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ABSTRACT. Some general aspects of the theory of biorthogonal rational func-
tions are considered. Aspecial family of such functions expressed through
elliptic hypergeometric series is described in detail.

1. BIORTHOGONAL RATIONAL FUNCTIONS Basic RESULTS

In this section, we describe some basics of the theory of biorthogonal rational
functions (BRF). Anumber of statements is taken from [12, 25, 36], however, the
Theorems 1and 2represent new results.

Let $\alpha:,\beta.\cdot$ , $i=1,2$, $\ldots$ , be two sets of fixed complex numbers. We assume that
$\alpha:\neq\alpha_{k}$ and $\beta_{\dot{1}}$ $\neq\beta_{k}$ for $i\neq k$ . With the sequences $\alpha:$ , $\beta_{\dot{1}}$ we associate the following
polynomials of afree independent variable $z$ $\in \mathbb{C}$

$A_{n}(z)= \prod_{\dot{|}=1}^{n}(z-\alpha:)$ , $B_{n}(z)=. \cdot\prod_{=1}^{n}(z-\beta\dot{.})$ ,

and we assume that $A_{0}=B_{0}=1$ . Introduce alinear functional $\mathcal{L}$ defined on the
space of all rational functions of $z$ with the prescribed positions of poles at $\alpha:,\beta.\cdot$ .
The functional $\mathcal{L}$ can be defined by its generalized moments

$M_{\dot{|}k}= \mathcal{L}\{\frac{1}{B_{\dot{1}}(z)A_{k}(z)}\}$ , $i$ , $k\in \mathrm{N}$ . (1.1)

Define the determinants
$\Delta_{n}=\det||M_{\dot{|}k}||_{=0,\ldots n}^{k=0,\ldots,n}\dot{.}’$

’

$\Delta_{n}^{(01)}=\det||M_{\dot{|}k}||_{\dot{|}=0,\ldots,n-1}^{k=1,\ldots,n}$ , $\Delta_{n}^{(10)}=\det||M_{k}.\cdot||_{\dot{|}=1,\ldots,n}^{k=0,\ldots,n-1}$ (1.2)

and assume that $\Delta_{n}\neq 0$ , $\Delta_{n}^{(01)}\neq 0$ , $\Delta_{n}^{(10)}\neq 0$ .
We introduce two sets of rational functions $R_{n}(z),T_{n}(z)$ with the help of the

following determinants

$R_{n}(z)=|\begin{array}{llll}M_{00} M_{01} \cdots M_{0n}M_{10} M_{11} M_{1n}\cdots \cdots \cdots \cdots M_{n-1,0} M_{n-1,1} 1 1/A_{1}(z) 1/A_{n}(z)M_{n-1,n}\end{array}|$ , (1.3)

$T_{n}(z)=$

$M_{00}$ $M_{10}$ $M_{n0}$

$M_{01}$ $M_{11}$ $M_{n1}$

$M_{0,n-1}$ $M_{1,n-1}$ $M_{n,n-1}$

1 $1/B_{1}(z)$ $1/B_{n}(z)$

(1.4)
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We have $R_{0}(z)=T_{0}(z)=M_{00}$ and $R_{1}(z)=P_{1}(z)/(z-\alpha_{1})$ , $T_{1}(z)=Q_{1}(z)/(z-\beta_{1})_{:}$

where $P_{1}(z)=M_{00}-M_{01}(z-\alpha_{1})$ and $Q_{1}(z)=M_{00}-M_{10}(z-\beta_{1})$ . Due to the
conditions $\Delta_{n}\neq 0$ , $\Delta_{n}^{(01)}\neq 0$ , $\Delta_{n}^{(10)}\neq 0$ , we have

$R_{n}(z)= \frac{P_{n}(z)}{A_{n}(z)}$ , $T_{n}(z)$ $= \frac{Q_{n}(z)}{B_{n}(z)}$ , (1.5)

where $P_{n}(z)$ and $Q_{n}(z)$ are some polynomials of the $n$-th degree in $z$ . Thus, both
$R_{n}(z)$ and $T_{n}(z)$ are rational functions of the type $[n/n]$ , that is they are defined
by ratios of two $n$-th degree polynomials. Evidently, the poles of these rational
functions are prescribed: the poles of $R_{n}(z)$ are located at $\alpha:$ , $i=1$ , $\ldots$ , $n$ , whereas
the poles of $T_{n}(z)$ are located at $\beta\dot{.}$ , $i=1$ , $\ldots$ , $n$ .

By construction, we have

$\mathcal{L}\{\frac{R_{n}(z)}{B_{m}(z)}\}=0$ , $\mathcal{L}\{$ $\frac{T_{n}(z)}{A_{m}(z)}\}=0$ , $m=0,1$ , $\ldots$ , $n-1$ . (1.6)

For example, $\mathcal{L}\{R_{n}(z)/B_{m}(z)\}$ equals to the determinant obtained from (1.3) after
replacement of the entries $A_{:}(z)$ from the last row by the moments Mmi, $i=$
$0,1$ , $\ldots$ , $n$ . Hence, this determinant vanishes as having two coinciding rows. Prom
(1.6), we derive the equality

$\mathcal{L}\{R_{n}(z)T_{m}(z)\}=0$ , $m\neq n$ . (1.7)

Indeed, if $m<n$ then we can expand $T_{m}(x)= \sum_{\dot{|}=0}^{m}\xi:/B_{:}(z)$ with some coefficients
$\xi$:and, hence, (1.7) is valid due to (1.6). If $m>n$ , we can expand $R_{n}(x)=$

$\sum_{=0}^{n}\dot{.}\eta:/A_{:}(z)$ and, again, (1.7) is valid due to (1.6). If $m=n$, we can expand
$T_{n}(z)= \Delta_{n-1}/B_{n}(z)+\sum^{n-1}.\cdot=0\sigma:/B:(z)$ and get

$\mathcal{L}\{R_{n}(z)T_{n}(z)\}=\Delta_{n-1}\mathcal{L}\{\frac{R_{n}(z)}{B_{n}(z)}\}=\Delta_{n-1}\Delta_{n}$

by definitions (1.2), (1.3). We thus have

Theorem 1. The functions $Rn\{z$) and $T_{n}(z)$ defined by (1.3) and (L4) are rational
functions of $z$ of the type $[n/n]$ with the prescribed poles at $z=\alpha$:and $z$ $=\beta.\cdot$

$(i=1,2, \ldots, n)$ respectively. These functions satisfy the biorthogonality relation
$\mathcal{L}\{R_{n}(z)T_{m}(z)\}=\Delta_{n-1}\Delta_{n}\delta_{nm}$ (1.8)

with $\Delta_{n}$ defined in (1.2).

Orthogonality conditions (1.6) can be rewritten in terms of the polynomials
$P_{n}(z)$ and $Q_{n}(z)$ as follows:

$\mathcal{L}\{\frac{P_{n}(z)(z-\beta_{n})z^{m}}{A_{n}(z)B_{n}(z)}\}=0$, $m=0,1$ , $\ldots,n-1$ , (1.9)

$\mathcal{L}\{\frac{Q_{n}(z)(z-\alpha_{n})z^{m}}{A_{n}(z)B_{n}(z)}\}=0$ , $m=0,1$ , $\ldots,n-1$ . (1.10)

Relations, similar to (1.9), were considered by Ismail and Masson in [12] in con-
nection to the continued fractions of the $R_{tt}$ type. Our functional $\mathcal{L}$ differs from
the one in [12] $\mathcal{L}_{IM}$ by asimple transformation $\mathcal{L}\{g(z)\}\equiv \mathcal{L}_{IM}\{g(z)/(z-h)\}$ for
some constant $h$ .

There exist non-trivial recurrence relations connecting polynomials $P_{n}(z)$ and
$Q_{n}(z)$ . In order to derive them, we consider the expression $P_{n+1}(z)-b_{n}(z-$

$\beta_{n})P_{n}(z)$ , where $b_{n}$ are some coefficients. In order to be able to set $n=0$ in this
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combination, we add two more constants $\alpha\circ$ and $\beta_{0}$ to the sets $\{\alpha_{i}\}$ and $\{\beta_{i}\}$ .
Assume that $\alpha_{i}\neq\beta_{k}$ for all $i$ , $k$ $\in \mathrm{N}$ , and, moreover, that zeros of the polynomials
$P_{n}(z)$ do not coincide with $\alpha_{i}$ , $\beta_{k}$ , that is $P_{n}(\alpha_{i})P_{n}(\beta_{k})\neq 0$ for all $n$ , $i$ , $k$ . Then we
can choose

$b_{n}= \frac{P_{n+1}(\alpha_{n})}{(\alpha_{n}-\beta_{n})P_{n}(\alpha_{n})}$ . (1.11)

Such achoice means that
$P_{n+1}(z)-b_{n}(z-\beta_{n})P_{n}(z)$ $=(z-\alpha_{n})q_{n}(z)$ , (1.12)

where $q_{n}(z)$ is apolynomial of the degree not exceeding n. One can therefore
expand

$q_{n}(z)$ $=B_{n}(z)$ $(\nu_{n}^{(0)}T_{n}(z)$ $+\nu_{n}^{(1)}T_{n-1}(z)+\cdots+\nu_{n}^{(n)})$ (1.13)

with some coefficients $\nu_{n}^{(\dot{\cdot})}$ . From relation (1.8), we have for $i<n$

$\nu_{n}^{(n-:)}\Delta:\Delta:-1=\mathcal{L}\{\frac{P_{n+1}(z)-b_{n}(z-\beta_{n})P_{n}(z)}{(z-\alpha_{n})B_{n}(z)}R.(z)\}$

$= \mathcal{L}\{\frac{P_{n+1}(z)P_{\dot{1}}(z)(z-\beta_{n+1})(z-\alpha_{\dot{|}+1})\cdots(z-\alpha_{n-1})(z-\alpha_{n+1})}{A_{n+1}(z)B_{n+1}(z)}\}$

$-b_{n} \mathcal{L}\{\frac{P_{n}(z)P_{\dot{1}}(z)(z-\beta_{n})(z-\alpha_{\dot{|}+1})\cdots(z-\alpha_{n-1})}{A_{n}(z)B_{n}(z)}\}$ . (1.14)

Due to (1.9), we see that the right-hand side of (1.14) vanishes: $\nu_{n}^{(\dot{\cdot})}=0$ for
$i=1$ , $\ldots$ , $n$ . Thus, we arrive at the relation

$P_{n+1}(z)$ $-b_{n}(z-\beta_{n})P_{n}(z)$ $=\nu_{n}(z -\alpha_{n})Q_{n}(z)$ (1.15)

with some coefficients $\nu_{n}=\nu_{n}^{(0)}$ (cf. [25]).
In the same way, due to the obvious permutational symmetry between $P_{n}(z)$

and $Q_{n}(z)$ , we get the second relation
$Q_{n+1}(z)-c_{n}(z-\alpha_{n})Q_{n}(z)=\mu_{n}(z-\beta_{n})P_{n}(z)$ , (1.16)

where $\mu_{n}$ is some sequence of numbers and

$c_{n}= \frac{Q_{n+1}(\beta_{n})}{(\beta_{n}-\alpha_{n})Q_{n}(\beta_{n})}$ .

