\iota(\Gamma)=\left\{\begin{array}{llllll}
* & 1 & 1 & 1 & 2 & 3 \\
0 & 0 & 1 & 1 & 0 & 0 \\
3 & 2 & 1 & 1 & 1 & *
\end{array}\right\}
$$

and

$$
\ell(1,0,2)=1, \quad \ell(1,1,1)=2, \quad \ell(2,0,1)=1
$$

2 Bannai-Ito conjecture

The following are well-known basic properties of the intersection numbers.
Lemma $1 A$ distance-regular graph Γ is a regular graph of valency $k=b_{0}$. And:
(1) $k=b_{0} \geq b_{1} \geq \cdots \geq b_{d-1} \geq 1$.
(2) $1=c_{1} \leq c_{2} \leq \cdots \leq c_{d} \leq k$.
(3) $c_{i}+a_{i}+b_{i}=k$ for all i.

The reader is referred to [1] and [4] for general theory of distance-regular graphs.
Conjecture. (Bannai-Ito) For fixed integer k with $k \geq 3$ there are only finitely many distance-regular graphs of valency k.

This conjecture is equivalent to construction of a diameter bound for distanceregular graphs in terms of valency k.

Fix an integer k with $k \geq 3$. Let Γ be a distance-regular graph with valency k. From the above lemma there are only finitely many kind of column vectors ${ }^{t}(c, a, b)$ with $c+a+b=k$. To solve the conjecture we have to bound $\ell(c, a, b)$ by a function of k or absolute constant.

Bannai and Ito proved a lot of interesting results concerning this problem by using eigenvalue technique. For example:

Result 2 [2, Bannai-Ito (1987)]

$$
\ell(c, a, c) \leq 10 k 2^{k}
$$

For the special case of the Bannai-Ito's result, we have the following results.
Result 3 [7, Higashitani-Suzuki (1992)]
If $k \geq 5$, then

$$
\ell(1, k-2,1) \leq 46 \sqrt{k-3}
$$

Result 4 [9, Hiraki (1996)]

$$
\ell(1, k-2,1) \leq 20 .
$$

For the small valency we have:
Result 5 [3, Biggs-Boshier and Shawe-Taylar (1986)] [5, Brouwer-Koolen (1999)]

$$
\ell(1,1,1) \leq 3 \quad \text { and } \quad \ell(1,2,1) \leq 1 .
$$

We recall the sketch of the proof of the above results.
Let Γ be a distance-regular graph with :

$$
\left\{\begin{array}{cccccccccccc}
* & c_{1} & \cdots & c_{1} & c_{r+1} & \cdots & c_{s} & c & \cdots & c & c^{\prime} & \cdots \\
0 & a_{1} & \cdots & a_{1} & a_{r+1} & \cdots & a_{s} & a & \cdots & a & a^{\prime} & \cdots \\
k & b_{1} & \cdots & b_{1} & b_{r+1} & \cdots & b_{s} & b & \cdots & b & b^{\prime} & \cdots
\end{array}\right\}
$$

where $r:=\ell\left(c_{1}, a_{1}, b_{1}\right), t=\ell(c, a, b)$ and $s=\min \left\{j \mid\left(c_{j+1}, a_{j+1}, b_{j+1}\right)=(c, a, b)\right\}$.
Let $A:=A(\Gamma)$ be adjacency matrix of Γ. Let

$$
k=\theta_{0}>\theta_{1}>\theta_{2}>\cdots>\theta_{d}
$$

be the eigenvalues of A, and $m\left(\theta_{j}\right)$ denote the multiplicity of θ_{j} in A.
It is known that the $m\left(\theta_{j}\right)$ is bounded from bellow by a function $f_{1}(r, k)$ of r and k. (See [13] and [2].) On the other hand by Biggs formula for $m\left(\theta_{1}\right)$ it can be bounded from above by a function $f_{2}(k, s, t)$ of k, s and t. Next we bound s by a function $f_{3}(k, r)$ of k and r. Combining these we have

$$
f_{1}(k, r) \leq m\left(\theta_{1}\right) \leq f_{2}(k, s, t) \leq f_{4}(k, r, t)
$$

For our cases the above inequality gives us an upper bound for t by a function of k or absolute constant.

