On Relative Difference Sets In Non-Abelian Groups of Order p^4

Dominic T. Elvira*

1 Introduction

A k-element subset R of a group G of order mu is called an (m, u, k, λ) relative difference set (RDS) relative to a normal subgroup U of order u if the number of ordered pairs $(r_1, r_2) \in R \times R$ with $r_1 r_2^{-1} = g$ for every $g \in G$, $g \neq 1$ is λ if $g \in G - U$ and 0 if $g \in U$. The subgroup U is often called the forbidden subgroup as its non-identity elements cannot be written in the above form. If G is cyclic, abelian, and so on, its respective property is attached to the RDS R in G.

In the study of RDS's, a subset X of a group G is often identified with the group ring element $X = \sum_{x \in X} x \in \mathbb{Z}[G]$ and we write $X^{(t)} = \sum_{x \in X} x^t$. With this notation, R is an (m, u, k, λ) RDS if and only if

$$RR^{(-1)} = k + \lambda(G - U).$$
(1.1)

If $k = u\lambda$, R is called *semi-regular* and by (1.1), its parameters are $(u\lambda, u, u\lambda, \lambda)$. Also, in this case, R is a complete set of coset representatives of G/U. If u = 1, R is called a *trivial* semi-regular RDS. Any group G is itself a trivial semi-regular RDS.

Many extensive studies have been done on relative difference sets, particularly the semi-regular case, in both abelian and non-abelian groups because of their close connection to other areas of combinatories (see [1], [3], [4], [7], [12]). Readers may refer to Pott's book [10] or his survey [11] for more background information on RDS's.

Let R_1 and R_2 be RDS's in a group G relative to normal subgroups U_1 and U_2 , respectively. If there exists $\theta \in Aut(G)$, the full automorphism group of G such that $\theta(R_1) = R_2$ and $\theta(U_1) = U_2$, then R_1 and R_2 are

^{*}The author is a faculty member of Philippine Normal University (PNU), Manila on study leave at Kumamoto University under a Monbusho grant.

said to be equivalent. In our study, we only consider non-trivial and nonequivalent semi-regular RDS's. We also denote a prime number by p and $I_p = \{0, 1, ..., p-1\}$.

In this paper, we review the results on semi-regular RDS's in non-abelian groups of order p^4 with $p \ge 3$ and continue our study in [2].

2 Results on RDS's in *p*-Groups of Order $\leq p^4$

A group G of order p can contain only a trivial RDS. If G is of order p^2 then we have the following result contained in [6].

Result 2.1 Let G be a group of order p^2 containing a (p, p, p, 1) RDS. Then

(i) $G \simeq \mathbb{Z}_{p^2}$ if and only if p = 2, and

(ii) $G \simeq \mathbb{Z}_p \times \mathbb{Z}_p$ if and only if $p \geq 3$.

In (i) above, $R = \{1, x\}$ is a (2, 2, 2, 1) RDS in $\mathbb{Z}_4 = \langle x \rangle$ relative to $U = \langle x^2 \rangle$. In (ii) with $G = \langle a, b \rangle$, the set $R = \{a^{i^2}b^i | i \in I_p\}$ is an RDS relative to $U = \langle a \rangle$. We note that there is only one equivalence class of RDS's in (ii) and all can be transformed into R by an appropriate translate or automorphism (see [6]). In fact, there exists a $(p^n, p^n, p^n, 1)$ RDS for every $p \ge 2, n \ge 1$ (see [10], pp. 46-47).

A non-trivial RDS in a group G of order p^3 has parameters (p^2, p, p^2, p) . If G is abelian then $G = \mathbb{Z}_{p^2} \times \mathbb{Z}_p$ or $\mathbb{Z}_p \times \mathbb{Z}_p \times \mathbb{Z}_p$ by Result 1.2 in [2]. The group $\mathbb{Z}_{p^2} \times \mathbb{Z}_p$ contains non-trivial RDS's and these are characterized as follows:

Result 2.2 (Ma-Pott, [6]) Let R be a (p^2, p, p^2, p) RDS in $G = \mathbb{Z}_{p^2} \times \mathbb{Z}_p$ relative to U with $p \geq 3$. Let H_1, \ldots, H_{p-1} denote p-1 subgroups of G with $|H_i| = p$, $H_i \neq U$, and $G/H_i \simeq \mathbb{Z}_{p^2}$. Let N be the subgroup of G with $N \simeq \mathbb{Z}_p \times \mathbb{Z}_p$. Then there is a subgroup $H_0 \neq H_i$ for $i \neq 0$ of N, $H_0 \neq U$, and p-1 group elements h_i with $\{1, h_1, \ldots, h_{p-1}\}$, a complete set of coset representatives of N such that $R' = H_0 \cup \bigcup_{i=1}^{p-1} h_i H_i$ for some translate R'of R. Conversely, any subset similar to R' is a (p^2, p, p^2, p) RDS in G.

