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1 Introduction

From the end of the 1990’s, discrete integrable
equations have been appearing in many fields,
e.g., algorithms and traffic flow [17, 18, 19, 20,
34]. Discrete integrable systems are expected
to be applied to engineering.

Forecasting is important in engineering. The
making of decisions in various industries is
heavily reliant on forecasting. Forecasting is
the dominant factor in decisions on how many
finished products should be made, how much
stock should be prepared and so on. In the
past there has been a tendency for forecasts to
be unduly optimistic. This has produced some
serious problems. Therefore, the accuracy of
forecasting is of great importance.

Growth curve models are used for forecast-
ing in many fields, e.g., ecology [3, 25, 35],
agriculture [26], life sciences [13], marketing
[1, 12], and software reliability growth models
(SRGMs) [14, 22, 36]. To forecast the ceiling,
we estimate parameters of the differential equa-
tion which provides the growth curve model.
The differential equations which are used gen-
erally have exact solutions. In the conventional
method, the differential equation’s parameters
are estimated by using an ordinary forward or
central difference equation as its approxima-
tion. Generally, the ordinary forward or central
difference equation does not have an exact so-
lution. Therefore, the difference equation does
not conserve the properties of the differential
equation.

Although a growth curve model has practi-
cal applications, one generally known point is
that the model does not provide accurate pa-
rameter estimates using the data available dur-
ing the early phases of the process being fore-

cast. The conventional method is only capable
of providing accurate estimates of parameters
at the end of the phase. For forecasting to be
of practical value, accurate estimates must be
obtained early in the phase.

In this paper, the application of discrete in-
tegrable equations to forecasting is discussed.
We focus on discrete integrable analogues of
the logistic equation, the Gompertz equation,
and the Riccati equation for forecasting in two
fields: marketing and SRGM. The remainder of
this paper is organized as follows. From Sect. 2
to Sect. 4 and in Sect. 6, we consider the fore-
casting of numbers of software faults or soft-
ware failures through an SRGM.

In Sect. 2, we describe discrete analogues of
the logistic curve model [30], which has been
observed in the testing of software systems
[23, 27]. The model is described by either of
two difference equations, which were proposed
by Morishita [15] and Hirota [5, 6], respectively.
We will see that both models yield accurate pa-
rameter estimates, even when there is only a
small amount of input data from actual soft-
ware testing.

Although the logistic curve model is one of
the S-shaped SRGMs, S-shaped software relia-
bility growth for actual projects is often more
closely described by the Gompertz curve than
by the logistic curve [2, 8, 21]. In Sect. 3,
we consider the Gompertz curve as an SRGM.
Firstly, we propose adiscrete Gompertz equa-
tion [28] that has an exact solution. We will see
that the proposed model provides accurate esti-
mates of parameters, enabling prediction early
in the testing phase of when the software will
be fit for release.

There is a further problem for software engi-
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neers and managers: they have had little guid-
ance as to which models are likely to be best for
a particular application. In Sect. 4, we propose
a criterion [31], together with a discrete SRGM,
for determining the absolute worth of a model.

In Sect. 5, we consider the Bass model,
which is the main impetus underlying behind
the recent diffusion research in marketing. The
author has previously proposed adiscrete form
of the Bass model [29]. This model provides
more accurate estimates of parameters than
is possible with the conventional Bass model.
Furthermore, parameter estimation of the dis-
crete Bass model overcomes the three short-
comings of parameter estimation by the con-
ventional (continuous) Bass model: the time-
interml bias, standard error, and multicolin-
earity.

The proposed models yield accurate aeti-
mates of parameters, even from small amounts
of input data. These models, however, are de
terministic equations, so they do not yield dis-
tributions of the estimates. In Sect. 6, we Pro-
pose a discrete stochastic logistic equation that
have an exact solution and describe an SRGM
that is based on this equation. This model
yields distributions of an estimate along with
the aetimatae themselves.

Finally, in Sect. 7, we summarize the raeults
of this paper.

2 Logistic curve model

2.1 Conventional logistic curve
model

The logistic curve model is described as

$\frac{dL(t)}{dt}=\frac{\alpha}{k}L(t)(k-L(t))$ , (1)

where $L(t)$ is the cumulative number of soft-
ware failures occurred up to testing time $t$ and
$\alpha$ and $k$ are constant parameters to be esti-
mated through regression analysis.

A solution of Eq. (1) is given by

$L(t)= \frac{k}{1+m\exp(-\alpha t)}$, (2)

where $k>0,$ $m>0,$ and $\alpha>0.$ The parameter
$k$ represents the total number of potential soft-
ware failures occurring over an infinitely long
duration or the initial number of faults inher-
$\mathrm{e}\mathrm{n}\mathrm{t}$ in the software system.

2.1.1 Conventional parameter estima-
tion 1

Regression analysis is generally used to esti-
mate total numbers of potential software fail-
ures, although there is a further conventional
method of estimation, which is described in
Sect. 2.1.2.

