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1 Introduction
A $k$-element subset $R$ of agroup $G$ of order $mu$ is called an $(m, u, k, \lambda)$

relative difference set (RDS) relative to anormal subgroup $U$ of order $u$ if
the number of ordered pairs $(r_{1}, r_{2})\in R\cross R$ with rirjl $=g$ for every $g\in G$ ,
$g\neq 1$ is Aif $g\in G-U$ and 0if $g\in U$ . The subgroup $U$ is often called
the forbidden subgroup as its non-identity elements cannot be written in the
above form. If $G$ is cyclic, abelian, and so on, its respective property is
attached to the RDS $R$ in $G$ .

In the study of RDS’s, asubset $X$ of agroup $G$ is often identified with
the group ring element $X= \sum_{x\in X}x\in \mathbb{Z}[G]$ and we write $X^{(t)}= \sum_{x\in X}x^{t}$ .
With this notation, $R$ is an $(m, u, k, \lambda)$ RDS if and only if

$RR^{(-1)}=k+\lambda(G-U)$ . (1.1)

If $k=u\lambda$ , $R$ is called semi-regular and by (1.1), its parameters are
$(u\lambda, u, u\lambda, \lambda)$ . Also, in this case, $R$ is acomplete set of coset representa-
tives of $G/U$ . If $u=1$ , $R$ is called atrivial semi-regular RDS. Any group $G$

is itself atrivial semi-regular RDS.
Many extensive studies have been done on relative difference sets, partic-

ularly the semi-regular case, in both abelian and non-abelian groups because
of their close connection to other areas of combinatorics (see [1], [3], [4],
[7], [12] $)$ . Readers may refer to Pott’s book [10] or his survey [11] for more
background information on RDS’s.

Let $R_{1}$ and $R_{2}$ be RDS’s in agroup $G$ relative to normal subgroups $U_{1}$

and $U_{2}$ , respectively. If there exists $\mathit{4}\mathit{1}\in Aut(G)$ , the full automorphism
group of $G$ such that $\theta(R_{1})=R_{2}$ and $\theta(U_{1})=U_{2}$ , then $R_{1}$ and $R_{2}$ are
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said to be equivalent. In our study, we only consider non-trivial and non-

equivalent semi-regular $RDS$ ’s. We also denote aprime number by $p$ and
$I_{p}=\{0,1, \ldots, p-1\}$ .

In this paper, we review the results on semi-regular RDS’s in non-abelian
groups of order $p^{4}$ with $p\geq 3$ and continue our study in [2].

2Results on RDS’s in p-Groups of Order $\underline{<}p^{4}$

A group $G$ of order $p$ can contain only atrivial RDS. If $G$ is of order $p^{2}$

then we have the following result contained in [6].

Result 2.1 Let G be a group of order $p^{2}$ containing a(p,p,p, 1)RDS. Then

(i) $G\simeq \mathbb{Z}\mathrm{p}2$ if and only if $p=2$ , and

(ii) $G\simeq \mathbb{Z}_{p}\cross \mathbb{Z}_{p}$ if and only if $p\geq 3$ .

In (i) above, $R=\{1, x\}$ is a(2, 2, 2, 1) RDS in $\mathbb{Z}_{4}=\langle x\rangle$ relative to $U=\langle x^{2}\rangle$ .
In (ii) with $G=\langle a, b\rangle$ , the set $R=\{a^{i^{2}}b^{i}|i\in I_{p}\}$ is an RDS relative to
$U=\langle a\rangle$ . We note that there is only one equivalence class of RDS’s in (ii) and
all can be transformed into $R$ by an appropriate translate or automorphism
(see [6]). In fact, there exists a $(p^{n},p^{n},p^{n}, 1)$ RDS for every $p\geq 2$ , $n\geq 1$ (see
[10], pp. 46-47).

Anon-trivial RDS in agroup $G$ of order $p^{3}$ has parameters $(p^{2},p, p^{2},p)$ .
If $G$ is abelian then $G=\mathbb{Z}_{p^{2}}\cross \mathbb{Z}_{p}$ or $\mathbb{Z}_{p}\cross \mathbb{Z}_{p}\cross \mathbb{Z}_{p}$ by Result 1.2 in [2].