The group $G = \mathbb{Z}_p \times \mathbb{Z}_p \times \mathbb{Z}_p = \langle x, y, z \rangle$ contains non-trivial RDS's. The sets $R_1 = \{x^i y^j z^{ij} | i, j \in I_p\}$ and $R_2 = \{x^i y^j z^{i^2+j^2} | i, j \in I_p\}$ are RDS's in G relative to $U = \langle z \rangle$. More general constructions on RDS's in *p*-groups were obtained by Davis [1] and Pott [9].

When G is a non-abelian group of order p^3 , we have:

Result 2.3 (Elvira-Hiramine, [3] and [4]) A non-abelian group G of order p^3 contains a (p^2, p, p^2, p) RDS relative to a normal subgroup U unless $G = D_8$, the dihedral group of order 8.

As a consequence of Results 2.2, 2.3 and the contructions of RDS's in the elementary abelian group, we have:

Remark 2.4 Every non-cyclic group G of order p^3 with $p \ge 3$ contains a (p^2, p, p^2, p) RDS.

Problem: Classify the non-abelian (p^2, p, p^2, p) RDS's and those in the elementary abelian group.

The parameters of a non-trivial semi-regular RDS in a group G of order p^4 is either $(p^2, p^2, p^2, 1)$ or (p^3, p, p^3, p^2) .

Case: Abelian $(p^2, p^2, p^2, 1)$ RDS's

Result 2.5 (Ma-Pott, [6]) If an abelian group G contains a $(p^2, p^2, p^2, 1)$ RDS with $p \ge 3$ then G is elementary abelian.

A (4,4,4,1) RDS in an abelian group of order 16 exists only when $G \simeq \mathbb{Z}_4 \times \mathbb{Z}_4$, $U \simeq \mathbb{Z}_2 \times \mathbb{Z}_2$ (see [10]) and so abelian groups of order p^4 containing a $(p^2, p^2, p^2, 1)$ RDS are determined.

Case: Abelian (p^3, p, p^3, p^2) RDS's

By Result 1.2 in [2], the only abelian groups of order p^4 that can possibly contain a (p^3, p, p^3, p^2) RDS are $\mathbb{Z}_{p^2} \times \mathbb{Z}_{p^2}, \mathbb{Z}_{p^2} \times \mathbb{Z}_p \times \mathbb{Z}_p$, and $(\mathbb{Z}_p)^4$. If $p \geq 3$ it was shown by Ma and Schmidt [7] that each of these abelian groups contains a (p^3, p, p^3, p^2) RDS relative to any subgroup U except possibly in $\mathbb{Z}_{p^2} \times \mathbb{Z}_{p^2}$ [8].

Question: Does $\mathbb{Z}_{p^2} \times \mathbb{Z}_{p^2}$ contain a (p^3, p, p^3, p^2) RDS, $p \ge 5$?

If $G \simeq \mathbb{Z}_9 \times \mathbb{Z}_9$, there exists no (27, 3, 27, 3) RDS in G as mentioned in [8]. When p = 2, an abelian group G contains an (8, 2, 8, 4) RDS relative to U if and only if its exponent $exp(G) \leq 8$ and U is contained in a cyclic subgroup of G of order 4 (see [7]). We extend these results by considering semi-regular RDS's in non-abelian groups of order p^4 .

Case: G is non-abelian of order p^4

A classification of groups of order p^4 , $p \ge 3$ can be found in Huppert's book (see [5], pp. 346-347) or in Suzuki's book (see [13], pp. 85-100). As

listed in [2], we denote by $G_{(i,p)}$, $1 \leq i \leq 15$ the non-isomorphic groups of order p^4 . The first five are the abelian groups while the remaining denote the non-abelian groups. We note that the number of isomorphism classes of non-abelian groups of order p^4 with $p \geq 5$ is 10 only while that of order 81 is 11 with $G_{(16,3)}$ as an additional group. Refer to [2] for the definitions and properties of these groups.