We take the following regression equation:

$\mathrm{Y}_{n}=A+BL_{n}$ , (3)

where

$t_{n}$ $=$ $n\delta$, (4)
$L_{n}$ $=$ $L(n\delta),$ and (5)

$\mathrm{Y}_{n}$ $=$
$\frac{\frac{L_{n\dagger 1}-L_{n-1}}{2\delta}}{L_{n}}$ . (6)

Here, $\delta$ is a constant difference interval.
Given regression coefficients $\hat{A}$ and $\hat{B},$ where

$\hat{A}$ means the vaJue of $A$ as aetimated through
regression analysis, aetimates of the parameters
$k,$ $\alpha,$ and $m$ can be obtained as

$\hat{k}$

$=$ $\frac{\hat{A}}{\hat{B}’}$ (7)

$\hat{\alpha}$ $=$
$\hat{A}$ , and (8)

$\hat{m}$ $=$ $\frac{\sum_{n=1}^{N}(\hat{k}-L_{n})}{\sum_{n=1}^{N}(L_{n}\exp(-\hat{\alpha}t_{n}))}$ . (9)

These estimatae depend on the difference inter-
$\mathrm{v}\mathrm{a}\mathrm{l}\delta,$ because Eq. (6) depends on $\delta$ .

The accuracy of estimatae thus derived is
said to be poor when there are only a few data
points. For accuracy, we require data points
up to at least one point after the point of in-
flection $(t_{n}= \underline{1}_{\mathrm{L}}\mathrm{o}m_{-,L_{n}}\alpha=\frac{k}{2}).$ We can judge
whether the obtained data includae the point
of inflection by checking whether or not $\frac{\overline{k}}{2}<L_{n}$

is satisfied, where $\overline{k}$ is predicted empiricauy or
statistically.

For the estimatae of parameters to be reli-
able, the following condition must be satisfied:

$w\overline{k}<L_{n}$ , (10)
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where $\overline{k}$ is predicted empirically or statistically 2.2 Discrete logistic curve models
and $w$ is a constant parameter, the value of

Two discrete analogues of the differential equa-which is empirically chosen from the range 0.6 tion (1) for the logistic curve model have al-to 0.8 [14].
ready been proposed. We propose a regression
equation that is appropriate for the estimation

2.1.2 Conventional parameter estima- of parameter for use with these equations.
tion 2

Another conventional method of estimation is
based on a modified exponential curve model
[24]. This model is described as

$y=cf$ ba. (11)

We rewrite the logistic curve model as

$\frac{1}{L(t)}=\frac{1}{k}+\frac{m}{k}\exp(-\alpha t)$ . (12)

This equation is in the form of the modified
exponential curve model.

When it is possible to place a model in
this form, parameters $a,b,$ and $c$ are estimated
through the following method of estimation. At
first, we divide the data set into three subsets,
each of which has the same number of data
points. If the number of data points is not $\mathrm{a}$

multiple of three, we discard the first one or
two points. Then we sum up the data in each
subset. Finally, parameters $a,$ $b,$ and $c$ are ob-
tained as,

$a$ $=$ $( \frac{S_{3}-S_{2}}{S_{2}-S_{1}})$ , (13)

$b$ $=$ $(S_{2}-S_{1}) \frac{a-1}{(a^{n}-1)^{2}}$ , (14)

$c$ $=$ $\frac{1}{n}\{S_{1}+(S_{1}-S_{2})\frac{1}{a^{n}-1}\},$ (15)

where $S_{1},$ $S_{2},$ and $S_{3}$ represent the summations
of all elements of the first, second, and third
subsets of the data, respectively, and $n$ repre-
sents the number of data points in each of the
subsets.

We then obtain estimates of the parameters
$k,$ $\alpha,m$ by using these estimators:

$k$ $=$ $\frac{1}{c’}$ (16)

$\alpha$ $=$ $-\log a,$ and (17)

$m$ $=$ $\frac{b}{c}$ . (18)

2.2.1 Discrete logistic curve model with
Morishita’s equation

Morishita [15] proposed the following equation
as a discrete form of Eq. (1):

$L_{n+1}-L_{n}= \delta\frac{\alpha}{k}L_{n\dagger 1}(k-L_{n})$. (19)

It has an exact solution:

$L_{n}= \frac{k}{1+m(1-\delta\alpha)^{t}\star}$ , (20)

where $t_{n}=n\delta$ .
Let $\alpha_{\mathrm{c}}=\alpha$ in Eq. (2), and let $\alpha_{dm}=\alpha$ in

Eq. (20). Comparing $\mathrm{E}\mathrm{q}\mathrm{s}$. (2) and (20), we get

$\alpha_{\mathrm{c}}=-\frac{1}{\delta}\log(1-\delta\alpha_{dm})$. (21)