Relations (1.15) and (1.16) are of great importance. They allow us to express one
set of polynomials in terms of another. Moreover, one can obtain athree term
recurrence relation for polynomials $P_{n}(z)$ (a similar recurrence relation is valid for
the polynomials $Q_{n}(z))$ :

$\nu_{n}P_{n+2}(z)-(\nu_{n}b_{n+1}(z-\beta_{n+1})+c_{n}\nu_{n+1}(z-\alpha_{n+1}))P_{n+1}(z)$

$=\nu_{n+1}(z-\beta_{n})(z-\alpha_{n+1})(\mu_{n}\nu_{n}-c_{n}b_{n})P_{n}(z)$ , $n\geq 0$ , (147)

with the initial conditions $P_{0}(z)=M\mathrm{o}0$ , $P_{1}(z)=M_{00}-M_{01}(z-\alpha_{1})$ . Taking
into account relations (1.5), we arrive at the three term recurrence relation for the
rational functions $R_{n}(z)$ (a similar relation holds for $T_{n}(z)$ ):

$\nu_{n}(z -\alpha_{n+2})R_{n+2}(z)-(\nu_{n}b_{n+1}(z-\beta_{n+1})+c_{n}\nu_{n+1}(z-\alpha_{n+1}))R_{n+1}(z)$

$=\nu_{n+1}(z-\beta_{n})(\mu_{n}\nu_{n}-c_{n}b_{n})R_{n}(z)$ . (1.18)
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It is seen that (1.18) coincides with the generalized eigenvalue problem (GEVP)
[32] for two arbitrary tridiagonal matrices $J_{1}$ , $J_{2}$ :

$J_{1}R_{n}(z)=zJ_{2}R_{n}(z)$ , (1.19)

where $J\dot{.}R_{n}\equiv\xi_{n}^{(i)}R_{n+1}+\eta_{n}^{(i)}R_{n}+\zeta_{n}^{(\cdot)}.R_{n-1}$ for some coefficients $\xi_{n}^{(i)}$ , $\eta_{n}^{(\dot{\cdot})},\zeta_{n}^{(\cdot)}.$ .
Recurrence relation (1.17) was astarting point in [12] for studying biorthog0-

nality properties of the polynomials $P_{n}(z)$ . Namely, it was shown in [12] that if
$P_{n}(z)$ satisfy recurrence relation (1.17) with appropriate initial conditions, then
there exists alinear functional $\mathcal{L}_{IM}$ providing the orthogonality relations equiva-
lent to (1.9). As shown in [36], GEVP (1.19) for rational functions $R_{n}(z)$ leads also
to the biorthogonality condition in the form (1.7). This gives the first half of an
analogue of the Favard theorem for BRF. The results presented above allow us to
complete this analogy by the inverse statement.

Theorem 2. Let there eists a linear functional $\mathcal{L}$ defining finite moments $M_{\dot{|}k}$

(1.1) which satisfy the conditions $\Delta_{n}\neq 0$ , $\Delta_{n}^{(01)}\neq 0$ , $\Delta_{n}^{(10)}\neq 0$ . Then the pair
of rational functions $R_{n}(z),T_{n}(z)$ given by (1.3), (1.4) satisfy the biorthogonality
condition (1. 7) and GEVP (1. 19).

Consider an analogue of the Christoffel transformation for the rational functions
$R_{n}(z)$ , $T_{n}(z)\sim[25,36]$ . Let Abe aconstant such that $R_{n}(\lambda)\neq 0$ . Introduce anew
functional $\mathcal{L}$ defined on aset of all rational functions $\tilde{R}_{n}(z)$ having poles at the
points $\tilde{\beta}_{k}=\beta_{k},\overline{\alpha}_{k}=\alpha_{k+1}$ by the formula

$\tilde{\mathcal{L}}=(\frac{z-\lambda}{z-\alpha_{1}})\mathcal{L}$ . (1.20)

New generalized moments $\tilde{M}_{nm}$ defined by $\tilde{\mathcal{L}}$ are

$\tilde{M}_{nm}=\tilde{\mathcal{L}}\{\frac{1}{\tilde{B}_{n}(z)\tilde{A}_{m}(z)}\}=\mathcal{L}\{\frac{z-\lambda}{B_{n}(z)A_{m+1}(z)}\}$

$=M_{nm}+(\alpha_{m+1}-\lambda)M_{n,m+1}$ . (1.21)

It can be verified that the pair of new rational functions

$\tilde{R}_{n}(z)$ $= \frac{z-\alpha_{1}}{z-\lambda}(R_{n+1}(z)-\frac{R_{n+1}(\lambda)}{R_{n}(\lambda)}R_{n}(z))$ , (1.22)

$\tilde{T}_{n}(z)=\frac{1}{z-\lambda}((z-\beta_{n+1})T_{n+1}(z)-\frac{(\lambda-\beta_{n+1})T_{n+1}(\lambda)}{(\lambda-\alpha_{n})T_{n}(\lambda)}(z-\alpha_{n})T_{n}(z))$

satisfies the relations

$\tilde{\mathcal{L}}\{\frac{\tilde{R}_{n}(z)}{\tilde{B}_{m}(z)}\}=0$ , $\tilde{\mathcal{L}}\{\frac{\tilde{T}_{n}(z)}{\tilde{A}_{m}(z)}\}=0$ ,

where $m=0,1$ , $\ldots$ , $n-1$ .
Remark 1. The parameter $\alpha_{0}$ entering the definition of $\tilde{T}_{0}$ is not defined, it can
take arbitrary values except $\alpha_{0}\neq\lambda$ . Its change influences only the constant $\tilde{T}_{0}$ .

We thus have
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Theorem 3. The functions $\tilde{R}_{n}(z)$ and $\tilde{T}_{n}(z)$ defined by (1.22) for$rm$ a pair of
biorthogonal rational functions with respect to the modified functional $\tilde{\mathcal{L}}$ defined
by (1.20)

$\tilde{\mathcal{L}}\{\tilde{R}_{n}(z)\tilde{T}_{m}(z)\}=0$ , n $\neq m$ . (1.23)

Note that in the theory of ordinary orthogonal polynomials the Christoffel trans-
formation corresponds to the transition to kernel polynomials leading to alinear
modification of the functional $\tilde{\mathcal{L}}=(x-x\mathrm{o})\mathcal{L}$ (see, e.g. [29]). In the theory of BRF,
we have instead rational modification (1.20) of the functional. Particular examples
of such modifications were first exploited by Wilson $[33, 34]$ for construction of a
pair of self-dual BRF expressed through $9F8$ and $10\mathrm{h}$ series.

M\"obius transformations of the argument of rational functions is asymmetry of
such functions. Namely, if 4(z), $T_{n}(z)$ is apair of BRF, then

$\tilde{R}_{n}(z)=R_{n}(\frac{\xi z+\eta}{\zeta z+\sigma})$ , $\tilde{T}_{n}(z)=T_{n}(\frac{\xi z+\eta}{\zeta z+\sigma})$

is another pair of BRF. This statement follows from the observation that Mobius
transformations of the spectral parameter in agiven GEVP (1.19) do not change
the form of this eigenvalue problem. Indeed, for $\tilde{J}_{1}=\xi J_{1}+\eta J_{2}$ , $J_{2}=\zeta J_{1}+\sigma J_{2}$

one has the GEVP
$\tilde{J}_{1}R_{n}(z)=\frac{\xi z+\eta}{\zeta z+\sigma}\tilde{J}_{2}R_{n}(z)$ ,

which, in turn, generates BRF of the argument $(\xi z+\eta)/(\zeta z+\sigma)$ . For appropriate
choice of the positions of poles of BRF, it is possible to achieve the equality $R_{\mathrm{n}}(z)=$

$T_{n}(z)[36]$ and to arrive at the theory of orthogonal rational functions [5].

2. ELLIPTIC HYPERGEOMETRIC FUNCTIONS

Ageneral definition of elliptic hypergeometric functions (including the multi-
variable case) was proposed in [20]. For functions of one variable, the formal series
$\sum_{n=0}^{\infty}c_{n}$ is called elliptic hypergeometric series if $h(n)=c_{n+1}/c_{n}$ is an elliptic
function of $n\in \mathrm{C}$ . Any elliptic function of order $r+1$ admits the factorization [31]:

$h(n)=z \frac{[u_{0}+n,\ldots,u_{r}+n]}{[v_{0}+n,\ldots,v_{r}+n]}$ , (2.1)

where $[u_{0}, \ldots,u_{k}]\equiv[u_{0}]\cdots$ $[u_{k}]$ and $[u]$ is the standard $\theta_{1}$ -Jacobi theta function

$[u] \equiv\theta_{1}(u)=-i\sum_{n=-\infty}^{\infty}(-1)^{n}p^{(2n+1)^{2}/8}q^{(n+1/2)u}$

$=p^{1/8}iq^{-u/2}(p;p)_{\infty}\theta(q^{u};p)$ , $u\in \mathbb{C}$ ,

$\theta(z;p)=(z;p)_{\infty}(pz^{-1};p)_{\infty}$ , $(a;p)_{\infty}= \prod_{n=0}^{\infty}(1-ap^{n})$ , (2.2)

where $p=e^{2\pi\dot{|}\tau}$ , ${\rm Im}(\tau)>0$ , $q=e^{2\pi\dot{|}\sigma}$ . Remind some properties of the function
$[u]:(\mathrm{i})[-u]=-[u]$ ;(ii) $[u+\sigma^{-1}]=-[u]$ , $[u+\tau\sigma^{-1}]=-e^{-\pi|\tau-2\pi|\sigma u}..[u];(\mathrm{i}\mathrm{i}\mathrm{i})$ the
Riemann identity [31]:

$[x+z,x-z,y+w,y-w]-[x+w,x-w,y+z, y-z]$
$=[x+y,x-y, z +w, z-w]$ ; (2.3)
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(iv) $\lim_{Im(\tau)arrow+\infty}[u]/[1]=\frac{\sin(\pi\sigma u)}{\sin(\pi\sigma)}$ ; (v) $\lim_{\sigmaarrow 0}[u]/[1]=u$ ; (vi) $[u]=0$ for
$u_{m_{1},m_{2}}=(m_{1}+m_{2}\tau)\sigma^{-1}$ , $m_{1,2}\in \mathrm{Z}$ . From (ii), it follows that in order for $\mathrm{m}\mathrm{e}\mathrm{r}+$

morphic function $h(n)$ to be double periodic
$h(n+\sigma^{-1})=h(n)$ , $h(n+\tau\sigma^{-1})=h(n)$ ,

it is necessary to have

$. \cdot\sum_{=0}^{r}u:=\sum_{\dot{|}=0}^{r}v:$ . (2.4)

Conventions of the theory of hypergeometric series require the choice $v_{0}=1$ .
After taking that and solving the first order recursion $c_{n+1}=h(n)c_{n}$ with the
initial condition $c_{0}=1$ , we get the single variable elliptic hypergeometric series:

$r+1Er$ $(_{v_{1}’}^{u_{0}},. \cdot\cdot\cdot\cdot\cdot,’ v_{r}^{;\sigma,\tau;z)}u_{r}=\sum_{n=0}^{\infty}\frac{[u_{0},u_{1},\ldots,u_{r}]_{n}}{[1,v_{1},\ldots,v_{r}]_{n}}z^{n},$ (2.5)

where the elliptic shifted factorials are defined as follows

$[u_{0}, \ldots, u_{k}]_{n}\equiv\prod_{m=0}^{k}\prod_{j=0}^{n-1}[u_{m}+j]$.