Let H_1 and H_2 be subsets of a group G. If there exists $\theta \in Aut(G)$ such that $\theta(H_1) = H_2$ then H_1 and H_2 are called *equivalent*. In [2] and [4], we have determined all possible normal subgroups U of order p and p^2 in $G_{(i,p)}$, $i = 6, ..., 15, p \ge 3$ and $G_{(16,3)}$ up to equivalence for the forbidden subgroups and these computations are summarized in Table 1.

Group Type	$ U = p^2$	U = p
$G_{(6,p)}$	$\langle x^p angle, \langle x^{p^2},y angle, \langle x^p y angle$	$\langle x^{p^2} \rangle$
$G_{(7,p)}$	$\langle x^p,y^p angle,\langle x angle$	$\langle x^p angle, \langle y^p angle$
$G_{(8,p)}$	$\langle a_1 x angle, \langle a_1, a_3 angle, \langle x angle$	$\langle x^p angle$
$G_{(9,p)}$	$\langle y,z^p angle$	$\langle z^p \rangle$
$G_{(10,p)}$	$\langle y,z^p angle$	$\langle z^p \rangle$
$G_{(11,p)}$	$\langle a_3,x angle,\langle a_1,a_3 angle$	$\langle a_3 \rangle, \langle x \rangle$
$G_{(12,p)}$	$\langle a_1,a_2 angle$	$\langle a_1 angle$
$G_{(13,p)}$	$\langle a_1,a_2 angle$	$\langle x^p angle$
$G_{(14,p)}$	$\langle x^p,a_3 angle,\langle x angle,\langle x^p,a_2 angle$	$\langle x^p \rangle, \langle a_3 \rangle$
$G_{(15,p)}$	$\langle a_1,a_2 angle,\langle a_2,a_3 angle$	$\langle a_1 angle, \langle a_2 angle, \langle a_1 a_2 angle$
$G_{(16,3)}$	$\langle a_2,a_1^3 angle$	$\langle a_1^3 \rangle$

Table 1: The non-equivalent normal subgroups U of order p and p^2 in $G_{(i,p)}$, $6 \leq i \leq 15, p \geq 3$ and $G_{(16,3)}$.

3 Results on Non-Abelian $(p^2, p^2, p^2, 1)$ RDS's

When p = 2, by simple computations and computer search we have the following:

Theorem 3.1 There exists no (4, 4, 4, 1) RDS in a non-abelian group of order 16 relative to a normal subgroup U except in the following:

(i)
$$G = M_4(2) = \langle x, y | x^8 = y^2 = 1, y^{-1}xy = x^5 \rangle, U = \langle x^4, y \rangle = Z(G),$$

(ii)
$$G = Q_8 \times \mathbb{Z}_2$$
 where $Q_8 = \langle x, y | x^2 = y^2 = m, m^2 = 1, y^{-1}xy = x^{-1} \rangle$
and $\mathbb{Z}_2 = \langle z \rangle, U = \langle x^2, z \rangle = Z(G).$

In (i), the set $R = \{1, x^2y, x^3y, x^5y\}$ is an RDS (K. Akiyama) and in (ii), the set $R = \{1, x^3z, y, xy\}$ is an RDS.

For $p \geq 3$, we now enumerate all our results.

Result 3.2 (Elvira-Hiramine, [4]) There exists no $(p^2, p^2, p^2, 1)$ RDS in the group $G_{(6,p)}$ relative to any normal subgroup of order p^2 .

Result 3.3 ([2]) There exists no $(p^2, p^2, p^2, 1)$ RDS in $G_{(7,p)}$ relative to any normal subgroup.

Result 3.4 ([2]) There exists a $(p^2, p^2, p^2, 1)$ RDS in $G_{(11,p)}$, $p \ge 3$ relative to $\langle a_3, x \rangle$.

