
Shadows of Odd Unimodular Lattices

Boris Venkov
St. Petersburg Branch of Steklov Mathematical Institute

and
Kyushu University

This is an exposition of our recent joint paper with G. Nebe: G. Nebe and
B. Venkov, “Unimodular lattices with long shadow.” The paper is submitted
to Journal of Number Theory. Full text can be found on the web page of
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After Elkies and Gaulter, we study odd unimodular lattice $\Lambda$ in $\mathrm{R}^{n}$ , whose
all characteristic vectors $\gamma$ have big norm $(\gamma, \gamma)\geq n-16$ , where $n=\dim\Lambda$ .
We say that such alattice is an $(n-16)$-lattice. By shadow theory, this
condition is equivalent to the fact that the theta series of $\Lambda$ , which is a
polynomial in two standard generators $\theta_{3}$ and $\triangle_{8}$ , is in fact asum of three
monomials

$\theta_{\Lambda}=\theta_{3}^{n}+A\theta_{3}^{n-8}\triangle_{8}+B\theta_{3}\triangle_{8}^{2}$

with two constants $A$ and $B$ . If $\Lambda$ has no elements of norm 1, then $A=-2n$ .
If moreover $\min\Lambda\geq 3$ , i.e. $\Lambda$ contains no roots, then $B$ is also fixed as
afunction of $n$ . That fixes $\theta_{\Lambda}$ and gives, for example, for the number of
elements of norm 3and 4

$n_{3}= \frac{4}{3}n(n^{2}-69n+1208)$ ,

$n_{4}=2n(n^{3}-94n^{2}+2783n - 24425)$ .

Our main result is that such $(n-16)$-lattices without roots can exist only
for $n\leq 46$ . (Previous bound by Gaulter [Gau] for $(n-16)$-lattices, possibly
with roots, was $n\leq 290\overline{l}$ ). Our bound $n=46$ is achieved, because the
lattice $\Lambda_{0}=O_{23}\oplus O_{23}$ , where $O_{23}$ is the shorter Leech lattice, satisfies our
conditions
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We also prove the uniqueness of $\Lambda_{0}$ for $n=46$ , and nonexistence of
$(n-16)$-lattice without roots for dimensions $n$ $=44$ and 45. We also were
able to construct examples of $(n-16)$-lattices without roots for $n\leq 35$ . It
remains unknown, what happens for dimensions $36\leq n\leq 44$ .

To prove these results we consider theta series of $\Lambda$ with harmonic coef-
ficients. For an odd unimodular lattice $\Lambda$ and aharmonic polynomial $P$ on
$\mathrm{R}^{n}$ of degree $k$ $\equiv 0(\mathrm{m}\mathrm{o}\mathrm{d} 2)$ , the theta series for $(\Lambda, P)$ is

$\theta_{\Lambda,P}=\sum_{\lambda\in\Lambda}P(\lambda)q^{(\backslash ,\lambda)}/$

where $q=e^{\pi iz}$ , ${\rm Im} z>0$ . It is amodular form of weight $n/2+k$ for
the theta group with some character which depend on $k\mathrm{m}\mathrm{o}\mathrm{d} 4$ . It follows
that $\theta_{\Lambda,P}$ is apolynomial in $\theta_{3}$ and $\triangle_{8}$ if $k\equiv 0(\mathrm{m}\mathrm{o}\mathrm{d} 4)$ or is of the form
$\Phi$ . (polynomial in $\theta_{3}$ , $\triangle_{8}$ ), if $k\equiv 2(\mathrm{m}\mathrm{o}\mathrm{d} 4)$ . Here

$\Phi(z)=\theta_{2}(z)^{4}-\theta_{3}(z)^{4}$ .

As for usual theta series $(P=1)$ , there is aanalogue of the shadow theory.
If for amodular form $\phi$ of weight $m$ we define the shadow transformation by

$S(\phi)(z)=(\sqrt{\frac{i}{z}})^{2m}\phi(\begin{array}{ll}1 +\mathrm{l}-- z \end{array})$ ,

then
$S( \theta_{\Lambda,P})=(-1)^{k/2}\sum_{\lambda\in S(\Lambda)}P(\lambda)q^{(\lambda,\lambda)}$

,

where $S(\Lambda)$ is the shadow of $\Lambda:S(\Lambda)=\Lambda_{0}^{*}-\Lambda$ , where $\Lambda_{0}$ is the even part
of $\Lambda$ . If our odd lattice $\Lambda$ has along shadow, then $S(\theta_{\Lambda,P})$ starts with abig
power of $q$ and that gives extra information on the theta series with harmonic
coefficients. For an $(n-16)$ lattice $\Lambda$ without roots and for $k=2$ that gives

$\theta_{\Lambda,P_{2}}=c\Phi\theta_{3}^{n-16}\triangle_{8}^{2}=0$

so all layers of $\Lambda$ and $S(\Lambda)$ form spherical 3-designs. From harmonic polyn0-
mials of degree $k=4$ and $k=6$ we get formulas

$\sum_{v\in\Lambda_{4}}(v, \alpha)^{4}-2(n-28)\sum_{u\in\Lambda_{3}}(u, \alpha)^{4}=24(n-41)(n-46)(\alpha, \alpha)^{2}$
,

$\sum_{v\in\Lambda_{4}}(v_{\backslash }\alpha)^{6}-2(n-40)\sum_{u\in\Lambda_{3}}(u, \alpha)^{6}=30(\alpha, \alpha)\sum_{u\in\Lambda_{3}}(u, \alpha)^{4}-240(n-37)(\alpha, \alpha)^{3}$
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here $\alpha$ $\in \mathrm{R}^{n}$ is an arbitrary element of Rn. These formulas permit to find
an element $v_{0}\in\Lambda_{4}$ of norm 4, such that $|\{u\in\Lambda_{3}|(u, v_{0})=2\}|$ is big.
Considering neighboring lattice to $\Lambda$ with respect to such a $v_{0}$ , we get an
$(n-1)$-dimensional unimodular lattice with the root system $kA_{1}$ with big
$k$ . For $n=46$ this $k$ happens to be 23. Projecting on this 23-dimensi0nal
subspace we get an $O_{23}$ and it follows that $\Lambda=O_{23}\oplus O_{23}$ . Similarly one
proves impossibility of $n=44$ and 45.
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