The group ZP2 $\cross \mathbb{Z}_{p}$ contains non-trivial RDS’s and these are characterized
as follows:

Result 2.2 (Ma-Pott, [6]) Let $R$ be $a(p^{2},p,p^{2},p)RDS$ in $G=\mathbb{Z}_{p^{2}}\cross \mathbb{Z}_{p}$

relative to $U$ with $p\geq 3$ . Let $H_{1}$ , $\ldots$ , $H_{p-1}$ denote $p-1$ subgroups of $G$ with
$|H_{i}|=p_{f}H_{i}\neq U_{f}$ and $G/H_{i}\simeq \mathbb{Z}_{p^{2}}$ . Let $N$ be the subgroup of $G$ with
$N\simeq \mathbb{Z}_{p}\cross \mathbb{Z}\mathrm{p}$ . Then there is a subgroup $H0\neq H_{i}$ for $i\neq 0$ of $N,$ $H_{0}\neq U$ ,

and $p-1$ group elements $h_{i}$ with $\{1, h_{1}, \ldots, h_{p-1}\}_{f}$ a complete set of coset
representatives of $N$ such that $R’=H_{0} \cup\bigcup_{i=1}^{p-1}h_{i}H_{i}$ for some translate $R’$

of R. Conversely, any subset similar to $R’$ is $a(p^{2},p,p^{2},p)RDS$ in $G$ .

The group $G=\mathbb{Z}_{p}\cross \mathbb{Z}_{p}\cross \mathbb{Z}_{p}=\langle x, y, z\rangle$ contains non-trivial RDS’ $\mathrm{s}$ . The
sets $R_{1}=\{x^{i}y^{j}z^{ij}|i,j \in I_{p}\}$ and $R_{2}=\{x^{i}y^{j}z^{i^{2}+j^{2}}|i,j \in I_{p}\}$ are RDS’s in $G$

relative to $U=\langle z\rangle$ . More general constructions on RDS’s in rgroups were
obtained by Davis [1] and Pott [9].

When $G$ is anon-abelian group of order $p^{3}$ , we have
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Result 2.3 (Elvira-Hiramine, [3] and [4]) A non-abelian group G of or-
der $p^{3}$ contains a $(p^{2}, p,p^{2},p)RDS$ relative to a normal subgroup U unless
G $=D_{8}$ , the dihedral group of order 8.

As aconsequence of Results 2.2, 2.3 and the contructions of $\mathrm{R}\mathrm{D}\mathrm{S}$ ’s in the
elementary abelian group, we have:

Remark 2.4 Every non-cyclic group G of order $p^{3}$ with p $\geq 3$ contains $a$

$(p^{2},p, p^{2},$ p)RDS.

Problem: Classify the non-abelian $(p^{2},p,p^{2},p)RDS$ ’s and those in the ele-
mentary abelian group.

The parameters of anon-trivial semi-regular RDS in agroup $G$ of order
$p^{4}$ is either $(p^{2},p^{2},p^{2},1)$ or $(p^{3},p,p^{3},p^{2})$ .

Case: Abelian $(p^{2},p^{2},p^{2},1)RDS$ ’s

Result 2.5 (Ma-Pott, [6]) If an abelian group G contains a $(p^{2},p^{2},p^{2},1)$

RDS with p $\geq 3$ then G is elementary abelian.

A(4, 4, 4, 1) RDS in an abelian group of order 16 exists only when $G\simeq$

$\mathbb{Z}_{4}\cross \mathbb{Z}_{4}$ , $U\simeq \mathbb{Z}_{2}$ $\cross \mathbb{Z}_{2}$ (see [10]) and so abelian groups of order $p^{4}$ containing
a $(p^{2},p^{2},p^{2},1)$ RDS are determined.