If we drop the ellipticity constraint (2.4), then (2.5) gives aparticular example of
theta hypergeometric series (or Jacobi theta functions extension of the general plain
$sF_{r}$ and basic $\theta\phi_{r}$ hypergeometric series) introduced in [20]. In this framework, (2.4)
is called the balancing condition and the elliptic hypergeometric series coincide by
definition with the balanced theta hypergeometric series.

It is natural to demand that the function $h(n)$ is elliptic not only in $n$ but,
simultaneously, in all free parameters among $u:,v:$ . This is possible only under the
constraints [20]: $u_{0}+1=u_{1}+v_{1}=\ldots=u_{r}+v_{r}$ , known as the well-poisedness
conditions for plain and basic hypergeometric series [8]. Series with such aproperty
are called totally elliptic hypergeometric series.

The elliptic hypergeometric series are called very-well-poised, if, in addition to
(2.4) and the well-poisedness conditions, one has

$u_{r-3}= \frac{1}{2}u_{0}+1$ , $u_{r-2}= \frac{1}{2}u_{0}+1-\frac{1}{2\sigma}$ ,

$u_{r-1}= \frac{1}{2}u_{0}+1-\frac{\tau}{2\sigma}$ , $u_{r}= \frac{1}{2}u_{0}+1+\frac{1+\tau}{2\sigma}$ . (2.5)

Such series can be represented in the form [20]

$r+1E_{r}= \sum_{n=0}^{\infty}\frac{[u_{0}+2n]}{[u_{0}]}\prod_{m=0}^{r-4}\frac{[u_{m}]_{n}}{[u_{0}+1-u_{m}]_{n}}(-z)^{n}$ , (2.7)

where $\sum_{m=1}^{r-4}u_{m}=u_{0}(r-5)/2+(r-5)/2$ . It is convenient to use special notation
$r+1V_{r}(u0;u_{1}, \ldots, u_{r-4})$ for this very-well-poised elliptic hypergeometric series at
$z=-1$ . In the limit ${\rm Im}(\tau)arrow+\infty$ , $r+1V_{r}$ series boil down to the very-well-poised
balanced $r-1\phi r-2$ basic hypergeometric series [8].

For the first time series of the type (2.7) with $z=-1$ appeared implicitly in
the series of papers by Date et al (see [6] and references therein) devoted to solv-
able statistical mechanics models. Explicitly, they were introduced by Frenkel and
Turaev in [7]. The present authors have encountered them in [25, 26, 37] withi
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an independent study of the theory of BRF with the help of techniques of spectral
transformation chains (see $[22, 24]$ for adescription of our approach to orthogonal
polynomials, especially, to Askey-Wilson polynomials [2] $)$ . The general theory of
series of hypergeometric type built out of Jacobi theta functions was built in [20].

One of the main results of Prenkel and Turaev obtained in [7] consists in aproof
(by arather non-standard technique) of the following summation formula:

1 $\frac{[u_{0}+2n]}{[u_{0}]}\prod_{r=0}^{5}\frac{[u_{r}]_{n}}{[u_{0}+1-u_{r}]_{n}}$

$[u_{0}+1]_{N} \prod_{1\leq r<\epsilon\leq 3}[u0+1-u_{r}-u_{\epsilon}]_{N}$

$=[u_{0}+1-u_{1}-u_{2}-u_{3}]_{N} \prod_{r=1}^{3}[u_{0}+1-u_{r}]_{N}$
’ (2.9)

where $\sum_{=1}^{5}\dot{.}u:=2u\mathit{0}+1$ and $u_{4}=-N$ , $N\in \mathrm{N}$. According the classification of [20],
this formula provides aclosed form expression for the terminating very-well-poised
balanced $10E9$ theta hypergeometric series at $z=-1$ .

An elliptic generalization of the Bailey transformation formula for aterminating
very-well-poised balanced $10\phi 9$ series was proved in [7]. In our notations, it looks
as follows

$12V_{11}(u\mathit{0};u_{1}, \ldots,u\epsilon, -n)=12V_{11}(s0;s_{1}, \ldots, s\tau)$

$\mathrm{x}\frac{[u_{0}+1,s_{0}+1-u_{4},s_{0}+1-u_{5},u_{0}+1-u_{4}-u_{5}]_{n}}{[s_{0}+1,u0+1-u_{4},u_{0}+1-u_{5},s_{0}+1-u_{4}-u_{5}]_{n}}$ , (2.9)

$s_{0}=2u_{0}+1-u_{1}-u_{2}-u\epsilon$ , $sj=s0-u0+u\mathrm{j}$ , $j=1,2,3$,

and $\{s_{4}, s_{5}, s_{6}, s_{7}\}$ is an arbitrary permutation of the parameters $u_{4}$ , $u_{5},u\epsilon$ , $u_{7}=$

$-n$. Aspecial double use of (2.9) (firstly, with permuted $u_{1}$ and $u_{6}$ and, secondly,
with parameters $s_{2}$ , $s_{3}$ , $s\epsilon$ playing the role of $u_{1}$ , $u_{2}$ , $u_{3}$ ) provides another useful
transformation

$12V_{11}$ $(u_{0;}u_{1}, \ldots,u_{6}, -n)=\zeta_{n12}V_{11}(r0;r_{1}, \ldots,r_{6},r_{7})$ , (2.10)

where
$r_{0}=u_{1}-u\mathit{0}$ $-n$, $r_{1}=u_{1}$ , $r\mathit{0}$ $=u_{1}-n-u\mathit{0}$ ,
$r_{7}=-n$ , $r:=1+u\mathit{0}-u:-u\epsilon$ , $i=2$ , $\ldots$ ,5, (2.11)

$\zeta_{n}=\frac{[u_{0}+1,u_{6}]_{n}}{[1+u_{0}-u_{1},u_{6}-u_{1}]_{n}}\dot{.}\prod_{=2}^{5}\frac{[1+u_{0}-u_{1}-u_{1}]_{n}}{[1+u_{0}-u.]_{n}}.\cdot$ . (2.12)

The next two theorems were established in [25]. They describe generalizations
of the contiguous relations for terminating very-well-poised balanced $10\varphi 9$ basic hy-
pergeometric series from [11]. Denote $\Phi(\mathrm{u})\equiv 12V_{11}(u0;u_{1}, \ldots, \ovalbox{\tt\small REJECT} 1\ 7)$ and $\Phi(u:\pm)$ the
function $12V_{11}$ with the particular parameter $u$:replaced by $u:\pm 1$ , other parameters
being unchanged. Let also $\Phi\pm \mathrm{r}\mathrm{e}\mathrm{p}\mathrm{r}\mathrm{e}\mathrm{s}\mathrm{e}\mathrm{n}\mathrm{t}$ the functions $12V_{11}(u_{\mathit{0}}\pm 2;u_{1}\pm 1$ , $\ldots$ , $u_{7}\pm$

$1)$ .
Theorem 4. Assume that one of the parameters u: $=-n$, for some fixed i $=$

1, \ldots , 7. Then the following identity takes place
$\Phi(u_{6}-,u_{7}+)-\Phi(\mathrm{u})=$ (2.13)

$\Phi_{+}(u_{6}-)\frac{[u_{0}+1,u_{0}+2,u_{7}-u_{6}+1,u_{7}+u_{6}-u_{0}-1]}{[1+u_{0}-u_{6},2+u_{0}-\mathrm{u}_{6},u_{0}-u_{7},1+u_{0}-u_{7}]}.\cdot\prod_{=1}^{5}\frac{[u.]}{[1+u_{0}-u_{\dot{1}}]}.$ .
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Proof. We have

$\Phi(u_{6}-, u_{7}+)-\Phi(\mathrm{u})=\sum_{k=0}^{n}C_{k}($ $\frac{[u_{6}-1,u_{7}+1]_{k}}{[2+u_{0}-u_{6},u_{0}-u_{7}]_{k}}$ (2.14)

$- \frac{[u_{6},u_{7}]_{k}}{[1+u_{0}-u_{6},1+u_{0}-u_{7}]_{k}})=\sum_{k=0}^{n}C_{k}\frac{[u_{6}-1,u_{7}]_{k}}{[1+u_{0}-u_{6},u_{0}-u_{7}]_{k}}\mathrm{Y}_{k}$ ,

where

$C_{k}= \frac{[u_{0}+2k]}{[u_{0}]}\dot{.}\prod_{=0}^{5}\frac{[u.]_{k}}{[1+u_{0}-u_{\dot{1}}]_{k}}$

.
,

$\mathrm{Y}_{k}=\frac{[u_{0}-u_{6}+1,u_{7}+k]}{[u_{7},u_{0}-u_{6}+k+1]}-\frac{[u_{0}-u_{7},u_{6}-1+k]}{[u_{6}-1,u_{0}-u_{7}+k]}$ .
The expression for $\mathrm{Y}_{k}$ can be simplified using the identity (2.3):

$\mathrm{Y}_{k}=\frac{[k,k+u_{0},u_{7}-u_{6}+1,u_{7}+u_{6}-u_{0}-1]}{[u_{7},u_{0}-u_{6}+k+1,u_{6}-1,u_{0}-u_{7}+k]}$ .