To derive the regression equation for the pa-
rameters $k,\alpha_{dm},$ and $m,$ we rewrite Eq. (19)
as

$\mathrm{Y}_{n}=A+BL_{n+1}$ , (22)

where

$\mathrm{Y}_{n}$ $=$ $\frac{L_{n+1}}{L_{n}}$ , (23)

$A$ $=$ $\frac{1}{1-\delta\alpha_{dm}’}$ (24)

$B$ $=$ $- \frac{\delta\alpha_{dm}}{k(1-\delta\alpha_{dm})},$ and (25)

$t_{n}$ $=$ $n\delta$. (26)

Parameters $k,$ $\alpha,$ and $m$ are estimated by

$\hat{k}$

$=$
$\frac{1-\hat{A}}{\hat{B}}$ , (27)

$\delta\hat{\alpha}_{dm}$ $=$ $1- \frac{1}{\hat{A}}$ , (28)

$\hat{m}$ $=$ $\frac{\sum_{n=1}^{N}(\hat{k}-L_{n})}{\sum_{n=1}^{N}(L_{n}(1-\delta\hat{\alpha}_{dm})^{n})}$ , (29)

where $\hat{A}$ and $\hat{B}$ are the aetimates of parameters
$A$ and $B,$ respectively.
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$\mathrm{Y}_{n}$ in Eq. (22) is independent of the differ-
ence interval $\delta,$ because $\delta$ is not used in this
equation. The estimates of $\hat{k},$

$\delta\hat{\alpha}_{dm},$ and $\hat{m}$ are
the same whatever value of $\delta$ we choose.

2.2.2 Discrete logistic curve model with
Hirota’s equation

Hirota $[5, 6]$ discretized Eq. (1) as

$L_{n+1}-L_{n}= \delta\frac{\alpha}{k}L_{n}(k-L_{n+1})$ . (30)

He gave this exact solution:

$L_{n}= \frac{k}{1+m(\frac{1}{1+\delta\alpha})\# t}$, (31)

where $t_{n}=n\delta$ .
Let $\alpha_{dh}=\alpha$ in Eq. (31). Comparing Eqs.

(2) and (31), we get

$\alpha_{\mathrm{e}}=\frac{1}{\delta}\log(1+\delta\alpha_{dh})$. (32)

To derive the regression equation for param-
eters $k,$ $\alpha,$ and $m,$ we rewrite Eq. (30) as

$\mathrm{Y}_{n}=A+BL_{n+1}$ , (33)

where

$\mathrm{Y}_{n}$ $=$ $\frac{L_{n+1}}{L_{n}}$ , (34)

$A$ $=$ $\delta\alpha_{dh}+1$ , (35)

$B$ $=$ $- \frac{\delta\alpha_{dh}}{k},$ and (36)
$t_{n}$ $=$ $n\delta$. (37)

The estimates of parameters $k,$ $\alpha,$ and $m$ are
given as by

$1-\hat{A}$
$\hat{k}$

$=$
$\overline{\hat{B}}$

, (38)

$\delta\hat{\alpha}_{dh}$ $=$ $\hat{A}-1$ , (39)

$\hat{m}$ $=$
$\frac{\sum_{n=1}^{N}(\hat{k}-L_{n})}{\sum_{n=1}^{N}(L_{n}(\frac{1}{1+\delta\alpha_{\hat{d}h}})^{n})}$ , (40)

where $\hat{A}$ and $\hat{B}$ are the aetimates of parameters
$A$ and $B,$ respectively.

$\mathrm{Y}_{n}$ in Eq. (33) is independent of the differ-
ence interval $\delta$ because $\delta$ is not used in Eq.

(33). The same estimates of $\hat{k},$
$\delta\hat{\alpha}_{dh},$ and $\hat{m}$

are obtained, whatever value of $\delta$ we choose.
The regression equation (33) is the same as

Eq. (22). Moreover, the same estimate of k is
given by both equations. Though the estimate
of $\alpha$ depends on discrete equations, both dis-
crete equations yield the same estimate of $\alpha_{c}$ .
The same estimate of m is obtained because

$1- \delta\alpha_{dm}=\frac{1}{1+\delta\alpha_{dh}}=\exp(\alpha_{c})=\frac{1}{\hat{A}}$ . (41)

Therefore, the models with Morishita’s and Hi-
rota’s equations both give the same vaJue $\mathrm{o}\mathrm{f}L_{n}$ .

2.3 Parameter estimation in the $1\mathrm{r}$

gistic curve models

We compared the accuracy of parameter esti-
mation for the first conventional logistic curve
model and the discrete logistic curve modek.
To compare only the accuracy of parameter
estimation, we evaJuated the performance of
the parameter estimates when the data repre-
sented an exact solution of the logistic equa-
tion. We did not consider the second conven-
tional method of parameter estimation, as $\mathrm{d}\triangleright$

scribed in Sect. 2.1.2, because it inherently $\mathrm{r}\mathrm{e}$

produced the target values of the parameters
when given data that were an exact solution of
the logistic equation.