An example of an RDS in Result 3.4 is the set

$$R = \{a_1^i a_2^j a_3^{\frac{-ij}{2}} x^{\frac{-i(i-1)}{2} + \frac{j(j-1)}{2}s} \mid i, j \in I_p\}$$

where $s = \alpha^2 \in GF(p), \alpha \in GF(p^2)$. We ask the following:

Question: Do $(p^2, p^2, p^2, 1)$ RDS's exist in $G_{(i,p)}$, $8 \le i \le 15$ with $p \ge 3$ aside from the RDS's in Result 3.4?

4 Results on Non-Abelian (p^3, p, p^3, p^2) RDS's

When p = 2, we have the following:

Result 4.1 (Elvira-Hiramine, [4]) A non-abelian group of order 16 containing a maximal cyclic subgroup of order 8 does not contain an (8,2,8,4)RDS except Q_{16} .

An example in $Q_{16} = \langle x, y | x^4 = y^2 = m, m^2 = 1, y^{-1}xy = x^{-1} \rangle$ relative to $\langle x^4 \rangle = Z(Q_{16})$ is $R = (1 + x^2)(1 + y)(1 + xy)$.

We now consider (p^3, p, p^3, p^2) RDS's in non-abelian groups when $p \ge 3$.

Result 4.2 ([2]) Let G be a group of order p^4 , $p \ge 3$. If G contains noncylic subgroups G_1 and G_2 of order p^3 and p^2 , respectively, satisfying $G = G_1G_2$ and $G_1 \cap G_2 = U \simeq \mathbb{Z}_p \triangleleft G_1$ then G contains a (p^3, p, p^3, p^2) RDS relative to U.

Group Type	U	G_1	$G_2 \simeq \mathbb{Z}_p \times \mathbb{Z}_p$
$G_{(8,p)}$	$\langle x^p \rangle$	$\langle a_2, x angle \simeq \mathbb{Z}_p imes \mathbb{Z}_{p^2}$	$\langle a_1,a_3 angle$
$G_{(9,p)}$	$\langle z^p \rangle$	$\langle y,z angle\simeq \mathbb{Z}_p imes \mathbb{Z}_{p^2}$	$\langle x, z^p angle$
$G_{(10,p)}$	$\langle z^p \rangle$	$\langle y,z angle\simeq \mathbb{Z}_p imes \mathbb{Z}_{p^2}$	$\langle x, z^p angle$
$G_{(11,p)}$	$\langle a_3 \rangle$	$\langle a_1, a_2, a_3 \rangle \simeq P$	$\langle a_3,x angle$
	$\langle x \rangle$	$\langle a_1, a_3, x \rangle \simeq (\mathbb{Z}_p)^3$	$\langle a_2,x angle$
$G_{(12,p)}$	$\langle a_1 \rangle$	$\langle a_1,a_2,x angle\simeq P$	$\langle a_1,a_3 angle$
$G_{(13,p)}$	$\langle x^p \rangle$	$\langle a_2, x angle \simeq M_3(p)$	$\langle a_1,a_3 angle$
$G_{(14,p)}$	$\langle x^p \rangle$	$\langle a_3, x angle \simeq \mathbb{Z}_p imes \mathbb{Z}_{p^2}$	$\langle a_1,a_2 angle$
	$\langle a_3 \rangle$	$\langle a_3, x \rangle \simeq \mathbb{Z}_p imes \mathbb{Z}_{p^2}$	$\langle a_2,a_3 angle$
	$\langle a_1 \rangle$	$\langle a_2, x \rangle \simeq \mathbb{Z}_p imes \mathbb{Z}_{p^2}$	$\langle a_1,a_3 angle$
$G_{(15,p)}$	$\langle a_2 \rangle$	$\langle a_2, x angle \simeq \mathbb{Z}_p imes \mathbb{Z}_{p^2}$	$\langle a_2,a_3 angle$
	$\langle a_1 a_2 \rangle$	$\langle a_1 a_2, x \rangle \simeq \mathbb{Z}_p imes \mathbb{Z}_{p^2}$	$\langle a_1a_2,a_3 angle$

Table 2: Existence of a (p^3, p, p^3, p^2) RDS in $G_{(i,p)}$, $8 \le i \le 15$, $p \ge 3$ relative to a normal subgroup U.

In the groups $G_{(i,p)}$, $8 \le i \le 15$, $p \ge 3$, we can find examples of subgroups G_1 and G_2 satisfying the conditions of Result 4.2. Thus there exist (p^3, p, p^3, p^2) RDS's in these groups relative to the forbidden subgroups Ugiven in Table 1. We summarize these results in Table 2.