Substituting this into (2.14) and taking into account that $[u]_{k+1}=[u][u+1]_{k}$ , we
arrive at (2.13). 0

Remark 2. If $u_{6}=-n$ or $u_{7}=-n$ we should replace the upper limit of summation
in (2.14) to $n+1$ or n-1 respectively.

Let us replace the parameters $u_{6}$ , u7 in (2.13) by $u_{4}$ , t&5 and set $u_{6}+u_{7}=1+u_{0}$

which reduces the corresponding $12\mathrm{V}\mathrm{n}$ series to IOV9. Assume that $u_{4}=$ $N,$ $us=$
$2u0+1-u_{1}-u_{2}-u_{3}+N$ and denote as $S_{N}(u_{0}, \ldots,u_{3})$ the IOV9 series standing
on the left-hand side of (2.8). Then contiguous relation (2.13) takes the form

$S_{N+1}(u\mathit{0}, \ldots,u_{3})=S_{N}(u_{0}, \ldots,u_{3})-S_{N}(u_{0}+2,u_{1}+1,u_{2}+10\mathrm{V}9+1)$

$\mathrm{x}\frac{[u_{0}+1,u_{0}+2,u_{5}+N+1,u_{5}-N-u_{0}-1]}{[u_{0}+1+N,u_{0}+2+N,u_{0}-u_{5},u_{5}-u_{0}-1]}\prod_{r=1}^{3}\frac{[u_{r}]}{[u_{0}+1-u_{r}]}.(2.15)$

For $N=1$ the sum (2.8) is asimple consequence of (2.3). Suppose that (2.8) is valid
for some fixed $N\geq 1$ . Substitute the right-hand side of (2.8) into the right-hand
side of (2.15). It can be checked that, after an application of the identity (2.3), this
gives the formula (2.8) for $N$ replaced by $N+1$ , that is we prove inductively the
Prenkel-Turaev sum for arbitrary integer $N$ . As shown in [21], the transformation
(2.9) can be deduced from (2.8) in an elementary way as well.

Theorem 5. Under the same assumptions as in the previous theorem, the following
contiguous relation holds true

$\frac{[u_{7}]}{[1+u_{0}-u_{6},2+u_{0}-u_{6}]}\prod_{\dot{|}=1}^{5}[1+u_{0}-u:-u_{6}]\Phi_{+}(u_{6}-)$

$= \frac{[u_{6}]}{[1+u_{0}-u_{7},2+u_{0}-u_{7}]}\prod_{\dot{|}=1}^{5}[1+u_{0}-u:-u_{7}]\Phi_{+}(u_{7}-)$

$+ \frac{[u_{7}-u_{6}]}{[1+u_{0},2+u_{0}]}\prod_{\dot{|}=1}^{5}[1+u_{0}-u:]\Phi(\mathrm{u})$. (2.16)
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Proof. Suppose that $u\tau$ $=-n$. Then, after the application of elliptic Bailey trans-
formation (2.10) to all three $12V_{11}$ series in (2.16), we see that this identity is
equivalent to the equality

$\Phi(r_{6}-, r_{1}+)-\Phi(\mathrm{r})=\Phi_{+}(r_{6}-)$ (2.17)

$\mathrm{x}\frac{[r_{0}+1,r_{0}+2,r_{1}-r_{6}+1,r_{1}+r_{6}-r_{0}-1,r_{7}]}{[1+r_{0}-r_{6},2+r_{0}-r_{6},r_{0}-r_{1},1+r_{0}-r_{1},1+r_{0}-r_{7}]}\dot{.}\prod_{=2}^{5}[1+r_{0}\mathrm{i}^{[r]}-r\dot{.}]$ ,

which coincides with the previous contiguous relation after achange of notations for
parameters. Similarly, we can prove identity (2.16) for $u_{i}=-n$ , $i=1$ , $\ldots$ ,6. $\square$

3. AFAMILY OF DISCRETE BIORTHOGONAL FUNCTIONS

Introduce parameters $d_{:}$ , $i=1$ , $\ldots$ , 5, and $x_{0,1,2}$ satisfying the relations $x_{2}=$

$x_{0}+x_{1}$ and $\sum_{\dot{|}=1}^{5}d:=1+2(x0+x_{2})$ (the balancing condition). We shall need
the following three sequences of numbers $\alpha_{k},\beta_{k}$ , $\lambda_{\mathrm{k}}$ and aparametrization of the
argument of rational functions $z$ in terms of an auxiliary variable $u$ :

$\alpha_{k}=\frac{[k-x_{2}+e_{1},k-x_{2}+e_{2}]}{[k-x_{2}+d_{1},k-x_{2}+d_{2}]}$ , $\beta_{k}=\frac{[k-e_{1}+1,k-e_{2}+1]}{[k-d_{1}+1,k-d_{2}+1]}$,

$\lambda_{k}=\frac{[k+x_{0}-e_{1},k+x_{0}-e_{2}]}{[k+x_{0}-d_{1},k+x_{0}-d_{2}]}$, $z(u)= \frac{[u,u+e_{2}-e_{1}]}{[u+d_{2}-e_{1},u+d_{1}-e_{1}]}$ , (3.1)

where $e_{1}$ ,e2 are arbitrary parameters with the restrictions $e_{1}+e_{2}$ $=d_{1}+d_{2}$ and
$e_{1}\neq d_{1,2}$ . Using (2.3), we derive the following relations

$z(u)- \alpha_{k}=\frac{[k+u+e_{2}-x_{2},k-u+e_{1}-x_{2},d_{2}-e_{1},e_{1}-d_{1}]}{[u+d_{2}-e_{1},u+d_{1}-e_{1},k-x_{2}+d_{1},k-x_{2}+d_{2}]}$, (3.2)

$z(u)- \beta_{k-1}=\frac{[k+u-e_{1},k-u-e_{2},d_{2}-e_{1},e_{1}-d_{1}]}{[u+d_{2}-e_{1},u+d_{1}-e_{1},k-d_{1},k-d_{2}]}$, (3.3)

$z(u)- \lambda_{k}=\frac{[k+u+x_{0}-e_{1},k-u+x_{0}-e_{2},d_{2}-e_{1},e_{1}-d_{1}]}{[u+d_{2}-e_{1},u+d_{1}-e_{1},k+x_{0}-d_{1},k+x_{0}-d_{2}]}$ . (3.4)

Introduce the functions

4 $\mathrm{z}(\mathrm{u})=12V_{11}(1-x_{1}$ ; $1+x_{0}-d_{3},1+x_{0}-d_{4},1+x_{0}-d_{5}$ ,
$1+u+x_{0}-e_{1},1-u+x_{0}$ -e2, $1-x_{2}+n,$ -n). (3.5)

Proposition 6. The functions $R_{n}(z)$ defined by (3.5) are rational functions of the
type $[n/n]$ of the argument $z(u)$ and the poles of $R_{n}(z)$ are located at the points

$\alpha_{j}$ , $j=1$ , $\ldots$ , $n$ .

Proof. By the definition of $r+1V$, series, we have

$R_{n}(z(u))= \sum_{k=0}^{n}C_{k}\frac{[1+u+x_{0}-e_{1},1-u+x_{0}-e_{2}]_{k}}{[1+u-x_{2}+e_{2},1-u-x_{2}+e_{1}]_{k}}$ , (3.6)

where $C_{k}$ are some coefficients not depending on $u$ . Prom (3.2) and (3.4), we have

$\prod_{\dot{|}=1}^{k}z-\mathrm{i}=\frac{[1-x_{2}+d_{1},1-x_{2}+d_{2},1+u+x_{0}-e_{1},1-u+x_{0}-e_{2}]_{k}}{[1+x_{0}-d_{1},1+x_{0}-d_{2},1+u-x_{2}+e_{2},1-u-x_{2}+e_{1}]_{k}}z-\alpha_{\dot{1}}\lambda$. (3.7)
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Comparing (3.6) and (3.7), we see that

$R_{n}(z(u))= \sum_{k=0}^{n}\tilde{C}_{k}\prod_{i=1}^{k}\frac{z(u)-\lambda_{i}}{z(u)-\alpha_{i}}$, (3.8)

where $\tilde{C}_{k}$ do not depend on z, that is $R_{n}(z(u))$ is asum of rational functions of the
type $[k/k]$ having poles at z $=\alpha:$ , i $=1,$ 2, \ldots , n. This proves the proposition. Cl

Consider the conditions of simplicity of poles $\alpha:$ . Using (2.3), we find

$\alpha_{k}-\alpha_{\epsilon}=\frac{[e_{1}-d_{1},e_{1}-d_{2},k-s,k+s+d_{1}+d_{2}-2x_{2}]}{[k-x_{2}+d_{1},k-x_{2}+d_{2},s-x_{2}+d_{1},s-x_{2}+d_{2}]}$ . (3.9)

It is seen that $\alpha_{k}=\alpha_{\epsilon}$ for $k\neq s$ in the following cases. First, if $e_{1}=d_{1,2}$ , which
is forbidden. Second, if $(\mathrm{m}\mathrm{i}+m_{2}\tau)/\sigma$ is an integer for at least one pair of integers
$m_{1,2}\in \mathbb{Z}$ , so that $[n]=0$ for some integer $n$. This is an elliptic analogue of the
root of unity situation $q^{n}=1$ for $q$-special functions requiring aspecial treatment
(see, e.g. [22]). Finally, if $d_{1}+d_{2}-2x_{2}=(m_{1}+\tau m_{2})/\sigma-N-2$ with $N$ apositive
integer, $m_{1,2}\in \mathrm{Z}$. In the following, we assume that none of these conditions is
satisfied.

Substituting into contiguous relations (2.13) and (2.16) the $12V_{11}$ series defining
rational functions $R_{n}(z)$ , we get the following three term recurrence relation (for
details, see [25, 26, 27] $)$

$\epsilon_{n}a_{n}(z-\alpha_{n+1})(R_{n+1}(z)-R_{n}(z))-\epsilon_{n-1}b_{n}(z -\beta_{n-1})(R_{n}(z)-R_{n-1}(z))$

$=c_{n}(z -\lambda_{1})R_{n}(z)$ , $n=0,1,2$ , $\ldots$ , (3.10)

where the second term is equal to zero for n $=0$ . The recurrence coefficients have
the form

$\epsilon_{n}=\frac{[n+2-x_{1},n+3-x_{1},n-x_{0},n-x_{0}-1]}{[2-x_{1},3-x_{1},2n+2-x_{2},-x_{0}-1]}\dot{.}\prod_{=1}^{5}[1+x_{0}\mathrm{i}^{2}[1-x+-d\dot{.}]d]$,

$a_{n}= \frac{[n+1-x_{2}]}{[n+2-x_{1},n+3-x_{1}]}.\cdot\prod_{=1}^{5}[n+1-x_{2}+d:]$ ,

$b_{n}= \frac{[n]\prod_{=1}^{5}[n-d_{\dot{1}}]}{[n-2-0,n-1-x_{0}]}i$ , $c_{n}= \frac{[2n+1-x_{2}]}{[2-x_{1},3-x_{1}]}.\cdot\prod_{=1}^{5}[1-x_{2}+d:]$ .