We prepared data that represented exact so-
lutions of the logistic equation for a set of pe-
riods ($t=0$ to 21). We set $k=100,$ $\alpha=0.8$ ,
and $m=999$ as the target values. This data
was inflected at the point where $t^{*}=8.63$ and
$L(t^{*})=50.$ In our eduation, we set the differ-
ence interval to 1. We analyzed four sets of this
data: the three data sets that covered an data
uP to (i) the ceiling $(t=0,1, \ldots,21),$ $(\mathrm{i}\mathrm{i})$ just
after the point of inflection $(t=0,1, \ldots,9)$ ,
(iii) just before the point of inflection $(t=$

$0,1,$ $\ldots,$
$8),$ and (iv) the set of the first three

data points(t $=0,1,2$).
The results of our comparison are shown in

Table 1. Since we used an exact solution as
the input data, an accurate method of aetima-
tion should reproduce the parameters that gen-
erated this solution. Table1shows that the
proposed modek estimated $k$ correctly, even
when the data set only consisted of the first
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Table 1: Estimated parameter k.
Conventional model 1 Proposed models

$\mathrm{i}$ 99.229 100
$\mathrm{i}\mathrm{i}$ 79.782 100

$\mathrm{i}\mathrm{i}\mathrm{i}$ 72.168 100
$\mathrm{i}\mathrm{v}$ 60.166 100

four points. The conventional model had lower
accuracy, despite the use of exact solutions to
the differential equation as data values. As was
earlier stated, the conventional model is gener-
ally known to provide poor estimates of the pa-
rameters in the situation represented by data
sets (iii) and (iv), $\mathrm{i}.\mathrm{e}.,$ when the data set does
not include the data points around the point of
inflection. Empirical studies have shown that
stable and robust estimates of the parameters
of SRGMs, such as the logistic curve model,
cannot be obtained without using data points
that cover the point of inflection and satisfy Eq.
(10), $\mathrm{i}.\mathrm{e}.,$ $w\overline{k}<L_{n}.$ Even when data set (ii) was
used, the conventional method provided esti-
mates the parameter values that were neither
stable nor robust, even though set (ii) both in-
cludes the point of inflection and satisfies Eq.
(10).

We evaluated the discrete logistic curve $\mathrm{m}\mathrm{o}\mathrm{d}-$

els on an actual data set to show that they
are more appropriate to use than the conven-
tional model. The data were debugging data
for an item of software. We evaluated the pa-
rameter aetimates given both with all data and
with only that data available early in the test-
$\mathrm{i}\mathrm{n}\mathrm{g}$ phase. In our evaluation, we set $\delta$ equal to
1. Figure 1 shows results for the ‘all data’ case;
we see that having all of the data leads to all
three models fitting the actual data very well.

Moreover, the discrete logistic curve models
have the important advantage of providing ac-
curate parameter estimates early in the testing
phase as well as at the end of the testing phase.
Therefore, the accuracy of an SRGM’$\mathrm{s}$ param-
eter estimates early in the testing phase is an
important aspect of its utility as an estimator.
The accuracy of parameter $k$ is especially im-
portant, because this parameter indicates the

15 $\alpha$ $\infty$ $u$ 43 $\infty$ 57 $u$ 71 $7l$ $u$ $n$ $\mathfrak{B}$

Time of observ#on

Figure 1: Comparison the three models with
actual data.

Figure 2: Parameter estimates of $k$ .

potential fault content of the software system.

To compare the conventional and proposed
models in terms of this property, we estimated
values of $k$ from increasing number of data
points, starting with asmall amount of data
ffom the earlier part of the testing phase. As
is shown in Fig. 2, the values of $k$ estimated by
the proposed models were stabler than those es-
timated by the conventional models. Since the
proposed models provide more accurate esti-
mates of parameter values ffom small amounts
of data gathered early in the testing phase, they
provide better estimates of total numbers of $\mathrm{p}\mathrm{c}\succ$

tential software failures, $k,$ early in the testing
phase.
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3 Gompertz curve model

3.1 Conventional Gompertz curve
model

The Gompertz curve model is described as

$\frac{dG(t)}{dt}=G(t)(\log a)(\log b)b^{t}$ (42)

or
$\frac{dG(t)}{dt}=(\log b)G(t)\log\frac{G(t)}{k}$, (43)

where $G(t)$ is the cumulative number of soft-
ware failures detected up to atesting time $t$ .
By integrating either equation and assuming
that $G(0)=ka,$ $G(t)$ can be written as

$G(t)=ka^{b^{t}}$ $(k>0,0<a<1,0<b<1)$ ,
(44)

where $a,$ $b,$ and $k$ are parameters whose con-
stant valuae are estimated by using regression
analysis. Parameter $k$ repraeents the total
number of software failures with the potential
to occur over an infinitely long period or the
initial fault content in the software system:

$G(t)arrow k(tarrow\infty)$ . (45)

3.1.1 Conventional parameter estima-
tion 1

Regression analysis is generally used to esti-
mate total numbers of potential software fail-
ures, although we also have the conventional
method of estimation that is shown in Sect.
3.1.2.

