On Relative Difference Sets In Non－Abelian Groups of Order p^{4}

Dominic T．Elvira＊

1 Introduction

A k－element subset R of a group G of order $m u$ is called an（ m, u, k, λ ） relative difference set（RDS）relative to a normal subgroup U of order u if the number of ordered pairs $\left(r_{1}, r_{2}\right) \in R \times R$ with $r_{1} r_{2}^{-1}=g$ for every $g \in G$ ， $g \neq 1$ is λ if $g \in G-U$ and 0 if $g \in U$ ．The subgroup U is often called the forbidden subgroup as its non－identity elements cannot be written in the above form．If G is cyclic，abelian，and so on，its respective property is attached to the RDS R in G ．

In the study of RDS＇s，a subset X of a group G is often identified with the group ring element $X=\sum_{x \in X} x \in \mathbb{Z}[G]$ and we write $X^{(t)}=\sum_{x \in X} x^{t}$ ． With this notation，R is an（ m, u, k, λ ）RDS if and only if

$$
\begin{equation*}
R R^{(-1)}=k+\lambda(G-U) \tag{1.1}
\end{equation*}
$$

If $k=u \lambda, R$ is called semi－regular and by（1．1），its parameters are $(u \lambda, u, u \lambda, \lambda)$ ．Also，in this case，R is a complete set of coset representa－ tives of G / U ．If $u=1, R$ is called a trivial semi－regular RDS．Any group G is itself a trivial semi－regular RDS．

Many extensive studies have been done on relative difference sets，partic－ ularly the semi－regular case，in both abelian and non－abelian groups because of their close connection to other areas of combinatorics（see［1］，［3］，［4］， ［7］，［12］）．Readers may refer to Pott＇s book［10］or his survey［11］for more background information on RDS＇s．

Let R_{1} and R_{2} be RDS＇s in a group G relative to normal subgroups U_{1} and U_{2} ，respectively．If there exists $\theta \in \operatorname{Aut}(G)$ ，the full automorphism group of G such that $\theta\left(R_{1}\right)=R_{2}$ and $\theta\left(U_{1}\right)=U_{2}$ ，then R_{1} and R_{2} are

[^0]said to be equivalent. In our study, we only consider non-trivial and nonequivalent semi-regular RDS's. We also denote a prime number by p and $I_{p}=\{0,1, \ldots, p-1\}$.

In this paper, we review the results on semi-regular RDS's in non-abelian groups of order p^{4} with $p \geq 3$ and continue our study in [2].

2 Results on RDS's in p-Groups of Order $\leq p^{4}$

A group G of order p can contain only a trivial RDS. If G is of order p^{2} then we have the following result contained in [6].

Result 2.1 Let G be a group of order p^{2} containing a $(p, p, p, 1) R D S$. Then
(i) $G \simeq \mathbb{Z}_{p^{2}}$ if and only if $p=2$, and
(ii) $G \simeq \mathbb{Z}_{p} \times \mathbb{Z}_{p}$ if and only if $p \geq 3$.

In (i) above, $R=\{1, x\}$ is a $(2,2,2,1) \operatorname{RDS}$ in $\mathbb{Z}_{4}=\langle x\rangle$ relative to $U=\left\langle x^{2}\right\rangle$. In (ii) with $G=\langle a, b\rangle$, the set $R=\left\{a^{i^{2}} b^{i} \mid i \in I_{p}\right\}$ is an RDS relative to $U=\langle a\rangle$. We note that there is only one equivalence class of RDS's in (ii) and all can be transformed into R by an appropriate translate or automorphism (see [6]). In fact, there exists a ($p^{n}, p^{n}, p^{n}, 1$) RDS for every $p \geq 2, n \geq 1$ (see [10], pp. 46-47).