The bound for s that they used are as follows.

		$k=5$	$k=9$	$k=17$	$k \sim 2^{n}$
B-I	$2^{k-3} r$	$4 r$	$64 r$	$2^{14} r$	$2^{2^{n} r}$
H-S	$(k-3) r$	$2 r$	$6 r$	$14 r$	$2^{n} r$
H	$(r+1) \log _{2}(k-1)$	$2(r+1)$	$3(r+1)$	$4(r+1)$	$n(r+1)$

In [10] we have the following result.
Lemma 6 Let Γ be a distance-regular graph of valency $k \geq 3$ with $r:=\ell\left(1, a_{1}, b_{1}\right) \geq 2$. Then

$$
\max \left\{i \mid c_{i}=1\right\} \leq 2 r+2
$$

Suppose $t:=\ell(1, k-2,1) \geq 2$. Then we have $s+t=\max \left\{i \mid c_{i}=1\right\} \leq 2 r+2$ from the above lemma. Apply this new bound for s to Bannai-Ito's method. We have the following improvement of the bound for t

Theorem 7 Let Γ be a distance-regular graph of valency $k \geq 5$ and $t:=\ell(1, k-2,1)$. Then the following hold.
(1) If $k=5$, then $t \leq 14$.
(2) If $k \geq 6$, then $t \leq 7$.
(3) If $k \geq 9$, then $t \leq 6$.
(4) If $k \geq 12$, then $t \leq 4$.
(5) If $k \geq 20$, then $t \leq 3$.
(6) If $k \geq 30$, then $t \leq 2$.
(7) If $k \geq 58$, then $t \leq 1$.

The detailed proof of the theorem will be found in [11].

3 Sketch of the proof of Lemma 6.

Let Γ be a distance-regular graph. A subgraph Δ is called strongly closed if

$$
C(x, y) \cup A(x, y) \subseteq \Delta \quad \text { for any } \quad x, y \in \Delta
$$

Then $c_{i}(\Delta)=c_{i}(\Gamma)$ and $a_{i}(\Delta)=a_{i}(\Gamma)$. If Δ is regular of valency k_{Δ}, then $b_{i}(\Delta)=k_{\Delta}-c_{i}(\Delta)-a_{i}(\Delta)$. Hence a strongly closed subgraph of a distance-regular graph is also distance-regular if it is regular.

There are examples of a non-regular strongly closed subgraph of a distance-regular graph. However Suzuki proved the following result.

Result 8 [12, Suzuki (1995)]
Let Γ be a distance-regular graph with $r:=\ell\left(c_{1}, a_{1}, b_{1}\right)$. A strongly closed subgraph of diameter q with $r+1 \leq q$ is one of the following graph:
(i) A distance-regular graph. In particular, $b_{q-1}>b_{q}$.
(ii) A distance-biregular graph.
(iii) The 3-subdivision graph of a complete graph, or of a Moore graph. In particular, $r \in\{3,6\}$.

On the other hand we have the following existence condition for strongly closed subgraphs of a distance-regular graph.

Result 9 [10, Hiraki (2001)]
Let Γ be a distance-regular graph of diameter d and $r:=\ell\left(c_{1}, a_{1}, b_{1}\right)$. Let q be an integer with $r+1 \leq q \leq d-1$. If $b_{q-1}>b_{q}$ and $c_{q+r}=1$, then there exists a sequence of strongly closed subgraphs

$$
\Delta_{r+1} \subseteq \Delta_{r+2} \subseteq \cdots \subseteq \Delta_{q}
$$

where the diameter of Δ_{i} is i. Moreover Δ_{q} is distance-regular.