The following regression equation is ob-
tained:

$\mathrm{Y}_{n}=A+Bn$ , (46)

where

$\mathrm{Y}_{n}$ $=$ $\log(\frac{G_{n+1}-G_{n-1}}{2\delta G_{n}})$ , (47)

$A$ $=$ $\log((\log a)(\log b)),$ and (48)
$B$ $=$ Jlog $b$. (49)

Given regraesion coefficients $\hat{A}$ and $\hat{B}$ , where $\hat{A}$

means the parameter $A$ as estimated through

regression analysis, we have these estimators
for parameters $a,$ $b,$ and $k$ :

\^a $=$ $\exp(\frac{\delta\exp\hat{A}}{\hat{B}})$ , (50)

$\hat{b}$

$=$ $\exp(\frac{\hat{B}}{\delta}),$ and (51)

$\hat{k}$

$=$ $\frac{\sum_{n=1}^{N}G_{n}}{\sum_{n=1}^{N}\hat{a}^{\hat{b}^{\delta n}}}$ . (52)

These estimates depend on the difference in-
terval $\delta,$ because $\mathrm{Y}_{n}$ in Eq. (46) depends on J.
We can choose any value as $\delta.$ Therefore, the
estimates are entirely dependent on the specific
value of $\delta$ .

The accuracy of thaee estimates is poor when
there are only a few data points. We need data
up to at least one point afler the point of in-
flection to get accurate aetimates. Afurther
condition must be satisfied:

$w\overline{k}<G_{n}$ , (53)

where $\overline{k}$ and $w$ are the same as in the case of
the logistic curve model.

3.1.2 Conventional parameter $\mathrm{e}\mathrm{s}\mathrm{t}\mathrm{i}\mathrm{m}\mathrm{a}-$

tion 2

(55)

The other method of aetimation is the same as
that of Sect. 2.1.2. The Gompertz curve model
can be rewritten as

$\log G(t)=\log k+(\log a)b^{t}$ . (54)

This equation is in the form of the modified
exponential curve model.

Parameters $k,a,$ and $b$ are aetimated as

$k= \exp[\frac{1}{n}\{S_{1}+\frac{S_{1}-S_{2}}{a^{n}-1}\}]$ ,

$a= \exp(\frac{(S_{2}-S_{1})(a-1)}{(a^{n}-1)^{2}})$ , and (56)

$b= \frac{S_{3}-S_{2}}{S_{2}-S_{1}}$ , (57)

where $S_{1},$ $S_{2},$ and $S_{3}$ represent the summations
of the first, second, and third sets as defined in
Sect. 2.1.2 of data, respectively, and $n\mathrm{r}\mathrm{e}\mathrm{p}\mathrm{r}\triangleright$

sents the number of data points in each set.
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3.2 Discrete Gompertz equation

We propose adiscrete analogue of Eq. (42) for
the Gompertz curve model:

$G_{n+1}=G_{n}( \frac{G_{n}}{k})^{\delta\log b}$ (58)

The exact solution of this equation is

$G_{n}=ka^{(1+\delta\log b)^{n}}$ , (59)

where $k>0,0<a<1,$ and $\frac{1}{e}<b^{\delta}<1$ .
Equation (59) satisfies Eq. (45) given any $\delta$ :

$G_{n}arrow k(narrow\infty)$ . (60)

3.3 Discrete Gompertz curve model

From Eq. (58), the regression equation is $\mathrm{o}\mathrm{k}$

tained:
$\mathrm{Y}_{n}=A+B\log G_{n}$ , (61)

where

$\mathrm{Y}_{n}$ $=$ $\log G_{n+1}-\log G_{n}$ , (62)
$A$ $=$ $-\delta(\log b)(\log k),$ and (63)
$B$ $=$ Jlog $b$ . (64)

Using Eq. (61), we can estimate parameters
$k,$ $a,$ and $b$ :

$\hat{k}$

$=$ $\exp(-\frac{\hat{A}}{\hat{B}})$ , (65)

\^a $=$ $\exp(\frac{\sum_{n_{-}^{-1}}^{N\underline{G}_{\mu}}1\mathrm{o}\mathrm{g}k}{\sum_{n=1}^{N}(1+\delta 1\mathrm{o}\mathrm{g}\hat{b})^{n}}),$and(66)

$\hat{b}$

$=$ $\exp(\frac{\hat{B}}{\delta})$ , (67)

where \^a, $\hat{b},$ and $\hat{k}$ are the estimated values of $a$ ,
$b$ , and $k,$

$\mathrm{m}\mathrm{d}\hat{A}$ and $\hat{B}$ are the estimated values
of $A$ and $B$ in Eq. (61).