Case: Abelian $(p^{3},p, p^{3},p^{2})RDS$ ’s

By Result 1.2 in [2], the only abelian groups of order $p^{4}$ that can possibly
contain a $(p^{3},p,p^{3},p^{2})$ RDS are $\mathbb{Z}_{p^{2}}\cross \mathrm{Z}\mathrm{p}2$ , $\mathbb{Z}_{p^{2}}\cross \mathbb{Z}_{p}\cross \mathbb{Z}_{p}$ , and $(\mathbb{Z}_{p})^{4}$ . If $p\geq 3$ it
was shown by Ma and Schmidt [7] that each of these abelian groups contains
a $(p^{3},p,p^{3},p^{2})$ RDS relative to any subgroup $U$ except possibly in Zp2 $\cross \mathbb{Z}_{p^{2}}$

[8].

Question: Does Zp2 $\cross \mathbb{Z}_{p^{2}}$ contain a $(p^{3},p,p^{3},p^{2})RDS$, p $\geq 5$ ?

If $G\simeq \mathbb{Z}_{9}\cross \mathbb{Z}_{9}$ , there exists no (27, 3, 27, 3) RDS in $G$ as mentioned in
[8]. When $p=2$ , an abelian group $G$ contains an (8, 2, 8, 4) RDS relative
to $U$ if and only if its exponent $exp(G)\leq 8$ and $U$ is contained in acyclic
subgroup of $G$ of order 4(see [7]). We extend these results by considering
semi-regular RDS’s in non-abelian groups of order $p^{4}$ .

Case: $G$ is non-abelian of order $p^{4}$

Aclassification of groups of order $p^{4}$ , $p\geq 3$ can be found in Huppert’s
book (see [5], pp. 346-347) or in Suzuki’s book (see [13], pp. 85-100). As
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listed in [2], we denote by $C_{\tau_{(i,p)}}$ , $1\leq i\leq 15$ the non-isomorphic groups of
order $p^{4}$ . The first five are the abelian groups while the remaining denote
the non-abelian groups. We note that the number of isomorphism classes of
non-abelian groups of order $p^{4}$ with $p\geq 5$ is 10 only while that of order 81
is 11 with $G_{(16,3)}$ as an additional group. Refer to [2] for the definitions and
properties of these groups.

Let $H_{1}$ and $H_{2}$ be subsets of agroup $G$ . If there exists $\mathrm{O}\in Aut(G)$ such
that $\theta(H_{1})=H_{2}$ then $H_{1}$ and $H_{2}$ are called equivalent. In [2] and [4], we
have determined all possible normal subgroups $U$ of order $p$ and $p^{2}$ in $G_{(i,p)}$ ,
$i=6$ , $\ldots$ , 15, $p\geq 3$ and $G_{(16,3)}$ up to equivalence for the forbidden subgroups
and these computations are summarized in Table 1.

Table 1: The non-equivalent normal subgroups $U$ of order $p$ and $p^{2}$ in $C\tau(i,p)$ ,
$6\leq i\leq 15$ , $p\geq 3$ and $G_{(16,3)}$ .

3Results on Non-Abelian $(p^{2},p^{2},p^{\underline{9}},$1) RDS’s

When $p=2$ , by simple computations and computer search we have the
following:

Theorem 3.1 There exists no (4, 4, 4, 1) RDS in a non-abelian group of or-
der 16 relative to a normal subgroup U except in the following:

(i) $G=M_{4}(2)=\langle x, y|x^{8}=y^{2}=1, y^{-1}xy=x^{5}\rangle$ , $U=\langle x^{4}, y\rangle=Z(G)$ ,
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(ii) G $=Q_{8}\cross \mathbb{Z}_{2}$ where $Q_{8}=\langle x, y|x^{2}=y^{2}=m, m^{2}=1, y^{-1}xy=x^{-1}\rangle$

and $\mathbb{Z}_{2}=\langle z\rangle$ , U $=\langle x^{2}, z\rangle=Z(G)$ .

In (i), the set $R=\{1, x^{2}y, x^{3}y, x^{5}y\}$ is an RDS (K. Akiyama) and in (ii), the
set $R=\{1, x^{3}z, y, xy\}$ is an RDS.

For $p\geq 3$ , we now enumerate all our results.