Proof of Lemma 6．Suppose $c_{2 r+3}=1$ to derive a contradiction．
Since $b_{r}>b_{r+1}$ and $c_{2 r+1}=1$ ，there exists a strongly closed subgraph Δ of diameter $r+1$ with

$$
\iota(\Delta)=\left\{\begin{array}{ccccc}
* & 1 & \cdots & 1 & 1 \\
0 & a_{1} & \cdots & a_{1} & a_{r+1} \\
k^{\prime} & b_{1}^{\prime} & \cdots & b_{1}^{\prime} & *
\end{array}\right\}
$$

Since $r \geq 2$ ，a graph Δ has to be an ordinary polygon．（See［4，Theorem 6．8．1］．） Hence we have $\left(a_{1}, a_{r+1}\right)=(0,1)$ and thus $\ell(1,1, k-2) \in\{1,2\}$ from［8］．

Suppose $\ell(1,1, k-2)=1$ ．Then $b_{r+1}>b_{r+2}$ and $c_{2 r+2}=1$ ．There exists a strongly closed subgraph Δ^{\prime} of diameter $r+2$ with

$$
\iota\left(\Delta^{\prime}\right)=\left\{\begin{array}{cccccc}
* & 1 & \cdots & 1 & 1 & 1 \\
0 & 0 & \cdots & 0 & 1 & a \\
a+1 & a & \cdots & a & a-1 & *
\end{array}\right\}
$$

But no such Δ^{\prime} exists from［6］．We have a contradiction．

Suppose $\ell(1,1, k-2)=2$ ．Then $b_{r+1}=b_{r+2}>b_{r+3}$ and $c_{2 r+3}=1$ ．Thus there exists a sequence $\Delta_{r+1} \subseteq \Delta_{r+2} \subseteq \Delta_{r+3}$ of strongly closed subgraphs．Since $b_{r+1}=b_{r+2}$ and $a_{r+1}=a_{r+2}=1$ ，a strongly closed subgraph Δ_{r+2} of diameter $r+2$ have to be the 3 －subdivision graph of a complete graph，or of a Moore graph from Result 8．In particular，we have $r \in\{3,6\}$ ．By counting the number of the 3 －subdivision graphs of a complete graph，or of a Moore graph in Δ_{r+3} ，we have $a+2$ is a divisor of 216．So there are only finitely many possible parameters for (a, r) ．Each of them are ruled out by integrality condition of $m\left(\theta_{1}\right)$ ．

The lemma is proved．

参考文献

［1］E．Bannai and T．Ito，Algebraic Combinatorics I；Benjamin－Cummings，California 1984.
［2］E．Bannai and T．Ito，On distance－regular graph with fixed valency，Graphs and Combin．3，pp 95－109，（1987）．
［3］N．L．Biggs，A．G．Boshier and J．Shawe－Taylor，Cubic distance－regular graphs． J．Combin．Theory Ser．B．44，pp 147－153，（1986）．
[4] A. E. Brouwer, A. M. Cohen and A. Neumaier, Distance-Regular Graphs, Springer Verlag, Berlin, Heidelberg, 1989.
[5] A. E. Brouwer and J. H. Koolen, The distance-regular graphs of valency four, J. Alg. Combin. 10 pp 5-24, (1999).
[6] Y. L. Chen and A. Hiraki, On the non-existence of certain distance-regular graphs, Kyushu J. Math. 53 pp 1-15, (1999).
[7] N. Higashitani and H. Suzuki, Bounding the number of columns $(1, k-2,1)$ in the intersection array of a distance-regular graph. Math. Japonica 37, pp 487-494, (1992).
[8] A. Hiraki, An improvement of the Boshier-Nomura bound, J. of Comb. Theory, Ser. B61 pp1-4, (1994).
[9] A. Hiraki, A constant bound on the number of columns $(1, k-2,1)$ in the intersection array of distance-regular graphs, Graphs and Combin. 12 pp 23-37, (1996).
[10] A. Hiraki, A distance-regular graph with strongly closed subgraphs, J. of Alg combin. 14 pp 127-131, (2001).
[11] A. Hiraki, The number of columns $(1, k-2,1)$ in the intersection array of a distance-regular graph, preprint.
[12] H. Suzuki, On strongly closed subgraphs of highly regular graphs, Europ. J. Combin. 16 pp197-220, (1995).
[13] P. Terwilliger, Eigenvalue multiplicities of highly symmetric graphs. Discreat Math. 41 pp 295-302, (1989).