$\mathrm{Y}_{n}$ in Eq. (61) is independent of difference
interval $\delta$ because $\delta$ is not used in Eq. (61).
Hence, the estimates of $\hat{k},$ \^a, and $\delta\log\hat{b}$ are the
same, regardless of our choice of value for $\delta$ .
Therefore, Eq. (59) is determined uniquely for
any vdue of $\delta$ .

We evaluated the performance in parame-
$\mathrm{t}\mathrm{e}\mathrm{r}$ estimation by the discrete Gompertz model
when given data that was an exact solution

of the Gompertz equation. We did this by
comparing the accuracy of the parameters es-
timated by the conventional Gompertz curve
model 1 and by its discrete form.

To restrict our comparison to the accuracy of
parameter estimation. We used parameter val-
$\mathrm{u}\mathrm{e}\mathrm{s}$ of $k=100,$ $a=0.01,$ and $b=0.5$ as target
values in preparing data that represented exact
solutions of Eq. (43) for a set of periods $(t=0$

to 25). This data was inflected at the point
where $t^{*}=2.20325$ and $G(t^{*})=36.7879441$ .

We analyzed three sets of this data: they
covered the data up to (i) the ceiling $(t=$

$0,1,$ $\cdots,$ $25),$ $(\mathrm{i}\mathrm{i})$ just affer the point of inflec-
tion $(t=0,1,2,3)$ , and (iii) just before the
point of inflection $(t=0,1,2)$ .

The result of the comparisons is shown in
Table 2. The value of $k$ as estimated by using
the proposed discrete model matched the target
value for all three data sets.

Since we used an exact solution as the in-
put data, an accurate method of aetimation
should reproduce the parameters that gener-
ated this solution. Rble 2 shows that the pro-
posed model estimated $k$ correctly, even when
the data did not include the point of inflec-
tion. The accuracy of conventional modell was
poor, despite the use of exact solutions to the
differential equation as data valuae. The con-
ventional model is generally known to provide
poor estimates of the parameters in the situ-
ation represented by data set (iii), $\mathrm{i}.\mathrm{e}.,$ when
the data set does not include the data points
around the point of inflection.

Even when data set (ii) was used, the esti-
mates of parameters provided by the conven-
tional method were neither stable nor robust,
even though this set does include the point of
inflection and satisfies Eq. (53).

Table 2: Estimated parameter $k$ .
Conventional model 1 Proposed model

$\mathrm{i}$ 99.631 100
Conventional model 1 Proposed model

$\mathrm{i}$ 99.631 100
$\mathrm{i}\mathrm{i}$ 78.159 100

$\mathrm{i}\mathrm{i}\mathrm{i}$ 46.529 100
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3.4 Model evaluation with actual
data

We used actual data in evaluating the discrete
Gompertz curve model. We evaluated the pa-
rameter estimates both with all data and with
the data available early in the test phase. We
used the same data as had been used by Mit-
suhashi [14].

The time scale $\delta$ is not used in the regres-
sion equation of the proposed discrete model,
but is used in the equation of the first con-
ventional method. Therefore, we have to care-
fully select the value of time scale $\delta$ for the con-
ventional model, since the estimates produced
by the model depend on this value. This de-
pendence can cause problems. For example,
$k=9.03079E+11$ when the value of time scale
$\delta$ is equal to 1.

In this evaluation, we set $\delta$ equal to 0.1 for
the conventional model, and $\delta$ equal to 1for
the proposed model. As is shown in Fig. 3,
the first conventional model and the discrete
model fit the actual data very well. The second
conventional model is inferior to the other two.

15 9 13 17 21 25 29 33 37 41 45 49 53 57

Time of observation (week)

Figure 3: Comparison of both models with ac-
tual data.

However, the provision of accurate parame-
$\mathrm{t}\mathrm{e}\mathrm{r}$ estimates by a model is much more impor-
tant early in the test phase than at the end of
the test phase. Therefore, an important crite-
rion for evaluating SRGMs is the accuracy of
the parameter estimates they provide early in
the testing phase. We compared both $\mathrm{m}\mathrm{o}\mathrm{d}-$

els on this criterion by estimating values for
parameter $k$ from increasing amount of data,
starting with only the first small portion of
data. As shown in Fig. 4, the values estimated
by the proposed model were stabler than those
estimated by both conventional models. The
proposed model provides more accurate param-
eter values with the first small amount of data,
so it provides a better way of estimating the
number of potential software faults early in the
testing.

0

Time of observation (week)

Figure 4: Estimate of parameter $k$ .