A non-trivial RDS in a group G of order p^{3} has parameters $\left(p^{2}, p, p^{2}, p\right)$. If G is abelian then $G=\mathbb{Z}_{p^{2}} \times \mathbb{Z}_{p}$ or $\mathbb{Z}_{p} \times \mathbb{Z}_{p} \times \mathbb{Z}_{p}$ by Result 1.2 in [2]. The group $\mathbb{Z}_{p^{2}} \times \mathbb{Z}_{p}$ contains non-trivial RDS's and these are characterized as follows:

Result 2.2 (Ma-Pott, [6]) Let R be a ($\left.p^{2}, p, p^{2}, p\right) R D S$ in $G=\mathbb{Z}_{p^{2}} \times \mathbb{Z}_{p}$ relative to U with $p \geq 3$. Let H_{1}, \ldots, H_{p-1} denote $p-1$ subgroups of G with $\left|H_{i}\right|=p, H_{i} \neq U$, and $G / H_{i} \simeq \mathbb{Z}_{p^{2}}$. Let N be the subgroup of G with $N \simeq \mathbb{Z}_{p} \times \mathbb{Z}_{p}$. Then there is a subgroup $H_{0} \neq H_{i}$ for $i \neq 0$ of $N, H_{0} \neq U$, and $p-1$ group elements h_{i} with $\left\{1, h_{1}, \ldots, h_{p-1}\right\}$, a complete set of coset representatives of N such that $R^{\prime}=H_{0} \cup \cup_{i=1}^{p-1} h_{i} H_{i}$ for some translate R^{\prime} of R. Conversely, any subset similar to R^{\prime} is a $\left(p^{2}, p, p^{2}, p\right) R D S$ in G.

The group $G=\mathbb{Z}_{p} \times \mathbb{Z}_{p} \times \mathbb{Z}_{p}=\langle x, y, z\rangle$ contains non-trivial RDS's. The sets $R_{1}=\left\{x^{i} y^{j} z^{i j} \mid i, j \in I_{p}\right\}$ and $R_{2}=\left\{x^{i} y^{j} z^{i^{2}+j^{2}} \mid i, j \in I_{p}\right\}$ are RDS's in G relative to $U=\langle z\rangle$. More general constructions on RDS's in p-groups were obtained by Davis [1] and Pott [9].

When G is a non-abelian group of order p^{3}, we have:

Result 2.3 (Elvira-Hiramine, [3] and [4]) A non-abelian group G of order p^{3} contains a $\left(p^{2}, p, p^{2}, p\right) R D S$ relative to a normal subgroup U unless $G=D_{8}$, the dihedral group of order 8 .

As a consequence of Results 2.2, 2.3 and the contructions of RDS's in the elementary abelian group, we have:

Remark 2.4 Every non-cyclic group G of order p^{3} with $p \geq 3$ contains a $\left(p^{2}, p, p^{2}, p\right) R D S$.

Problem: Classify the non-abelian $\left(p^{2}, p, p^{2}, p\right) R D S$'s and those in the elementary abelian group.

The parameters of a non-trivial semi-regular RDS in a group G of order p^{4} is either $\left(p^{2}, p^{2}, p^{2}, 1\right)$ or $\left(p^{3}, p, p^{3}, p^{2}\right)$.

Case: Abelian $\left(p^{2}, p^{2}, p^{2}, 1\right) R D S ' s$
Result 2.5 (Ma-Pott, [6]) If an abelian group G contains a ($p^{2}, p^{2}, p^{2}, 1$) $R D S$ with $p \geq 3$ then G is elementary abelian.

A $(4,4,4,1)$ RDS in an abelian group of order 16 exists only when $G \simeq$ $\mathbb{Z}_{4} \times \mathbb{Z}_{4}, U \simeq \mathbb{Z}_{2} \times \mathbb{Z}_{2}$ (see [10]) and so abelian groups of order p^{4} containing a ($p^{2}, p^{2}, p^{2}, 1$) RDS are determined.

Case: Abelian (p^{3}, p, p^{3}, p^{2}) RDS's
By Result 1.2 in [2], the only abelian groups of order p^{4} that can possibly contain a $\left(p^{3}, p, p^{3}, p^{2}\right)$ RDS are $\mathbb{Z}_{p^{2}} \times \mathbb{Z}_{p^{2}}, \mathbb{Z}_{p^{2}} \times \mathbb{Z}_{p} \times \mathbb{Z}_{p}$, and $\left(\mathbb{Z}_{p}\right)^{4}$. If $p \geq 3$ it was shown by Ma and Schmidt [7] that each of these abelian groups contains a $\left(p^{3}, p, p^{3}, p^{2}\right)$ RDS relative to any subgroup U except possibly in $\mathbb{Z}_{p^{2}} \times \mathbb{Z}_{p^{2}}$ [8].