Result 3.2 (Elvira-Hiramine, [4]) There exists no $(p^{2},p^{2},p^{2},1)RDS$ in
the group $G_{(6,p)}$ relative to any normal subgroup of order $p^{2}$ .

Result 3.3 ([2]) There exists no $(p^{2},p^{2},p^{2},1)RDS$ in $\mathrm{G}(\mathrm{e},\mathrm{P})$ relative to any
normal subgroup.

Result 3.4 ([2]) There exists a $(p^{2},p^{2},p^{2},1)RDS$ in $G_{(11,p)_{l}}$ p $\geq 3$ relative
to $\langle a_{3},$x\rangle .

An example of an RDS in Result 3.4 is the set

$R=\{a_{1}^{i}a_{2}^{j}a_{3^{\overline{2}}}^{-\mathit{1}}.x^{\frac{-i(i-1)}{2}+_{2}^{\Delta\llcorner}}-\lrcorner 1S|i, j\in I_{p}\}$

where $s=\alpha^{2}\in GF(p)$ , $\alpha\in GF(p^{2})$ . We ask the following:

Question: Do $(p^{2},p^{2},p^{2},1)RDS$ ’s exist in $G(i,p))8\leq i\leq 15$ with p $\geq 3$

aside from the RDS ’s in Result 3.4?

4Results on Non-Abelian $(p^{3},p,p^{3},p^{2})$ RDS’s
When $p=2$ , we have the following:

Result 4.1 (Elvira-Hiramine, [4]) A non-abelian group of order 16 con-
taining a maximal cyclic subgroup of order 8does not contain an (8, 2, 8, 4)
$RDS$ except $Q_{16}$ .

An example in Qi6 $=\langle x, y|x^{4}=y^{2}=m, m^{2}=1, y^{-1}xy=x^{-1}\rangle$ relative
to $\langle x^{4}\rangle=\mathrm{Z}(\mathrm{Q}\mathrm{i}\mathrm{e})$ is $R=(1+x^{2})(1+\mathrm{y})(1+xy)$ .

We now consider $(p^{3},p,p^{3},p^{2})$ RDS’s in non-abelian groups when $p\geq 3$ .

Result 4.2 ([2]) Let $G$ be a group of order $p^{4},$ $p\geq 3$ . If $G$ contains non-
cylic subgroups $G_{1}$ and $G_{2}$ of order $p^{3}$ and $p^{2}$ , respectively, satisfying $G=$

$G_{1}G_{2}$ and $G_{1}\cap G_{2}=U\simeq \mathbb{Z}_{p}\triangleleft G_{1}$ then $G$ contains $a(p^{3},p,p^{3},p^{2})RDS$

relative to $U$ .
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Group Type $U$ $G_{1}$ $G_{2}\simeq \mathbb{Z}_{p}\cross \mathbb{Z}_{p}$

$G_{(8,p)}$ $\langle x^{p}\rangle$ $\langle a_{2}, x\rangle\simeq \mathbb{Z}_{p}\cross \mathbb{Z}_{p^{2}}$ $\langle a_{1}, a_{3}\rangle$

$\langle z^{p}\rangle$ $\langle y, z\rangle\simeq \mathbb{Z}_{p}\cross \mathbb{Z}_{p^{2}}$ $\langle x, z^{p}\rangle$

.

$\langle z^{p}\rangle$ $\langle y, z\rangle\simeq \mathbb{Z}_{p}\cross \mathbb{Z}_{p^{2}}$ $\langle x, z^{p}\rangle$

.

$\langle a_{3}\rangle$ $\langle a_{1}, a_{2}, a_{3}\rangle\simeq P$ $\langle a_{3}, x\rangle$

$\langle x\rangle$ $\langle$

$a_{1}$ , a3, $x\rangle$ $\simeq(\mathbb{Z}_{p})$ $\langle a_{2}, x\rangle$

$G_{(12,p)}$ $\langle a_{1}\rangle$ $\langle a_{1}, a_{2}, x\rangle\simeq P$ $\langle a_{1}, a_{3}\rangle$

. .