It is convenient to introduce the following combinations of theta functions en-
tering the recurrence coefficients

$G_{n}= \frac{[n+1-x_{2},n-x_{0}]\prod_{\dot{|}=1}^{5}[n+1-x_{2}+d\dot{.}]}{[2n+1-x_{2},2n+2-x_{2},n+2-x_{1}]}$ ,

$D_{n}= \frac{[n,n+1-x_{1}]\prod_{=1}^{5}[n-d.]}{[2n-x_{2},2n+1-2,n-x0-1]}i.$ .

$h_{n}=. \cdot\prod_{=1}^{n}G:_{-1}D:=\frac{[1,1-x_{2}]_{n}}{[1-x_{2},2-x_{2}]_{2n}}.\cdot\prod_{=1}^{5}[1-d:, 1-x_{2}+d:]_{n}$. (3.10)
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Define also the following polynomials of the $n$-th degree $P_{n}(z)$ :
$Pn(z)=\kappa_{n}A_{n}(z)R_{n}(z)$ , (3.12)

$\kappa_{n}=G_{n-1}\cdots G_{1}G_{0}=\frac{[1-x_{2},-x_{0}]_{n}\prod_{i=1}^{5}[1-x_{2}+d_{i}]_{n}}{[1-x_{2}]_{2n}[2-x_{1}]_{n}}$.

Then it is not difficult to see from (3.10) that $P_{n}(z)$ satisfy the following three term
recurrence relation

$P_{n+1}(z)+(v_{n}-\rho_{n}z)P_{n}(z)$ $+u_{n}(z-\alpha_{n})(z-\beta_{n-1})P_{n-1}(z)=0$, (3.13)

$u_{n}=G_{n-1}D_{n}$ , $\rho_{n}=G_{n}+D_{n}+\frac{[x_{0}+1]\prod_{=1}^{5}[d\dot{.}-x_{0}-1]}{[n+2-x_{1},n-1-x_{0}]}\dot{.}$ ,

$v_{n}=G_{n} \alpha_{n+1}+D_{n}\beta_{n-1}+\frac{[x_{0}+1]\prod_{=1}^{5}[d_{\dot{1}}-x_{0}-1]}{[n+2-1,n-1-x\mathrm{o}]}i\lambda_{1}$ .
Impose now the constraint

$d_{3}=x_{2}-N-1+\delta$ , $\deltaarrow 0$ , (3.14)

where $N$ is apositive integer. Note that for $\deltaarrow 0$ the rational function $R_{N+1}(z)$

is not well defined because one of the coefficients in the series (3.5) diverges (there
is asimple pole in $\delta$). However, the polynomial $P_{N+1}(z)$ in (3.12) is finite because
the coefficient $\kappa_{N+1}$ contains asimple zero in $\delta$ .
Proposition 7. Zeros of the polynomial $P_{N+1}(z)$ have the following form

$z_{\epsilon}= \lambda_{\epsilon+1}=\frac{[s+x_{0}-e_{1}+1,s+x_{0}-e_{2}+1]}{[s+x_{0}-d_{1}+1,s+x_{0}-d_{2}+1]}$ , (3.15)

where $s=0,1$ , $\ldots$ , N. These zeros are simple provided $[n]\neq 0$ for some $n\in \mathbb{Z}$ and
$2x0-d_{1}-d_{2}\neq(m_{1}+m_{2}\tau)/\sigma-2-M$ (3.16)

for some integers M $>0$ and $m_{1,2}\in \mathrm{Z}$ .
$Pro\mathrm{o}/$. In the limit $\deltaarrow 0$ the coefficient $\kappa_{N+1}arrow 0$ because of the factor $[N+1-$
$x_{2}+d_{3}]$ . As to the series (3.8), for $n=N+1$ only the last term diverges due to
the factor $1/[N+1-x_{2}+d_{3}]$ . As aresult, from (3.8) we get

$P_{N+1}(z)= \gamma_{N+1}\dot{.}\prod_{=0}^{N}(z-z:)$ , $\gamma_{N+1}=.\cdot\frac{\prod_{=1}^{5}[1+x_{0}-d.]_{N+1}}{[2-x_{1}+N]_{N+1}}.$ ,

where $Z:=\lambda_{i+1}$ . The condition of simplicity of zeros $z_{\epsilon}(3.16)$ is established in the
same way as for the poles $\alpha:$ . In what follows, we will assume that the condition
(3.16) holds and all zeros $z_{\epsilon}$ are simple. 0

Using these zeros $z_{\epsilon}$ , in $[25, 26]$ we have established that rational functions (3.5)
and

$T_{n}(z(u))=12V_{11}(2+x_{0}-d_{1}-d_{2;}2+x0+x_{2}-d_{1}-d_{2}-d_{3}$ ,
$2+x_{0}+x_{2}-d_{1}-d_{2}-d_{4},2+x0$ $+x_{2}-d_{1}-d_{2}-d_{5}$ ,
$1-x_{2}+n$ , $1+u+x0-e_{1},1-u+x0$ -e2, $-n$) (3.17)

with $n=0,1$ , $\ldots$ , $N$ and $d_{3}=x_{2}-N-1$ satisfy the biorthogonality condition

$\sum_{\epsilon=0}^{N}R_{n}(z_{\epsilon})T_{m}(z_{\epsilon})\omega_{\epsilon}=f_{n}\delta_{nm}$, (3.18)
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for the following discrete set of values of the argument

z $=z_{\epsilon}\equiv \mathrm{z}(\mathrm{u}3)$ , $u_{s}=s+x_{0}+1$ -e2, s $=0,$ 1, \ldots , N, (3.19)

and the weight function $\omega_{\epsilon}$ and normalization constants $f_{n}$

$\omega_{\epsilon}=\frac{[2x_{0}+2-d_{1}-d_{2}+2s][-N,2x_{0}+2-d_{1}-d_{2}]_{\epsilon}}{[2x_{0}+2-d_{1}-d_{2}][1,2x_{0}+3-d_{1}-d_{2}+N]_{\epsilon}}$

$\mathrm{x}\frac{[x_{0},1+d_{4}-x_{2},1+d_{5}-x_{2},1+x_{0}+x_{2}-d_{1}-d_{2}]_{\epsilon}}{[2-x_{1},3+x_{0}-d_{1}-d_{2},-N+d_{4},-N+d_{5}]_{\mathrm{g}}}$, (3.20)

$f_{n}= \kappa\frac{[1-x_{2}][1,2-x_{2}+N,2-x_{1}]_{n}}{[1-x_{2}+2n][-N,1-x_{2},-x_{0}]_{n}}$

$\mathrm{x}\frac{[3+x_{0}-d_{1}-d_{2},1-d_{4},1-d_{5}]_{n}}{[-1-x_{0}-x_{2}+d_{1}+d_{2},1+d_{4}-x_{2},1+d_{5}-x_{2}]_{n}}$, (3.21)

$\kappa=\frac{[2-x_{2},x_{2}-d_{4}-d_{5},1+x_{0}-d_{4},1+x_{0}-d_{5}]_{N}}{[1-d_{4},1-d_{5},2-x_{1},x_{0}+x_{2}-d_{4}-d_{5}]_{N}}$ . (3.22)

For ${\rm Im}(\tau)arrow+\infty$ these discrete BRF reduce to the Wilson $10\phi_{9}$ family of functions
$[33, 34]$ . For adiscussion of self-duality properties of $R_{n}(z_{\epsilon})$ , $T_{n}(z_{\epsilon})$ , difference
equations for them, and adivided difference operator lowering the “degree” $n$ of
these rational functions, see [24, 26, 27].

Biorthogonality conditions for continuous BRF $R_{n}(z)$ , $T_{n}(z)$ (or elliptic exten-
sions of the Rahman $10\phi_{9}$ family of BRF [16] $)$ and their non-rational functions
bilinear generalization have been established in [19]. The elliptic beta integral, dis-
covered in [18], plays acentral role in the corresponding considerations. All these
functions extend essentially the available set of classical special functions [1].

4. ATERMINATING CONT1NUED FRACTION

In this section, we describe the details of derivation of the terminating contin-
ued fraction announced in [27]. This fraction is an elliptic generalization of the
$10\phi \mathfrak{g}$ family of terminating continued fractions constructed by Gupta and Masson
[10, 11, 14]. The latter represents an extension of the Watson $q$-hypergeometric se-
ries continued fraction [30] which, in turn, is a $q$-analogue of the famous Ramanujan
Entry 40 continued fraction built from aspecial case of the very-well-poised bal-
anced hypergeometric function $9F8[4, 17]$ .

Suppose we have athree term recurrence relation
$\psi_{n+1}=\xi_{n}\psi_{n}+\eta_{n}\psi_{n-1}$ , $n\in \mathrm{N}$, (4.1)

for some nonsingular coefficients $\xi_{n}$ , $\eta_{n}$ . Denote as $U_{n}$ and $V_{n}$ two sequences sat-
isfying (4.1) with the initial conditions $U_{0}=0$ , $U_{1}=1$ and $V_{0}=1$ , $V_{1}=\xi_{0}$ . The
ratio $U_{n}/V_{n}$ is known to be equal to the following continued fraction [13]

$\frac{U_{n}}{V_{n}}=$

1
$\eta_{1}$

$n=1,2$, $\ldots$ . (4.2)
$40+$

$\xi_{1}+\frac{\eta_{2}}{\xi_{2}+\ldots+\frac{\eta_{n-1}}{\xi_{n-1}}}$

In the case of orthogonal polynomials (given by the sequence $V_{n}$ ), $\xi_{n}$ are linear
in the argument of polynomials $z$ and $\eta_{n}$ do not depend on $z$ . When $\eta_{n}(z)$ are
quadratic in $z$ and $\xi_{n}(z)$ are linear in $z$ , we get continued fractions named as $R_{II}$
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fractions in [12] (they are known also as osculatory continued fractions [35]). As
we know such three term recurrence relations lead to BRF. We set