Question: Does $\mathbb{Z}_{p^{2}} \times \mathbb{Z}_{p^{2}}$ contain $a\left(p^{3}, p, p^{3}, p^{2}\right) R D S, p \geq 5$?
If $G \simeq \mathbb{Z}_{9} \times \mathbb{Z}_{9}$, there exists no ($27,3,27,3$) RDS in G as mentioned in [8]. When $p=2$, an abelian group G contains an $(8,2,8,4)$ RDS relative to U if and only if its exponent $\exp (G) \leq 8$ and U is contained in a cyclic subgroup of G of order 4 (see [7]). We extend these results by considering semi-regular RDS's in non-abelian groups of order p^{4}.

Case: G is non-abelian of order p^{4}
A classification of groups of order $p^{4}, p \geq 3$ can be found in Huppert's book (see [5], pp. 346-347) or in Suzuki's book (see [13], pp. 85-100). As
listed in [2], we denote by $G_{(i, p)}, 1 \leq i \leq 15$ the non-isomorphic groups of order p^{4}. The first five are the abelian groups while the remaining denote the non-abelian groups. We note that the number of isomorphism classes of non-abelian groups of order p^{4} with $p \geq 5$ is 10 only while that of order 81 is 11 with $G_{(16,3)}$ as an additional group. Refer to [2] for the definitions and properties of these groups.

Let H_{1} and H_{2} be subsets of a group G. If there exists $\theta \in \operatorname{Aut}(G)$ such that $\theta\left(H_{1}\right)=H_{2}$ then H_{1} and H_{2} are called equivalent. In [2] and [4], we have determined all possible normal subgroups U of order p and p^{2} in $G_{(i, p)}$, $i=6, \ldots, 15, p \geq 3$ and $G_{(16,3)}$ up to equivalence for the forbidden subgroups and these computations are summarized in Table 1.

Group Type	$\|U\|=p^{2}$	$\|U\|=p$
$G_{(6, p)}$	$\left\langle x^{p}\right\rangle,\left\langle x^{p^{2}}, y\right\rangle,\left\langle x^{p} y\right\rangle$	$\left\langle x^{p^{2}}\right\rangle$
$G_{(7, p)}$	$\left\langle x^{p}, y^{p}\right\rangle,\langle x\rangle$	$\left\langle x^{p}\right\rangle,\left\langle y^{p}\right\rangle$
$G_{(8, p)}$	$\left\langle a_{1} x\right\rangle,\left\langle a_{1}, a_{3}\right\rangle,\langle x\rangle$	$\left\langle x^{p}\right\rangle$
$G_{(9, p)}$	$\left\langle y, z^{p}\right\rangle$	$\left\langle z^{p}\right\rangle$
$G_{(10, p)}$	$\left\langle y, z^{p}\right\rangle$	$\left\langle z^{p}\right\rangle$
$G_{(11, p)}$	$\left\langle a_{3}, x\right\rangle,\left\langle a_{1}, a_{3}\right\rangle$	$\left\langle a_{3}\right\rangle,\langle x\rangle$
$G_{(12, p)}$	$\left\langle a_{1}, a_{2}\right\rangle$	$\left\langle a_{1}\right\rangle$
$G_{(13, p)}$	$\left\langle a_{1}, a_{2}\right\rangle$	$\left\langle x^{p}\right\rangle$
$G_{(14, p)}$	$\left\langle x^{p}, a_{3}\right\rangle,\langle x\rangle,\left\langle x^{p}, a_{2}\right\rangle$	$\left\langle x^{p}\right\rangle,\left\langle a_{3}\right\rangle$
$G_{(15, p)}$	$\left\langle a_{1}, a_{2}\right\rangle,\left\langle a_{2}, a_{3}\right\rangle$	$\left\langle a_{1}\right\rangle,\left\langle a_{2}\right\rangle,\left\langle a_{1} a_{2}\right\rangle$
$G_{(16,3)}$	$\left\langle a_{2}, a_{1}^{3}\right\rangle$	$\left\langle a_{1}^{3}\right\rangle$

Table 1: The non-equivalent normal subgroups U of order p and p^{2} in $G_{(i, p)}$, $6 \leq i \leq 15, p \geq 3$ and $G_{(16,3)}$.