4Criterion for determining
the absolute worth of $\mathrm{a}$

model

As has been shown in the previous sections, the
proposed discrete models are capable of pre-
dicting total numbers of potential software fail-
ures on the basis of data gathered early in the
test phase $[28, 30]$ .

In predicting total numbers of potential soft-
ware failures, determining which model is the
most appropriate model for use early in the
testing phase is the next importmt and diffi-
cult task $[7, 16]$ .

We propose the following as a meaeure of the
appropriateness of models [31]:

$C= \frac{1}{N}\sum_{\dot{l}=1}^{N}’(.\frac{X_{1}-\hat{X}_{1}}{X_{*}}.\cdot)^{2}$ , (68)

where $N$ denotes the number of available data
points, X.$\cdot$ the actual data of the $i\mathrm{t}\mathrm{h}$ data point,
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with $\hat{X}_{i}$ its value as estimated by an SRGM. Al-
though error is usually evaluated as the mean
squared error (MSE), the $\mathrm{M}\mathrm{S}\mathrm{E}$ is not fit for
determining the appropriateness of models be-
cause it is significantly affected by the abso-
lute values of the data. The proposed criterion,
however, is not significantly affected by the ab-
solute values of the data; rather, it is affected
by the ratios between values of the data and
estimates.

C-l D-l C-G D-G
A-i 7.4215 0 1.1420 0.15217
A-ii 15.697 0 0.99854 0.017104
A-iii 16.601 0 0.034532 0.0067477
A-iv 8.6398 0 0.012716 1.5459E-6

4.1 Evaluation on data sets that rep-
resent exact solutions

4.1.1 Data set $\mathrm{A}:$ The log\’istic equation

We analyzed the performance of the models
thus for considered on the same four data sets
as those in Sect. 2.

The result of the comparisons among the
models is shown in Table 3, where C-l denotes
the conventional logistic curve model 1 in Sect.
2.1.1, D-l denotes the discrete logistic curve
model of Sect. 2.2, C-G denotes the conven-
tional Gompertz curve model 1 of Sect. 3.1.1,
and D-G denotes the discrete Gompertz curve
model of Sect. 3.3. The discrete logistic curve
model matched all the four sets of the data.
This model reproduces the vaJues of the pa-
rameters of the exact solution when the exact
solution is used as the input data [30]. Thus,
the values of criterion $\mathrm{C}$ in this case were all
exactly zero. The conventional logistic curve
model would be expected to provide a better fit
in terms of criterion $\mathrm{C}$ because each data set of
(A-i), ..., (A-iv) was composed of exact solu-
tions of the logistic equation. However, for all
data sets of (A-i), $\ldots,$ (A-iv), the conventional
logistic curve model provided a poorer fit than
the conventional Gompertz curve model, as is
shown in Table 3.

We then used each model to estimate $k,$ the
initial fault content. The results of compari-
son are shown in Table 4. The value of $k$ as
estimated by using the discrete logistic curve
model matched the target value for all of the
four data sets. The estimates of $k$ provided
by the conventional logistic curve model be-
came more accurate as the number of avajl-

able data points increased. Thus, in this case,

Table 3: Criterion C.

the estimate provided by using data set (A-i)
gave agood approximation to the target value.
The discrete and conventional Gompertz curve
models, on the other hand, were much less ac-
curate than the discrete and conventional $1\mathrm{e}\succ$

gistic curve models. This was the case for all
four data sets. Given the same target value
of parameter $k,$ the first several values of an
exact solution to the Gompertz equation in-
crease faster than those of the logistic equation.
Hence, estimates by the Gompertz models were
much larger than the target value.

Table 4: Estimated parameter $k$ .

C-l D-l C-G D-G
A-i 99.23 100 88.11 200.0
A-ii 79.78 100 47.24 $1.175\mathrm{E}+6$

A-iii 72.17 100 $1.449\mathrm{E}+7$ $9.702\mathrm{E}+8$

A-iv 60.17 100 $1.198\mathrm{E}+84$ $1.855\mathrm{E}+184$

4.1.2 Data set $\mathrm{B}:$ The Gompertz equa-
tion

In this case, we used the same data sets, (B-i),
(B-ii), and (B-iii), as had been used in Sect. 3.

Comparative results for the models are given
in Table 5. The discrete Gompertz curve model
matched all three data sets. The discrete Gom-
pertz curve model reproduces the values of the
parameters of an exact solution when that ex-
act solution provides the input data [28]. Thus,
the corresponding values of criterion $\mathrm{C}$ were
all exactly zero. Table 5 shows that the dis-
crete and conventional logistic curve models
provided a poorer fit in terms of criterion $\mathrm{C}$
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than did the discrete and conventional Gom-
pertz curve models. This was the case for each
data set in (B-i), $\ldots,$ (B-iii). This result is rea-
sonable because the data sets are from an exact
solution to the Gompertz equation.