Remark 4.3 By using Table 2, we conclude that there exists a (p^3, p, p^3, p^2) RDS in non-abelian groups of order p^4 , $p \ge 3$ except possibly in the following:

- (i) $G_{(6,p)}$ with $U = \langle x^p \rangle$, $p \geq 5$,
- (ii) $G_{(7,p)}$ with $U = \langle x^p \rangle$ or $\langle y^p \rangle$, $p \ge 3$ and
- (iii) $G_{(16,3)}$ with $U = \langle a_1^3 \rangle$.

We note that each group G not covered by Remark 4.3 has $\Omega_1(G) = \{g \in G \mid g^p = 1\} \simeq \mathbb{Z}_p \times \mathbb{Z}_p$. Also, a (27, 3, 27, 9) RDS does not exist in $G_{(6,3)}$ by a computer search done in [4]. We ask the following:

Question: Do (p^3, p, p^3, p^2) RDS's exist in the groups given in Remark 4.3?

If we consider groups G containing a normal subgroup $N \subset U$ such that $G/N \simeq \mathbb{Z}_{p^2} \times \mathbb{Z}_p$. Then by Result 2.2 in [2], we can obtain a simpler form for an RDS R in G. The groups satisfying this condition are:

(1) $G_{(6,p)}, U = \langle x^{p^2}, y \rangle, \langle x^p y \rangle, N = \langle x^{p^2} \rangle$

- (2) $G_{(7,p)}, U = \langle x^p, y^p \rangle, \langle x \rangle, N = \langle x^p \rangle, \text{ and}$
- (3) $G_{(15,p)}, U = \langle a_1, a_2 \rangle, \langle a_2, a_3 \rangle, N = \langle a_2 \rangle.$

At present, only case (3) remains open.

References

- J.A. Davis. Constructions of Relative Difference Sets in p-Groups. Discrete Math. 103 (1992), 7-15.
- [2] D.T. Elvira. On Semi-Regular RDS's in Non-Abelian Groups of Order p^4 . To appear in Kyushu Journal of Math.
- [3] D.T. Elvira and Y. Hiramine. On Non-Abelian Semi-Regular Relative Difference Sets. Finite Fields and Applications: Proceedings of the Fifth International Conference $F_q(5)$, University of Augsburg, Germany, August 2-6, 1999, eds. D. Jungnickel and H. Niederreiter, Springer (2001), 122-127.
- [4] D.T. Elvira and Y. Hiramine. On Semi-Regular Relative Difference Sets in Non-Abelian p-groups. To appear.
- [5] B. Huppert. Endliche Gruppen I. Springer, New York (1967).
- [6] S.L. Ma and A. Pott. Relative Difference Sets, Planar Functions, and Generalized Hadamard Matrices. Journal of Algebra 175 (1995), 505-525.
- [7] S.L. Ma and B. Schmidt. On (p^a, p, p^a, p^{a-1}) Relative Difference Sets. Designs, Codes and Cryptography 6 (1995), 75-71.
- [8] S.L. Ma and B. Schmidt. Relative (p^a, p^b, p^a, p^{a-b}) -Difference Sets: A Unified Exponent Bound and a Local Ring Construction. Finite Fields and Applications 6 (2000) no.1, 1-22.
- [9] A. Pott. On the Structure of Abelian Groups Admitting Divisible Difference Sets. Journal of Combinatorial Theory Ser A 65 (1994), 202-213.
- [10] A. Pott. Finite Geometry and Character Theory. Lecture Note 1601, Springer-Verlag, Berlin (1995).
- [11] A. Pott. A Survey of Relative Difference Sets. Groups, Difference Sets and the Monster. Eds. Arasu K.T., et. al. De Gruyter Verlag, Berlin-New York (1996), 195-233.
- [12] B. Schmidt. On (p^a, p^b, p^a, p^{a-b}) Relative Difference Sets. J. Algebraic Combin. 6 (1997), 279-297.
- [13] M. Suzuki. Group Theory II. Springer-Verlag, New York (1986).

Department of Mathematics Graduate School of Science and Technology Kumamoto University Kurokami, Kumamoto, Japan E-mail: dtelvira@math.sci.kumamoto-u.ac.jp