3 Results on Non-Abelian $\left(p^{2}, p^{2}, p^{2}, 1\right)$ RDS's

When $p=2$, by simple computations and computer search we have the following:

Theorem 3.1 There exists no $(4,4,4,1)$ RDS in a non-abelian group of order 16 relative to a normal subgroup U except in the following:
(i) $G=M_{4}(2)=\left\langle x, y \mid x^{8}=y^{2}=1, y^{-1} x y=x^{5}\right\rangle, U=\left\langle x^{4}, y\right\rangle=Z(G)$,
(ii) $G=Q_{8} \times \mathbb{Z}_{2}$ where $Q_{8}=\left\langle x, y \mid x^{2}=y^{2}=m, m^{2}=1, y^{-1} x y=x^{-1}\right\rangle$ and $\mathbb{Z}_{2}=\langle z\rangle, U=\left\langle x^{2}, z\right\rangle=Z(G)$.

In (i), the set $R=\left\{1, x^{2} y, x^{3} y, x^{5} y\right\}$ is an RDS (K. Akiyama) and in (ii), the set $R=\left\{1, x^{3} z, y, x y\right\}$ is an RDS.

For $p \geq 3$, we now enumerate all our results.
Result 3.2 (Elvira-Hiramine, [4]) There exists no ($p^{2}, p^{2}, p^{2}, 1$) RDS in the group $G_{(6, p)}$ relative to any normal subgroup of order p^{2}.

Result 3.3 ([2]) There exists no $\left(p^{2}, p^{2}, p^{2}, 1\right) R D S$ in $G_{(7, p)}$ relative to any normal subgroup.

Result 3.4 ([2]) There exists a $\left(p^{2}, p^{2}, p^{2}, 1\right) R D S$ in $G_{(11, p)}, p \geq 3$ relative to $\left\langle a_{3}, x\right\rangle$.

An example of an RDS in Result 3.4 is the set

$$
R=\left\{\left.a_{1}^{i} a_{2}^{j} a_{3}^{\frac{-i j}{2}} x^{\frac{-i(i-1)}{2}+\frac{j(j-1)}{2} s} \right\rvert\, i, j \in I_{p}\right\}
$$

where $s=\alpha^{2} \in G F(p), \alpha \in G F\left(p^{2}\right)$. We ask the following:
Question: Do $\left(p^{2}, p^{2}, p^{2}, 1\right) R D S$'s exist in $G_{(i, p)}, 8 \leq i \leq 15$ with $p \geq 3$ aside from the RDS's in Result 3.4?

4 Results on Non-Abelian $\left(p^{3}, p, p^{3}, p^{2}\right)$ RDS's

When $p=2$, we have the following:
Result 4.1 (Elvira-Hiramine, [4]) A non-abelian group of order 16 containing a maximal cyclic subgroup of order 8 does not contain an ($8,2,8,4$) $R D S$ except Q_{16}.

An example in $Q_{16}=\left\langle x, y \mid x^{4}=y^{2}=m, m^{2}=1, y^{-1} x y=x^{-1}\right\rangle$ relative to $\left\langle x^{4}\right\rangle=Z\left(Q_{16}\right)$ is $R=\left(1+x^{2}\right)(1+y)(1+x y)$.

We now consider (p^{3}, p, p^{3}, p^{2}) RDS's in non-abelian groups when $p \geq 3$.
Result 4.2 ([2]) Let G be a group of order $p^{4}, p \geq 3$. If G contains noncylic subgroups G_{1} and G_{2} of order p^{3} and p^{2}, respectively, satisfying $G=$ $G_{1} G_{2}$ and $G_{1} \cap G_{2}=U \simeq \mathbb{Z}_{p} \triangleleft G_{1}$ then G contains a $\left(p^{3}, p, p^{3}, p^{2}\right) R D S$ relative to U.

