
STATE SPACE DYNAMICS AND ENTROPY

DAVID KERR

ABSTRACT. We give asummary of our recent work on the topological entropy of state
space homeomorphisms induced from C’-dynamical systems. Our main result asserts
that, for an automorphism of aseparable unital exact C’-algebra, zero Voiculescu-Brown
entropy implies zero topological entropy on the state space.

One of the basic problems in dynamics is to identify systems with positive entropy, i.e.,
systems which exhibit “chaotic” behaviour. Glasner and Weiss showed in [6] that if a
homeomorphism of acompact metric space has zero topological entropy, then so does the
homeomorphism induced on the space of probability measures. By developing amatrix
version of the key geometric lemma from [6], we showed in [8] that, for an automorphism
of aseparable unital exact $C$’-algebra, if the Voiculescu-Brown entropy is zero then the
induced homeomorphism on the state space has zero topological entropy. In this article
we give adescription of the ideas and techniques involved in the proof of this theorem,
along with asummary of examples and related results from [8] involving the topological
entropy of induced state space homeomorphisms. For general references on topological
entropy and -dynamical entropy we refer the reader to $[4, 7]$ and [15], respectively.

1. TOPOLOGICAL ENTROPY OF INDUCED STATE SPACE HOMEOMORPHISMS

We begin by recalling that the topological entropy of ahomeomorphism $T$ : $Xarrow X$ of
acompact metric space is defined by

$h_{\mathrm{t}\mathrm{o}\mathrm{p}}(T)= \sup u’\lim_{narrow\infty}\frac{1}{n}\log N(\mathrm{u} \vee T\mathfrak{U} \vee\cdots\vee T^{n-1}\mathrm{u})$

where the supremum is taken over all open covers $\mathrm{u}$ and $N(\cdot)$ denotes the smallest car-
dinality of asubcover. The entropy may also be expressed in terms of separated and
spanning sets:

$h_{\mathrm{t}\mathrm{o}\mathrm{p}}(T)= \sup_{\epsilon>0}\lim_{narrow}\sup_{\infty}\frac{1}{n}\log \mathrm{s}\mathrm{e}\mathrm{p}_{n}(T, \epsilon)=\sup_{\epsilon>0}\lim_{narrow}\sup_{\infty}\frac{1}{n}\log \mathrm{s}\mathrm{p}\mathrm{n}_{n}(T, \epsilon)$

where $\mathrm{s}\mathrm{e}\mathrm{p}_{n}(T, \epsilon)$ denotes the largest cardinality of an $(n, \epsilon)$-separated set and $\mathrm{s}\mathrm{p}\mathrm{n}_{n}(T, \epsilon)$

the smallest cardinality of an $(n, \epsilon)$-spanning set (see [4, 7]).
Let $A$ be aunital C’-algebra. We will denote by $S(A)$ its state space, which is compact

under the weak’ topology. Given an automorphism $\alpha$ of $A$ we will denote by $T_{\alpha}$ the
homeomorphism of $S(A)$ defined by $T_{\alpha}(\sigma)=\sigma\circ\alpha$ for all $\sigma\in S(A)$ .

In [14] Sigmund showed that, given ahomeomorphism of acompact metric space, the
topological entropy of the induced homeomorphism on the space of probability measures
is either zero or infinity. The argument given there also applies to automorphisms of unital
C’-algebras, and so we have the following
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Proposition 1.1. Let $A$ be aseparable unital $C^{*}$ -algebra. For any automorphism $\alpha$ of
$A$ we have either $h_{\mathrm{t}\mathrm{o}\mathrm{p}}(T_{\alpha})=0$ or $h_{\mathrm{t}\mathrm{o}\mathrm{p}}$ (Ta) $=\infty$ .