$\xi_{n}(z)$ $=\rho_{n}z-v_{n}$ , $\eta_{n}(z)=-u_{n}(z-\alpha_{n})(z-\beta_{n-1})$, (4.3)

where $\rho_{n}$ , $v_{n}$ , $u_{n}$ , $\alpha_{n},\beta_{n}$ are some sequences of numbers. Then $V_{n}(z)$ $=P_{n}(z)$ are
the $n$-th degree polynomials entering numerators of BRF and they satisfy the initial
conditions $P_{0}=1$ , $P_{1}(z)=\rho_{0}z-v_{0}$ . The polynomials $U_{n}(z)=P_{n-1}^{(1)}(z)$ , called the
associated polynomials, have the degree $n-1$ . They satisfy the recurrence relation

$P_{n}^{(1)}(z)$ $+(v_{n}-\rho_{n}z)P_{n-1}^{(1)}(z)+u_{n}(z-\alpha_{n})(z-\beta_{n-1})P_{n-2}^{(1)}(z)=0$ (4.4)

with the initial conditions $P_{-1}^{(1)}=0$, $P_{0}^{(1)}(z)$ $=1$ .
Substituting recurrence coefficients (4.3) into (4.2), we get

$F_{N}(z) \equiv\frac{P_{N}^{(1)}(z)}{P_{N+1}(z)}=$
1

(4.5)

$\rho_{0}z-v_{0}-\frac{u_{1}(z-\alpha_{1})(z-\beta_{0})}{\rho_{1}z-v_{1}-\ldots-\frac{u_{N}(z-\alpha_{N})(z-\beta_{N-1})}{\rho_{N}z-v_{N}}}$

Since $F_{N}(z)$ is arational function of $z$ , we can expand it into the partial fraction:

$F_{N}(z)= \sum_{\epsilon=0}^{N}\frac{g_{\epsilon}}{z-z_{\epsilon}}$ , (4.6)

where $z_{\epsilon}$ , $s=0,1$ , $\ldots$ , $N$, are zeros of the polynomial $P_{N+1}(z)$ and

$g_{\epsilon}= \frac{P_{N}^{(1)}(z_{\epsilon})}{P_{N+1}’(z_{\epsilon})}$ (4.7)

We assume that $P_{N+1}(z)$ has only simple zeros, that is $z_{\epsilon}\neq z_{\epsilon}’$ for $s\neq s’$ .
Any two solutions $U_{n}$ , $V_{n}$ of the recurrence relation (4.1) satisfy the Wronskian

type relation

$U_{n+1}V_{n}-U_{n}V_{n+1}=(-1)^{n}\eta_{1}\cdots$ $\eta_{n}(U_{1}V_{0}-U_{0}V_{1})$ ,

which in our case yields

$P_{n}(z)P_{n}^{(1)}(z)-P_{n+1}(z)P_{n-1}^{(1)}(z)$ $=h_{n}A_{n}(z)\tilde{B}_{n}(z)$ , (4.3)

where $h_{n}=u_{1}u_{2}\cdots u_{n}$ and

$A_{n}(z)= \dot{.}\prod_{=1}^{n}(z-\alpha:)$ , $\tilde{B}_{n}(z)=\prod_{i=1}^{n}(z-\beta\dot{.}-1)$.

Taking $n=N$ and $z=z_{\epsilon}$ , $s=0,1$ , $\ldots$ , $N$, in (4.8), we find $P_{N}^{(1)}(z_{\epsilon})$ in terms
of $P_{N}(z_{\epsilon})$ , $h_{n},A_{n}(z_{\epsilon})$ and $\tilde{B}_{N}(z_{\epsilon})$ . This results in the following expression for $g_{\delta}$

convenient for computations:

$g_{\epsilon}= \frac{h_{N}A_{N}(z_{\epsilon})\tilde{B}_{N}(z_{\epsilon})}{P_{N+1}’(z_{\epsilon})P_{N}(z_{\epsilon})}$. (4.9)

Consider now the explicit family of elliptic BRF $R_{n}(z(u))$ defined in (3.5) and
calculate $g_{S}$ for corresponding polynomials (3.12) with $d_{3}=x_{2}-N-1$ . In This
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case $u_{N+1}=0$ and the continued fraction (4.5) terminates automatically. First of
all notice that

$P_{N+1}’(z_{s})=\gamma_{N+1}(z_{s}-z_{0})\cdots(z_{\epsilon}-z_{s-1})(z_{s}-z_{s+1})\cdots(z_{s}-z_{N})$ . (4.10)

This expression can be calculated using the relation

$z_{s}-z_{k}= \mu_{s}\frac{[k-s,2+k+s+2x_{0}-d_{1}-d_{2}]}{[k+x_{0}-d_{1}+1,k+x_{0}-d_{2}+1]}$ , (4.11)

$\mu_{\epsilon}=\frac{[d_{2}-e_{1},e_{1}-d_{1}]}{[s+1+x_{0}-d_{1},s+1+x_{0}-d_{2}]}$ .
As aresult,

$P_{N+1}’(z_{\epsilon})= \gamma_{N+1}\mu_{\epsilon}^{N}\frac{[s+1+x_{0}-d_{1},s+1+x_{0}-d_{2}]}{[2s+2+2x_{0}-d_{1}-d_{2}]}$

$\mathrm{x}\frac{[s+2+2x_{0}-d_{1}-d_{2}]_{N+1}[1]_{N}[1]_{\epsilon}}{[1+x_{0}-d_{1},1+x_{0}-d_{2}]_{N+1}[-N]_{\epsilon}}$ .

The polynomial $\tilde{B}_{n}(z_{\epsilon})$ is easily found to be

$\tilde{B}_{n}(z_{\epsilon})=\mu_{\epsilon}^{n}\frac{[s+2+x_{0}-d_{1}-d_{2},-s-x_{0}]_{n}}{[1-d_{1},1-d_{2}]_{n}}$ .

Substituting $d_{3}=x_{2}-N-1$ and (3.19) into (3.5) for $n=N$, we find
$R_{N}(z_{\mathrm{g}})=10V_{9}(1-x_{1}$ ; $1+x0-d_{4},1+x\mathit{0}-d_{5}$ ,

$N-x_{2}+1$ , $s+2+2x_{0}-d_{1}-d_{2},$ $-s)$ . (4.12)

This very-well-poised elliptic hypergeometric series can be summed using the Fren-
kel-Turaev formula (2.8), which yields

$R_{N}(z_{\epsilon})= \frac{[2-x_{1},d_{4}+d_{5}-x_{0}-x_{2},-N+d_{4},-N+d_{5}]_{\epsilon}}{[1+d_{4}-x_{2},1+d_{5}-x_{2},1+x_{0}-N,d_{4}+d_{5}-1-N-x_{0}]_{\mathrm{g}}}$ . (4.13)

Taking into account that $Pn(zs)/An(z8)=\kappa_{N}R_{N}(z_{\epsilon})$ and substituting all the
necessary entries into (4.9), we find

$g_{s}= \frac{t_{N}[2s+2+2x_{0}-d_{1}-d_{2}]}{[s+1+x_{0}-d_{1},s+1+x_{0}-d_{2}]}$ (4.14)

$\mathrm{x}\frac{[x_{0}+1,2+2x_{0}-d_{1}-d_{2},1+d_{4}-x_{2}]_{\epsilon}}{[1,2+x_{0}-d_{1}-d_{2},3+2x_{0}-d_{1}-d_{2}+N]_{\epsilon}}$

$\mathrm{x}\frac{[1+d_{5}-x_{2},1+x_{0}+x_{2}-d_{1}-d_{2},-N]_{\epsilon}}{[2-x_{1},d_{4}-N,d_{5}-N]_{\epsilon}}$ ,

$t_{N}= \frac{[1-d_{4},1-d_{5},2-x_{1},2+x_{0}-d_{1}-d_{2}]_{N}}{[2-x_{2},1+x_{0}-d_{4},1+x_{0}-d_{5},2+2x_{0}-d_{1}-d_{2}]_{N+1}}$.

Now we may compute the continued fraction itself:

$F_{N}(z(u))= \sum_{\epsilon=0}^{N}\frac{g_{\epsilon}}{z(u)-z_{\epsilon}}=\frac{[u+d_{2}-e_{1},u+d_{1}-e_{1}]}{[d_{2}-e_{1},e_{1}-d_{1}]}$

$\cross\sum_{\epsilon=0}^{N}g_{\epsilon}\frac{[s+1+x_{0}-d_{1},s+1+x_{0}-d_{2}]}{[s+1+u+x_{0}-e_{1},s+1-u+x_{0}-e_{2}]}$

$= \frac{t_{N}[2+2x_{0}-d_{1}-d_{2},u+d_{2}-e_{1},u+d_{1}-e_{1}]}{[d_{2}-e_{1},d_{1}-e_{1},u+1+x_{0}-e_{1},u-1-x0+e_{2}]}12V_{11}(u0;u_{1}, \ldots, u_{7})$ ,
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$u_{0}=2+2x_{0}-d_{1}-d_{2}$ , $u_{1}=1+u+x_{0}-e_{1}$ , $u_{2}=1-u+x_{0}$ -e2, $u_{4}=1+x_{0}$ ,

$u_{3}=1+x_{0}+x_{2}-d_{1}-d_{2}$ , $u_{5}=1+d_{4}-x_{2}$ , $u\epsilon$ $=1+d_{5}-x_{2}$ , $u_{7}=-N$ .
Let us apply now to this $12V_{11}$ series the elliptic Bailey transformation (2.9). As a
result, we get

$F_{N}(z(u))=K_{N^{\frac{[u+d_{2}-e_{1},u+d_{1}-e_{1}]}{[u+1+x_{0}-e_{1},u-1-x_{0}+e_{2}]}}12}V_{11}(2-x_{1}$ ; 1, $1+x_{0}$ ,

$1+u-x_{2}+e_{2},1-u-x_{2}+e_{1},1+d_{4}-x_{2},1+d_{5}-x_{2},$ $-N)$ , (4.15)

$K_{N}=t_{N} \frac{[2+2x_{0}-d_{1}-d_{2}][3+2x_{0}-d_{1}-d_{2}]_{N}}{[d_{2}-e_{1},d_{1}-e_{1}][3-x_{1}]_{N}}$

$\mathrm{x}\frac{[2-d_{4}+x_{0},2-d_{5}+x_{0},x_{2}-N-1]_{N}}{[d_{4}-N,d_{5}-N,d_{1}+d_{2}-x_{0}-N-1]_{N}}$

$= \frac{[2-x_{1}]}{[2+N-x_{1},1+x_{0}-d_{4},1+x_{0}-d_{5},d_{2}-e_{1},d_{1}-e_{1}]}$ .