$\langle x^{p}\rangle$ $\langle a_{2}, x\rangle\simeq M_{3}(p)$ $\langle a_{1}, a_{3}\rangle$

. .

$\langle x^{p}\rangle$ $\langle a_{3}, x\rangle\simeq \mathbb{Z}_{p}\cross \mathbb{Z}_{p^{2}}$ $\langle a_{1}, a_{2}\rangle$

$\langle a_{3}\rangle$ $\langle a_{3}, x\rangle\simeq \mathbb{Z}_{\mathrm{p}}\cross \mathbb{Z}_{p^{2}}$
$\langle a_{2}, a_{3}\rangle$

$G_{(15,p)}$

$\langle a_{1}\rangle$ $\langle a_{2}, x\rangle\simeq \mathbb{Z}_{p}\cross \mathbb{Z}_{p^{2}}$ $\langle a_{1}, a_{3}\rangle$

$\langle a_{2}\rangle$ $\langle a_{2}, x\rangle\simeq \mathbb{Z}_{p}\cross \mathbb{Z}_{p^{2}}$ $\langle a_{2}, a_{3}\rangle$

. .
$\langle a_{1}a_{2}\rangle$ $\langle a_{1}a_{2}, x\rangle\simeq \mathbb{Z}_{p}\cross \mathbb{Z}_{p^{2}}$ $\langle a_{1}a_{2}, a_{3}\rangle$

Table 2: Existence of $a(p^{3},p,p^{3},p^{2})RDS$ in $G_{(i,p)}$ , $8\leq i\leq 15$ , $p\geq 3$ relative
to a normal subgroup $U$ .

In the groups $\mathrm{G}(\mathrm{z},\mathrm{p})$ , $8\leq i\leq 15$ , $p\geq 3$ , we can find examples of sub-
groups $G_{1}$ and $G_{2}$ satisfying the conditions of Result 4.2. Thus there exist
$(p^{3},p,p^{3},p^{2})$ RDS’s in these groups relative to the forbidden subgroups $U$

given in Table 1. We summarize these results in Table 2.

Remark 4.3 By using Table 2, we conclude that there exists a $(p^{3},p,p^{3},p^{2})$

RDS in non-abelian groups of order $p^{4}$ , p $\geq 3$ except possibly in the following:

(i) $\mathrm{G}(6,\mathrm{p})$ with $U=\langle x^{p}\rangle$ , $p\geq 5$ ,

(i) $G(7,p)$ with $U=(\mathrm{x})$ or $\langle y^{p}\rangle fp\geq 3$ and

(i) $G_{(16,3)}$ with $U=\langle a_{1}^{3}\rangle$ .

We note that each group $G$ not covered by Remark 4.3 has $\Omega_{1}(G)=\{g\in$

$G|g^{p}=1\}\simeq \mathbb{Z}_{p}\cross \mathbb{Z}\mathrm{p}$. Also, a(27, 3, 27, 9) RDS does not exist in $G_{(6,3)}$ by
acomputer search done in [4]. We ask the following:

Question: Do $(p^{3},p,p^{3},p^{2})RDS$ ’s exist in the groups given in Remark 4.32

If we consider groups $G$ containing anormal subgroup $N\subset U$ such that
$G/N\simeq \mathbb{Z}_{p^{2}}\cross \mathbb{Z}_{p}$ . Then by Result 2.2 in [2], we can obtain asimpler form
for an RDS $R$ in $G$ . The groups satisfying this condition are:

(1) $G_{(6,p)}$ , $U=\langle x^{p^{2}}, y\rangle$ , $\langle x^{p}y\rangle$ , $N=\langle x^{p^{2}}\rangle$
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(2) $G_{(7,p)}$ , $U=\langle x^{p}, y^{p}\rangle$ , $\langle x\rangle$ , $N=\langle x^{p}\rangle$ , and

(3) $G_{(15,p)}$ , $U=\langle a_{1}, a_{2}\rangle$ , $\langle$ a2: $a_{3}\rangle$ , $N=(2)$ .

At present, only case (3) remains open.
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