As an example, consider the full group algebra $C^{*}(\mathrm{F}_{\infty})$ of the free group on countable
many generators, and define the shift automorphism $\alpha$ of C’ $(\mathrm{F}_{\infty})$ by setting $\alpha(u_{k})=uk+1$

for all $k\in \mathbb{Z}$ , where $\{uk\}_{k\in \mathbb{Z}}$ is the set of canonical unitary generators. In this case we
have $h_{\mathrm{t}\circ \mathrm{p}}(T_{\alpha})=\infty$ . This is aconsequence of the fact that $\alpha$ has as a $C^{*}$ -dynamical factor
the automorphism of $C(\{-1,1\}^{\mathbb{Z}})$ arising from the topological 2-shift(which has entropy
$\log 2)$ , since topological entropy is nonincreasing under passing to subsystems. Another
more geometrically explicit way of showing that $h_{\mathrm{t}\mathrm{o}\mathrm{p}}(T_{\alpha})=\infty$ is to notice that for each
$n\in \mathrm{N}$ the set $\{u_{1}, \ldots, u_{n}\}$ forms astandard basis for acopy of $\ell_{1}^{n}$ , in which case we
can construct, for each $f\in\{-1,1\}^{\{1,\ldots,n\}}$ , anorm-0ne linear functional $\sigma_{f}$ on $C’(\mathrm{F}_{\infty})$

satisfying
$\sigma_{f}(u_{k})=f(k)$

for every $k=1$ , $\ldots$ , $n$ . Then any two distinct linear functionals of the form $\sigma f$ are
separated by adistance of 2upon evaluation at at least one of the unitaries $u_{1}$ , $\ldots$ $u_{n}$ , so
that the collection of such functionals for agiven $n\in \mathrm{N}$ is an $(n, \epsilon)$-separated set with
respect to afixed metric on the unit ball of the dual $A^{*}$ for some $\epsilon$ not depending on $n$ .
This means that the topological entropy of the induced homeomorphism of the unit ball
of $A^{*}$ is at least l0g2, whence by adecomposition argument the topological entropy of $T_{\alpha}$

is infinite (see Section 2of [8]).

2. VoICULESCU-BROWN ENTROPY AND INDUCED STATE SPaCe DYNAMICS

We begin by recalling the definition of Voiculescu-Brown entropy $[18, 2]$ , which is based
on completely positive approximation. We work here with the unital definition, which can
be shown to coincide with the general definition in the unital case. Let $A$ be an exact
(equivalently, nuclearly embeddable [10]) C’-algebra and $\pi$ : $Aarrow \mathfrak{B}(?\mathrm{f})$ afaithful repre-
sentation. Nuclear embeddability guarantees, for each finite $\Omega\subset A$ and $\delta>0$ , the non-
emptiness of the collection CPA $(\mathrm{r}, \Omega, \delta)$ of triples $(\phi, \psi, B)$ where $B$ is afinite dimensionaJ
$C^{*}$ algebra and $\phi$ : $Aarrow B$ and $\psi$ : $Barrow 3(\Re)$ are unital completely positive maps. We
define $\mathrm{r}\mathrm{c}\mathrm{p}(\pi, \Omega, \delta)$ to be the infimum of rank $B$ over all $(\phi, \psi, B)\in \mathrm{C}\mathrm{P}\mathrm{A}(\pi, \Omega, \delta)$ , with rank
referring to the dimension of amaximal Abelian C’-subalgebra. For an automorphism $\alpha$

of $A$ we set
$ht( \pi, \alpha, \Omega, \delta)=\lim\sup\log \mathrm{r}\mathrm{c}\mathrm{p}(\pi, \Omega\cup\alpha\Omega\cup\cdots\cup\alpha^{n-1}\Omega, \delta)\underline{1}$ ,

$narrow\infty n$

$ht( \pi, \alpha, \Omega)=\sup ht(\pi, \alpha, \Omega, \delta)$ ,
$\delta>0$

$ht( \pi, \alpha)=\sup_{\Omega}ht$ ( $\pi$ , at, $\Omega$ )

with the last supremum taken over all finite sets $\Omega\subset A$ . The value $ht(\pi, \alpha)$ does not
depend on the particular faithful representation $\pi$ , and we define the Voiculescu-Brown
entropy $ht(\alpha)$ to be this common value over all such $\pi$ .

Our main result [8, Thm. 4.3] is the following.

Theorem 2.1. Let $A$ be aseparable unital exact C’-algebra and $\alpha$ an automorphism of
$A$ . Then $ht(\alpha)=0$ implies $h_{\mathrm{t}\mathrm{o}\mathrm{p}}(T_{\alpha})=0$ .
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In fact Theorem 4.3 in [8] also addresses the non-unital case, asserting essentially the
same conclusion as above with the state space replaced by the quasi-state space. For
simplicity however we have restricted our attention here to the unital case.

The proof of Theorem 2.1 as given in [8] relies on the following two lemmas. The first
lemma provides the key geometric fact. Iam grateful to Nicole Tomczak-Jaegermann for
having communicated to me this result and its proof.