Group Type	U	G_{1}	$G_{2} \simeq \mathbb{Z}_{p} \times \mathbb{Z}_{p}$
$G_{(8, p)}$	$\left\langle x^{p}\right\rangle$	$\left\langle a_{2}, x\right\rangle \simeq \mathbb{Z}_{p} \times \mathbb{Z}_{p^{2}}$	$\left\langle a_{1}, a_{3}\right\rangle$
$G_{(9, p)}$	$\left\langle z^{p}\right\rangle$	$\langle y, z\rangle \simeq \mathbb{Z}_{p} \times \mathbb{Z}_{p^{2}}$	$\left\langle x, z^{p}\right\rangle$
$G_{(10, p)}$	$\left\langle z^{p}\right\rangle$	$\langle y, z\rangle \simeq \mathbb{Z}_{p} \times \mathbb{Z}_{p^{2}}$	$\left\langle x, z^{p}\right\rangle$
$G_{(11, p)}$	$\left\langle a_{3}\right\rangle$	$\left\langle a_{1}, a_{2}, a_{3}\right\rangle \simeq P$	$\left\langle a_{3}, x\right\rangle$
	$\langle x\rangle$	$\left\langle a_{1}, a_{3}, x\right\rangle \simeq\left(\mathbb{Z}_{p}\right)^{3}$	$\left\langle a_{2}, x\right\rangle$
$G_{(12, p)}$	$\left\langle a_{1}\right\rangle$	$\left\langle a_{1}, a_{2}, x\right\rangle \simeq P$	$\left\langle a_{1}, a_{3}\right\rangle$
$G_{(13, p)}$	$\left\langle x^{p}\right\rangle$	$\left\langle a_{2}, x\right\rangle \simeq M_{3}(p)$	$\left\langle a_{1}, a_{3}\right\rangle$
$G_{(14, p)}$	$\left\langle x^{p}\right\rangle$	$\left\langle a_{3}, x\right\rangle \simeq \mathbb{Z}_{p} \times \mathbb{Z}_{p^{2}}$	$\left\langle a_{1}, a_{2}\right\rangle$
	$\left\langle a_{3}\right\rangle$	$\left\langle a_{3}, x\right\rangle \simeq \mathbb{Z}_{p} \times \mathbb{Z}_{p^{2}}$	$\left\langle a_{2}, a_{3}\right\rangle$
$G_{(15, p)}$	$\left\langle a_{1}\right\rangle$	$\left\langle a_{2}, x\right\rangle \simeq \mathbb{Z}_{p} \times \mathbb{Z}_{p^{2}}$	$\left\langle a_{1}, a_{3}\right\rangle$
	$\left\langle a_{2}\right\rangle$	$\left\langle a_{2}, x\right\rangle \simeq \mathbb{Z}_{p} \times \mathbb{Z}_{p^{2}}$	$\left\langle a_{2}, a_{3}\right\rangle$
	$\left\langle a_{1} a_{2}\right\rangle$	$\left\langle a_{1} a_{2}, x\right\rangle \simeq \mathbb{Z}_{p} \times \mathbb{Z}_{p^{2}}$	$\left\langle a_{1} a_{2}, a_{3}\right\rangle$

Table 2: Existence of $a\left(p^{3}, p, p^{3}, p^{2}\right) R D S$ in $G_{(i, p)}, 8 \leq i \leq 15, p \geq 3$ relative to a normal subgroup U.

In the groups $G_{(i, p)}, 8 \leq i \leq 15, p \geq 3$, we can find examples of subgroups G_{1} and G_{2} satisfying the conditions of Result 4.2. Thus there exist (p^{3}, p, p^{3}, p^{2}) RDS's in these groups relative to the forbidden subgroups U given in Table 1. We summarize these results in Table 2.

Remark 4.3 By using Table 2, we conclude that there exists a (p^{3}, p, p^{3}, p^{2}) $R D S$ in non-abelian groups of order $p^{4}, p \geq 3$ except possibly in the following:
(i) $G_{(6, p)}$ with $U=\left\langle x^{p}\right\rangle, p \geq 5$,
(ii) $G_{(7, p)}$ with $U=\left\langle x^{p}\right\rangle$ or $\left\langle y^{p}\right\rangle, p \geq 3$ and
(iii) $G_{(16,3)}$ with $U=\left\langle a_{1}^{3}\right\rangle$.