This gives the formula announced in [27]. Giving to the parameters entering the
$12V_{11}$ series special values, in the same way as it was done in the $10\phi 9$ case in [11],
we can reduce it to $10V_{9}$ series, sum them, and express corresponding continued
fractions as ratios of some products of theta functions. In general, the derived
elliptic extension of the Ramanujan-Watson-Gupta-Masson terminating continued
fraction is the most general known at present explicit continued fraction.

5. CONNECTIONS WITH MULTIPOINT $\mathrm{p}_{\mathrm{A}\mathrm{D}\acute{\mathrm{E}}}$ APPROXIMATION

In this section, we show an equivalence between the Cauchy-Jacobi interpolation
problem (CJIP) and the theory of BRF. For relevant references see, e.g. [9, 15, 28].
CJIP is aspecial case of amore general multipoint Pade approximation theory [3].

Consider aspecial CJIP of the $[(n-1)/n]$ type. Take ameromorphic interpola-
tion function $F(z)$ of acomplex argument $z$ together with afixed set of (distinct)
interpolation points $a:$ , $i=1,2$ , $\ldots$ . We are interested in the problem of construct-
ing polynomials $P_{n}(z)$ and $S_{n}(z)$ such that

(i) both $P_{n}(z)$ and $S_{n}(z)$ have the degree $n$ and the polynomials $P_{n}(z)$ are monic,
that is $P_{n}(z)=z^{n}+O(z^{n-1})$ ;

(ii) $P_{n}(a:)\neq 0$ for all $n,i\in \mathrm{N}$ ;
(iii) the following interpolation property

$\mathrm{F}(\mathrm{z})=\frac{S_{n-1}(a_{1})}{P_{n}(a.)}.\cdot$, $i=1,2$, $\ldots$ , $2n$ , (5.1)

holds true for all $n=1,2$, $\ldots$ .
It can be shown $[3, 15]$ that this problem has aunique solution under some weak

non-degeneracy condition. Its formal solution is based on the technique of divided
differences. Recall (see, e.g. [3]) that zer0-0rder divided difference of an arbitrary
function $f(z)$ in the point $a$:is defined as the value of this function at $z$ $=a:$ :
$D_{a_{1}}^{(0)}f(z)=\mathrm{f}(\mathrm{z})$ . The first-0rder divided difference is defined by the formula

$D_{a_{1},a_{2}}^{(1)}f(z)= \frac{f(a_{1})-f(a_{2})}{a_{1}-a_{2}}$ .
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The $n$-th order divided difference is defined by induction. Assume that the $(n-1)$-th
order divided $\mathrm{d}\mathrm{i}$ fference $D_{a_{1},\ldots,a_{j-1},a_{j}}^{(j-1)}f(z)$ is already defined. Then we set

$D_{a_{1},\ldots,a_{j},a_{j+1}}^{(j)}f(z)= \frac{D_{a_{1},\ldots,a_{j-1},a_{j}}^{(j-1)}f(z)-D_{a_{1\prime}\ldots,a_{\mathrm{j}-1},a_{j+1}}^{(j-1)}f(z)}{a_{j}-a_{j+1}}$ .

Hermite has found avery convenient formula for divided differences

$D_{a_{1},\ldots,a_{j+1}}^{(j)}f(z)= \frac{1}{2\pi i}\int_{\Gamma}\frac{f(\zeta)d\zeta}{(\zeta-a_{1})(\zeta-a_{2})\cdots(\zeta-a_{j+1})}$ , (5.2)

where the closed contour $\Gamma$ on the complex plane encircles all interpolation points
$a_{1}$ , $a_{2}$ , $\ldots$ , $a_{j+1}$ and the function $f(z)$ is analytic inside $\Gamma$ .

One can show [3] that the following conditions are necessary and sufficient for a
solvability of CJIP:

$D_{a_{1},a:_{2},\ldots,a:_{j+1}}^{(j)}.\cdot(P_{n}(z)F(z))=0$, $j=n,n+1$ , $\ldots$ , $2n-1$ , (5.3)

and (a non-degeneracy condition)
$D_{a.,a_{2},\ldots,a}^{(n_{1}-1)}.\dot{.}(:_{n}P_{n}(z)F(z))\neq 0$ , (5.4)

where $\{i_{1}, i_{2}, \ldots, i_{j+1}\}$ is an arbitrary permutation of the numbers 1, 2, ..., $j+1$ .
Hermite formula (5.2) allows us to rewrite condition (5.3) in avery convenient

form

$\int_{\Gamma}\frac{F(\zeta)P_{n}(\zeta)\zeta^{j}d\zeta}{(\zeta-a_{1})(\zeta-a_{2})\cdots(\zeta-a_{2n})}=0$ , $j=0,1$ , $\ldots$ , $n-1$ . (5.5)

But (5.5) is nothing else than biorthogonality condition (1.9) for the polynomials
$P_{n}(z)$ defining BRF provided one identifies $\alpha_{i}=\mathrm{a}2$ ) $i=1,2$ , $\ldots$ , $n$ , and $\beta.\cdot=a_{2:+1}$ ,
$i=0$, $\ldots$ , $n-1$ . The functional $\mathcal{L}$ is defined as

$\mathcal{L}\{f(z)\}=\int_{\Gamma}\frac{f(\zeta)F(\zeta)}{\zeta-\beta_{0}}d\zeta$. (5.6)

Non-degeneracy condition (5.4) can be rewritten as

$\int_{\Gamma}\frac{F(\zeta)P_{n}(\zeta)\zeta^{n}d\zeta}{(\zeta-a_{1})(\zeta-a_{2})\cdots(\zeta-a_{2n})}\neq 0$ . (5.7)

We see that CJIP is essentially equivalent to the theory of BRF.
It is instructive to see how the pair $R_{n}(z)$ , $T_{n}(z)$ of BRF appears in CJIP. Let

the polynomials $P_{n}(z)$ , $S_{n}(z)$ , $n=1,2$ , $\ldots$ , solve CJIP of the $[(n-1)/n]$ type for
an interpolation function $F(z)$ with the interpolation points $a_{1}$ , $\ldots$ , $a_{2n-1}$ , $a_{2n}$ . Let
polynomials $Q_{n}(z)$ , $U_{n}(z)$ , $n=1,2$, $\ldots$ , solve CJIP for the same function $F(z)$ and
amodified set of interpolation points $a_{1}$ , $\ldots$ , $a_{2n-1}$ , $a_{2n+1}$ (i.e. we replace the last
point $a_{2n}$ by the new point $a_{2n+1}$ , keeping $a_{1}$ , $\ldots$ , $a_{2n-1}$ intact):

$F(a:)= \frac{V_{n-1}(a_{1})}{Q_{n}(a.)}.\cdot$ , $i=1,2$, $\ldots$ , $2n-1,2n+1$.

We assume that non-degeneracy condition (5.4) is fulfilled for polynomials $P_{n}(z)$

and $Q_{n}(z)$ . Introduce the corresponding rational functions

$R_{\mathrm{n}}(z)= \frac{P_{n}(z)}{(z-a_{2})(z-a_{4})\cdots(z-a_{2n})}=\frac{P_{n}(z)}{(z-\alpha_{1})\cdots(z-\alpha_{n})}$,

$T_{n}(z)$ $= \frac{Q_{n}(z)}{(z-a_{3})(z-a_{5})\cdots(z-a_{2n\dagger 1})}=\frac{Q_{n}(z)}{(z-\beta_{1})\cdots(z-\beta_{n})}$ . (5.8)

187



Clearly, both $R_{n}(z)$ and $T_{n}(z)$ are rational functions of the type $[n/n]$ .
Theorem 8. The pair $R_{n}(z)$ , $T_{n}(z)$ of rational functions satisfies the biorthogonal-
ity relation

$\int_{\Gamma}\frac{R_{n}(\zeta)T_{m}(\zeta)F(\zeta)d\zeta}{\zeta-a_{1}}=h_{n}\delta_{nm}$, (5.9)

where $h_{n}\neq 0$ are some normalization constants.

Proof Assume that $m<n$ . Then, equality (5.9) is asimple consequence of
biorthogonality relation (5.5) and definition (5.8). Assume now that $m>n$ . In
this case we have the biorthogonality condition

$\int_{\Gamma}\frac{F(\zeta)Q_{n}(\zeta)\zeta^{j}d\zeta}{(\zeta-a_{1})(\zeta-a_{2})\cdots(\zeta-a_{2n-1})(\zeta-a_{2n+1})}=0$ , $j=0,1$ , $\ldots,n-1$ , (5.10)

for the polynomials $Q_{n}(z)$ . Then, relation (5.9) is asimple consequence of (5.10)
and (5.8). Finally, for $n=m$ we see that $h_{n}\neq 0$ because of (5.7).

We thus see that biorthogonality condition (1.7) coincides with (5.9) after the
identification of the functional $\mathcal{L}$ with the one defined in (5.6). 0

As far as we know, despite of the fact that relation (5.5) is well-known in the
theory of CJIP [15], the explicit identification of CJIP with the theory of BRF
expressed by (5.9) is anew result.

Remark 3. The moments $M_{k}.\cdot$ corresponding to BRF (5.8) are defined through the
divided differences as follows:

$M_{k} \dot{.}=\mathcal{L}\{\frac{1}{B_{i}(z)A_{k}(z)}\}=D_{a_{2},a_{4},\ldots,a_{2k},a_{1},a_{3},\ldots,a_{2:+1}}^{(\dot{|}+k+1)}F(z)$ . (5.11)

Now we would like to demonstrate how the recurrence relation of $R_{II}$ type for
the polynomials $P_{n}(z)$ can be derived from the theory of CJIP. Assume that the
polynomials $P_{n}(z)$ are monic: $P_{n}(z)=z^{n}+O(z^{n})$ . We denote by $r_{n}$ the coefficient
of the leading term of polynomials $S_{n}(z)$ , that is $S_{n}(z)=r_{n}z^{n}+O(z^{n-1})$ . Introduce
the function

$\psi_{n}(z)=F(z)-\frac{S_{n-1}(z)}{P_{n}(z)}$ . (5.12)

It has zeros at the points $z$ $=a_{1}$ ,a2, $\ldots$ , $a_{2n}$ , which follows from the interpolation
property (iii). Similarly, the function

$\psi_{n+1}(z)=F(z)-\frac{S_{n}(z)}{P_{n+1}(z)}$ (5.13)

has zeros at the points $z=a_{1}$ , a2, $\ldots$ , $a_{2n+1},a_{2n+2}$ . Consider the following combi-
nation of $\psi_{n}(z)$