Lemma 2.2. Let $K\geq 1$ , and let $X$ be a $k$-dimensional subspace of the Schatten $p=\infty$

class asuch that the Banach-Mazur distance

$\mathrm{d}\{\mathrm{X},$
$\ell_{1}^{k}$ ) $= \inf${ $||\Gamma||||\Gamma^{-1}||$ : $\Gamma$ : $Xarrow\ell_{1}^{k}$ is an isomorphism}

is no greater than $K$ . Then
$k\leq aK^{2}\log n$

for some universal constant $a>0$ .

To establish Lemma 2.2 we use the fact that the (Rademacher) tyPe 2 constant of $\ell_{1}^{k}$ is
at least $\sqrt{k}$ (see \S 4 in [16]), while the tyPe 2 constant of $C_{\infty}^{n}$ is at most $C\sqrt{\log n}$ for some
$C>0$ not depending on $n$ . The latter follows from upper bounds on the type 2constant
for the Schatten -classes for $2\leq P<\infty$ which can be obtained from [17], along with the
equality $d(C_{\infty}^{n}, C_{p}^{n})=n^{1/p}$ for $1\leq p<\infty$ [ $16$ , Thm. 45.2].

The second lemma is amatrix analogue of Proposition 2.1 of [6]. We can adapt the
proof from [6], but we must substitute Lemma 2.2 for the part of the argument in [6]
involving almost Hilbertian sections of unit balls, which doesn’t work in our case.

Here $C_{1}^{n}$ denotes the Schatten 1-class, i.e., the space of $\mathrm{t}\mathrm{r}\mathrm{a}\mathrm{c}\mathrm{e}$ class matrices.

Lemma 2.3. Given $\epsilon>0$ and $\lambda>0$ there exist $n\mathit{0}\in \mathrm{N}$ and $\mu>0$ such that, for all
$n\geq n_{0}$ , if $\phi$ : $\sigma_{1}^{n}arrow\ell_{\infty}^{n}$ is aMinear map of norm at most 1such that the image of the
unit ball of $U_{1}^{n}$ under $\phi$ contains an $\epsilon$-separated set of self-adjoint elements of cardinality
at least $e^{\lambda n}$ , then $r_{n}\geq e^{\mu n}$ .

Akey ingredient in the proof of this lemma, as adapted from Glasner and Weiss’s proof
of [6, Prop. 2.1], is the combinatorial Sauer-Perles-Shelah lemma $[12, 13]$ , which gives
precise information about how large asubset $A\subset\{-1,1\}^{\{1,\ldots,n\rangle}$ must be in general so
that its restriction to some subindex set $I_{n}\subset\{1, \ldots, n\}$ of aprescribed cardinality is equal
to $\{$ -1, $1\}^{I_{n}}$ . In our analytic situation the Sauer-Perles-Shelah lemma has the consequence
that there exist a $d>0$ and a $\delta>0$ such that, for sufficiently large $n\in \mathrm{N}$ , there is a
subset $I_{n}\subset\{1, \ldots, n\}$ of cardinality at least $dn$ such that the dual map $(\pi\circ\phi)^{*}$ from
$(\ell_{\infty}^{I_{n}})’\cong\ell_{1}^{I_{n}}$ to $(C_{1}^{r_{n}})^{*}\cong C_{\infty}^{r_{n}}$ is an embedding of norm at most 1whose inverse has norm
at most $2/\delta$ , where $\pi$ : $\ell_{\infty}^{n}arrow\ell_{\infty}^{I_{n}}$ is the canonical projection (see the proof of Lemma 2.3
in [6] $)$ . We can then apply Lemma 2.2 to obtain Lemma 2.3.