We note that each group G not covered by Remark 4.3 has $\Omega_{1}(G)=\{g \in$ $\left.G \mid g^{p}=1\right\} \simeq \mathbb{Z}_{p} \times \mathbb{Z}_{p}$. Also, a $(27,3,27,9)$ RDS does not exist in $G_{(6,3)}$ by a computer search done in [4]. We ask the following:
Question: Do $\left(p^{3}, p, p^{3}, p^{2}\right) R D S$'s exist in the groups given in Remark 4.3?
If we consider groups G containing a normal subgroup $N \subset U$ such that $G / N \simeq \mathbb{Z}_{p^{2}} \times \mathbb{Z}_{p}$. Then by Result 2.2 in [2], we can obtain a simpler form for an RDS R in G. The groups satisfying this condition are:
(1) $G_{(6, p)}, U=\left\langle x^{p^{2}}, y\right\rangle,\left\langle x^{p} y\right\rangle, N=\left\langle x^{p^{2}}\right\rangle$
(2) $G_{(7, p)}, U=\left\langle x^{p}, y^{p}\right\rangle,\langle x\rangle, N=\left\langle x^{p}\right\rangle$, and
(3) $G_{(15, p)}, U=\left\langle a_{1}, a_{2}\right\rangle,\left\langle a_{2}, a_{3}\right\rangle, N=\left\langle a_{2}\right\rangle$.

At present, only case (3) remains open.

References

[1] J.A. Davis. Constructions of Relative Difference Sets in p-Groups. Discrete Math. 103 (1992), 7-15.
[2] D.T. Elvira. On Semi-Regular RDS's in Non-Abelian Groups of Order p^{4}. To appear in Kyushu Journal of Math.
[3] D.T. Elvira and Y. Hiramine. On Non-Abelian Semi-Regular Relative Difference Sets. Finite Fields and Applications: Proceedings of the Fifth International Conference $F_{q}(5)$, University of Augsburg, Germany, August 2-6, 1999, eds. D. Jungnickel and H. Niederreiter, Springer (2001), 122-127.
[4] D.T. Elvira and Y. Hiramine. On Semi-Regular Relative Difference Sets in NonAbelian p-groups. To appear.
[5] B. Huppert. Endliche Gruppen I. Springer, New York (1967).
[6] S.L. Ma and A. Pott. Relative Difference Sets, Planar Functions, and Generalized Hadamard Matrices. Journal of Algebra 175 (1995), 505-525.
[7] S.L. Ma and B. Schmidt. On (p^{a}, p, p^{a}, p^{a-1}) Relative Difference Sets. Designs, Codes and Cryptography 6 (1995), 75-71.
[8] S.L. Ma and B. Schmidt. Relative $\left(p^{a}, p^{b}, p^{a}, p^{a-b}\right)$-Difference Sets: A Unified Exponent Bound and a Local Ring Construction. Finite Fields and Applications 6 (2000) no.1, 1-22.
[9] A. Pott. On the Structure of Abelian Groups Admitting Divisible Difference Sets. Journal of Combinatorial Theory Ser A 65 (1994), 202-213.
[10] A. Pott. Finite Geometry and Character Theory. Lecture Note 1601, Springer-Verlag, Berlin (1995).
[11] A. Pott. A Survey of Relative Difference Sets. Groups, Difference Sets and the Monster. Eds. Arasu K.T., et. al. De Gruyter Verlag, Berlin-New York (1996), 195-233.
[12] B. Schmidt. On ($p^{a}, p^{b}, p^{a}, p^{a-b}$) Relative Difference Sets. J. Algebraic Combin. 6 (1997), 279-297.
[13] M. Suzuki. Group Theory II. Springer-Verlag, New York (1986).

> Department of Mathematics
> Graduate School of Science and Technology
> Kumamoto University
> Kurokami, Kumamoto, Japan
> E-mail: dtelvira@math.sci.kumamoto-u.ac.jp

[^0]: ＊The author is a faculty member of Philippine Normal University（PNU），Manila on study leave at Kumamoto University under a Monbusho grant．