$\chi_{n}(z)\equiv\psi_{n}(z)-\psi_{n+1}(z)=\frac{S_{n}(z)}{P_{n+1}(z)}-\frac{S_{n-1}(z)}{P_{n}(z)}=\frac{\mathrm{Y}_{2n}(z)}{P_{n}(z)P_{n+1}(z)}$ , (5.14)

where
$\mathrm{Y}_{2n}(z)=S_{n}(z)P_{n}(z)-P_{n+1}S_{n-1}(z)$

is apolynomial of degree $\leq 2n$ . Clearly, the function $\chi_{n}(z)$ has zeros at $z=$

$a_{1},a_{2}$ , $\ldots$ , $a_{2n}$ . This is possible if and only if the polynomial $\mathrm{Y}_{2n}(z)$ has exactly $2n$

zeros at the same points. Thus
$\mathrm{Y}_{2n}(z)=s_{n}(z -a_{1})(z-a_{2})\cdots(z-a_{2n})$ ,
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where $s_{n}=r_{n}-r_{n-1}$ is the leading coefficient of the polynomial $\mathrm{Y}_{2n}(z)$ . Analo
gously, from (5.12) we can obtain

$\rho_{n}(z)\equiv\frac{S_{n+1}(z)}{P_{n+2}(z)}-\frac{S_{n-1}(z)}{P_{n}(z)}=\frac{Z_{2n+1}(z)}{P_{n}(z)P_{n+2}(z)}$ , (5.15)

where
$Z_{2n+1}(z)=S_{n+1}(z)P_{n}(z)-P_{n+2}S_{n-1}(z)$

is apolynomial of degree $\leq 2n+1$ having zeros at $z=a_{1},a_{2}$ , $\ldots$ , $a_{2n}$ . This is
possible if and only if

$Z_{2n+1}(z)=(t_{n}z+\gamma_{n})(z-a_{1})\cdots(z-a_{2n})$ , (5.16)

where $t_{n}=r_{n+1}-r_{n-1}=s_{n}+s_{n+1}$ . Observe now that $\mathrm{p}\mathrm{n}(\mathrm{z})=\mathrm{X}\mathrm{n}(\mathrm{z})+\chi_{n+1}(z)$ ,
and, simplifying this expression, we arrive at the three term recurrence relation for
the polynomials $P_{n}(z)$ :

$s_{n}P_{n+2}(z)=(t_{n}z+\gamma_{n})P_{n+1}(z)-s_{n+1}(z-a_{2n+1})(z-a_{2n+2})P_{n}(z)$ , (5.17)

which coincides with recurrence relation (1.17). Note that in (5.17) we deal with
monic polynomials and it is easily verified that the leading terms in the left-hand
and right-hand sides of (5.17) coincide.

Consider also the role of Christoffel type transformations in the theory of CJIP.
Let $P_{n}(z)$ , $S_{n}(z)$ be apair of polynomials providing asolution of CJIP of the
$[(n-1)/n]$ tyPe for an interpolation function $F(z)$ and the interpolation points

$a_{1}$ , a2, $\ldots$ , $a_{2n}$ . Introduce anew interpolation function
$\tilde{F}(z)$ $=$ $D_{z,a_{1}}^{(1)}((z-\mu)F(z))$

$=$ $\frac{(z-\mu)F(z)-(a_{1}-\mu)F(a_{1})}{z-a_{1}}$ , (5.18)

where $\mu$ is an arbitrary parameter. We are seeking apair of polynomials $\tilde{P}_{n}(z)$ ,
$\tilde{S}_{n}(z)$ providing solution of CJIP of the $[(n-1)/n]$ type on the set of interpolation
points a2, $a_{3}$ , ..., $\mathrm{a}2\mathrm{n},a_{2n+1}$ .
Proposition 9. Monic polynomials $\tilde{P}_{n}(z)$ are obtained from the polynomials $P_{n}(z)$

by the following Christoffel type transformation

$\tilde{P}_{n}(z)=\frac{\xi_{n}P_{n+1}(z)+(1-\xi_{n})(z-a_{2n+1})P_{n}(z)}{z-\mu}$, (5.19)

where $\xi_{n}$ look as follows

$\xi_{n}=\frac{(\mu-a_{2n+1})P_{n}(\mu)}{P_{n}(\mu)(\mu-a_{2n+1})-P_{n+1}(\mu)}$ . (5.20)

$Pro\mathrm{o}/$. From the interpolation conditions, we have two relations

$\psi_{n}(z)\equiv F(z)-\frac{S_{n-1}(z)}{P_{n}(z)}=(z-a_{1})\cdots(z-a_{2n})\phi_{n}(z)$ , (5.21)

$\tilde{\psi}_{n}(z)$ $\equiv\tilde{F}(z)-\frac{\tilde{S}_{n-1}(z)}{\tilde{P}_{n}(z)}=(z-a_{2})\cdots(z-a_{2n+1})\tilde{\phi}_{n}(z)$ , (5.22)

where the functions $\phi_{n}(z),\tilde{\phi}_{n}(z)$ do not have singularities at $z=a_{1}$ , $\ldots$ , $a_{2n+1}$ .
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Subtracting (5.21) and (5.22) and taking into account (5.18), we get

$- \frac{S_{n-1}(z)}{P_{n}(z)}-\frac{(\mu-a_{1})F(a_{1})}{z-\mu}+\frac{z-a_{1}}{z-\mu}\frac{\tilde{S}_{n-1}(z)}{\tilde{P}_{n}(z)}$

$= \frac{\epsilon_{n}^{(1)}(z-a_{1})(z-a_{2})\cdots(z-a_{2n})}{(z-\mu)P_{n}(z)\tilde{P}_{n}(z)}$ , (5.23)

where $\epsilon_{n}^{(1)}$ are some constants.
Analogously, subtracting $\psi_{n+1}(z)$ and $\tilde{\psi}_{n}(z)$ , we get

$- \frac{S_{n}(z)}{P_{n+1}(z)}-\frac{(\mu-a_{1})F(a_{1})}{z-\mu}+\frac{z-a_{1}}{z-\mu}\frac{\tilde{S}_{n-1}(z)}{\tilde{P}_{n}(z)}$

$= \frac{\epsilon_{n}^{(2)}(z-a_{1})(z-a_{2})\cdots(z-a_{2n+1})}{(z-\mu)P_{n+1}(z)\tilde{P}_{n}(z)}$ (5.24)

with different constants $\epsilon_{n}^{(2)}$ . Subtracting (5.23) and (5.24) and taking into account
relation (5.14), we arrive the relation (5.19). The coefficients $\xi_{n}$ are uniquely deter-
mined from two properties: (i) both $P_{n}(z)$ and $\tilde{P}_{n}(z)$ are monic polynomials; (ii)
the right-hand side of (5.19) has no pole at $z=\mu$ .

Thus, the Christoffel type transformation corresponds to the transition from
initial CJIP to the modified CJIP with the interpolation function $\tilde{F}(z)$ and shifted
interpolation points a2, $a_{3}$ , .. . ’ $a_{2n+1}$ . $\square$

Note that interpolation functions $F(z)$ and $\kappa F(z)$ correspond to the same CJIP
denominator polynomials $P_{n}(z)$ and the scaled numerator polynomials $S_{n-1}(z)$

$arrow\kappa S_{n-1}(z)$ . This allows us to take the formal limit $\muarrow\infty$ , which corresponds
(up to an inessential common factor) to CJIP with the interpolation function

$\tilde{F}(z)=D_{z,a_{1}}^{(1)}=\frac{F(z)-F(a_{1})}{z-a_{1}}$ (5.25)

and the set of interpolation points a2, $a_{3}$ , ..., $a_{2n+1}$ . The corresponding CJIP de
nominator polynomials are

$\tilde{P}_{n}(z)=\tau_{n}(P_{n+1}(z)-(z-a_{2n+1})P_{n}(z))$ , (5.26)

where $\tau_{n}$ are normalization constants that guarantee monicity of the polynomials
$\tilde{P}_{n}(z)$ . Formula (5.26) is obtained from (5.19) by the limiting process $\muarrow\infty$ .

We call transformation (5.26) as an elementary Christoffel type transformation
at the point $a_{2n+1}$ . Its importance is illustrated by the following statement.

Theorem 10. Assume that $n$-th order polynomials $\tilde{S}_{n}(z),\tilde{P}_{n}(z)$ solve CJIP of the
type $[n/n]$ with the same interpolation function $F(z)$ as for $P_{n}(z)$ , but with the
different set of $\mathit{2}n+\mathit{1}$ interpolation points $a_{1}$ , a2, . . . ’ $a_{2n+1}$ :

$\mathrm{F}(\mathrm{z})=\frac{\tilde{S}_{n}(a_{\dot{1}})}{\tilde{P}_{n}(a\dot{.})}$ , i $=1,$ 2, \ldots , $2n+1$ . (5.27)

Then the denominator polynomials $\tilde{P}_{n}(z)$ of CJIP of the $[n/n]$ type are obtained
frorn the denominator polynomials $P_{n}(z)$ of CJIP of the $[(n-1)/n]$ type with the
help of (5.26)
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We omit the proof of this theorem (which is quite simple).
Using this result, we can construct asolution of CJIP of the $[(n-1+L)/n]$

type, where $L$ is an arbitrary positive integer. Denote corresponding numerator
and denominator polynomials by $S_{n-1}^{(L)}(z)$ and $P_{n}^{(L)}(z)$ respectively. CJIP of the
$[(n-1+L)/n]$ type means that we want to solve the interpolation problem

$F(a_{i})= \frac{s_{n-1+L(a_{i})}^{(L)}}{P_{n}^{(L)}(a_{i})}$ , $i=1,2$ , $\ldots$ , $a_{2n+L}$ .

The case $L=0$ corresponds to the considered $[(n-1)/n]$ CJIP. As we know,
for $L=1$ the denominator polynomials $P_{n}^{(1)}(z)$ are obtained from $P_{n}^{(0)}(z)$ by the
elementary Christoffel type transformation at the point $a_{2n+1}$ . Similarly, polyn0-
mials $P_{n}^{(2)}(z)$ are obtained from $P_{n}^{(1)}(z)$ by such transformation at the point $a_{2n+2}$ ,
or, equivalently, fro$\mathrm{m}$

$P_{n}^{(0)}(z)$ by two transformations at the points $a_{2n+1}$ , $a_{2n+2}$ .
Repeating this consideration, we arrive at the following statement.

Proposition 11. Denominator polynomials $P_{n}^{(L)}(z)$ for CJIP of the $[(n-1+L)/n]$
type are obtained from the polynomials $P_{n}^{(0)}(z)$ by means of $L$ successive elementary
Christoffel type transformations at the points $a_{2n+1}$ , $a_{2n+2}$ , $\ldots$ , $a_{2n+L}$ .
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cussions of some results of this paper. The first author is indebted to H. Rosengren
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