Finally, to prove the theorem we fix ametric $\rho$ on $S(A)$ and suppose that $h_{\mathrm{t}\mathrm{o}\mathrm{p}}(T_{\alpha})>0$ .
Then there exist an $\epsilon>0$ , a $\lambda>0$ , and an infinite set $J\subset \mathrm{N}$ such that for all $n\in J$ there
is an $(n, 4\epsilon)$-separated set $E_{n}\subset S(A)$ of cardinality $\geq e^{\lambda n}$ . By compactness we can find a
finite set $\Omega\subset K$ such that, for all $\sigma$ , $\omega$ $\in S(A)$ ,

$\rho(\sigma, \omega)\leq\sup|\sigma(x)-\omega(x)|+\in$ .
$x\in\Omega$
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To complete the proof we show that $ht(\pi, \Omega, \epsilon)>0$ for agiven faithful representation $\pi$ :
A $arrow \mathfrak{B}(\mathcal{H})$ . This is done by taking, for each n $\in J$ , atriple $(\phi_{n}, \psi_{n}, B_{n})\in \mathrm{C}\mathrm{P}\mathrm{A}(\pi,$A,$\Omega, \in)$

with the rank of $B_{n}$ as small as possible and defining amap $\Gamma_{n}$ from the Schatten l-class
$C_{1}^{r_{n}}$ to $(\ell_{\infty}^{n})^{m}\cong\ell_{\infty}^{nm}$ by

$\Gamma_{n}(h)=((\mathrm{R}(h\phi_{n}(\alpha^{k}(x_{i}))))_{k=1}^{n-1})_{i=1}^{m}$

for all $h\in C_{1}^{r_{n}}$ , where $r_{n}=\mathrm{r}\mathrm{a}\mathrm{n}\mathrm{k}$ $B_{n}$ , $x_{1}$ , $\ldots$ , $x_{m}$ are the elements of $\Omega$ , Tr is the $\mathrm{t}\mathrm{r}\mathrm{a}\mathrm{c}\mathrm{e}$ on
$M_{r_{n}}(\mathbb{C})$ which takes value 1on minimal projections, and $B_{n}\subset M_{r_{n}}(\mathbb{C})$ under some fixed
embedding. Extending a $\circ\pi^{-1}$ on $\pi(A)$ to astate on $\mathfrak{B}(\mathcal{H})$ for each $\sigma\in E_{n}$ , it is then
readily checked that $\Gamma(\{\sigma’\circ\psi_{n} : \sigma\in E_{n}\})$ is an $\epsilon$-separated set of self-adjoint elements
with cardinality $\geq e^{\lambda n}$ , so that we can apply Lemma 2.3 to finish the proof of the theorem.

Since topological entropy does not increase under taking factors or restrictions to closed
invariant subsets, we obtain the following corollary to Theorem 2.1.

Corollary 2.4. Let $A$ and $B$ be separable exact C’-algebra and cx : $Aarrow A$ and $\beta$ :
$Barrow B$ automorphisms with $h_{\mathrm{t}\mathrm{o}\mathrm{p}}(T_{\alpha})>0$. Suppose that $\alpha$ can be obtained from $\beta$ via
afinite sequence of taking unital subsystems and C’-dynamical factors (i.e., quotients
intertwining the actions). Then $ht(\beta)>0$ .

Corollary 2.4 gives us in particular some information concerning the behaviour of
Voiculescu-Brown entropy under taking extensions, about which little seems to be known
in general (it is even unknown, for example, whether or not apositive entropy system can
have an extension with zero entropy).

We also note that, for the shift $\alpha$ on reduced crossed product $C_{r}^{*}(\mathrm{F}_{\infty})$ of the free group
on countably many generators, we have $ht(\alpha)=0$ by [5], so that by Theorem 2.1 the
topological entropy of $T_{\alpha}$ is zero, in contrast to the case of the shift on the full group
C’-algebra C’ $(\mathrm{F}_{\infty})$ .

Question 2.5. Does the converse of Theorem 2.1 hold?

All we have been able to come up with concerning Question 2.5 are some examples for
which we can show the Voiculescu-Brown entropy is positive without having been able
to determine the topological entropy on the state space [8, Example 4.6]. The examples
in question involve the collection of automorphisms $\alpha\theta$ of the rotation C’-algebras $A_{\theta}$

associated to afixed matrix $S\in SL(2, \mathbb{Z})$ with eigenvalues off the unit circle (see [19, 1]).
In [9] it is established that the Voiculescu-Brown entropy of $\alpha\theta$ is positive for aresidual
set of rotation parameters 0. On the other hand, we have only been able to show that
$h_{\mathrm{t}\mathrm{o}\mathrm{p}}(T_{\alpha_{\theta}})=\mathrm{o}\mathrm{o}$ for the set of rotation parameters 0for which the Connes Narnhofer-
Thirring entropy with respect to the canonical tracial state is positive, and this is a
meager set, as implicitly demonstrated in [11].
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