Table 5: Criterion C.
C-l D-l C-G D-G

B-i 0.3346 0.014542.195E-4 0
C-l D-l C-G D-G

B-i 0.3346 0.01454 2.195E-4 0
B-ii 1.141 0.01154 0.02100 0
B-iii 46.93 1.644E-32 0.2797 0

We used each model in estimating $k.$ The
comparative results are given in Table 6. The
values of $k$ estimated by the discrete Gom-
pertz curve model from all the three data sets
matched the target value. Estimates of $k$

provided by the conventional Gompertz curve
model became more accurate as the number of
available data points increased. Thus, in this
case, the estimate provided by using data set
(B-i) gives a good approximation to the target
value. However, the discrete and conventional
logistic curve models were much less accurate
than the discrete and conventional Gompertz
curve models. This was the case for all the
three data sets.

Table 6: Estimated parameter $k$ .
C-l D-l C-G D-G

B-i 96.30 97.27 99.63 100
C-l D-l C-G D-G

B-i 96.30 97.27 99.63 100
B-ii 31.44 55.36 78.16 100
B-iii 12.85 38.46 46.53 100

4.2 Evaluation on actual data sets

4.2.1 Data set $\mathrm{C}$:Actual data set 1

We compared only the discrete logistic curve
model and the discrete Gompertz curve model
by using the same actual data set [30] as was
used in Sect. 2, because both models yield ac-
curate parameter estimates in the case of data
that represent exact solutions, as was shown by
the previous comparisons.

Figure 5: Criterion value $\mathrm{v}\mathrm{s}.$ number of avail-
able data points.

We evaluated the parameter estimatae for au
of the data and for only that data available
early in the test phase. We then used the ae-
timated parameters to calculate duae for cri-
terion C. As is shown in Fig. 5, the discrete
logistic curve model produced lower valuae for
$\mathrm{C}$ than the discrete Gompertz curve model over
the whole test phase.

We estimated $k$ . The comparative results
are shown in Fig. 6. The estimated values
are normalized on the total number of actual
software failurae. The discrete logistic curve
model provided more accurate parameter esti-
mates. Moreover, this model provided accurate
estimates throughout the rmge shown in the
figure.

Figure 6: Estimates of parameter $k$ .
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4.2.2Data set $\mathrm{D}$ :Actual data set2

We used the same actual data set [14] as was
used in Sect. 3. As was shown in Sect. 3, the
discrete Gompertz curve model fit the actual
data very well [28].

020 40 60
Avmlable data points $\mathrm{N}$

Figure 8: Estimates of parameter $k$ .

imitation. By introducing $F(t)= \frac{N(t)}{k},$ where
$F(t)$ is the fraction of potential adopters who

Figure 7: Criterion value $\mathrm{v}\mathrm{s}.$ number of avail- have adopted the product by time $t,$ the Bass
able data points. model can be restated as

We evaluated the parameter estimates for all
the data and for only that the data available
early in the test phase. We then used the es-
timated parameters to calculate values for cri-
terion C. As is shown in Fig. 7, the discrete
Gompertz curve model produced lower values
for $\mathrm{C}$ than the discrete logistic curve model over
the whole test phase.

We used each model to estimate $k.$ The com-
parative results are shown in Fig. 8. The dis-
crete Gompertz curve model provided the more
accurate parameter estimates. Moreover, this
model provided accurate parameter estimates
ffom quite early in the taet phase.

5 Bass model

5.1 Bass model and conventional pa-
rameter estimations

Bass [1] suggaeted that the following differen-
tial equation can be used to represent the dif-
fusion process:

$\frac{dN(t)}{dt}=(p+\frac{q}{k}N(t))(k-N(t))$ , (69)

where $N(t)$ is the cumulative number of
adopters at a time $t,$ $k$ is the ceiling, $p$ is the co-
efficient of innovation, and $q$ is the coefficient of

$\frac{dF(t)}{dt}=(p+qF(t))(1-F(t))$ . (70)

If $N(0)=0,$ simply integrating both sides of
equation (69) gives us the following distribu-
tion function to represent the time-dependent
aspect of the diffusion process:

$N(t)=k( \frac{1-e^{-(p+q)t}}{1+\mathrm{g}e^{-(p+q)t},p})$ . (71)

Equation (71) yields the S-shaped diffusion
curve captured by the Bass model.

A number of procedures for $\infty \mathrm{t}\mathrm{i}\mathrm{m}\mathrm{a}\mathrm{t}\mathrm{i}\mathrm{n}\mathrm{g}$ the
parameters $p,$ $q,$

$\mathrm{m}\mathrm{d}k$ of the Bass model have
been suggested. Mahajan et al. [11] compared
the performance of four $\mathrm{p}\mathrm{r}\mathrm{o}\mathrm{c}\mathrm{e}\mathrm{d}\mathrm{u}\mathrm{r}\mathrm{a}\mathrm{e}-\mathrm{t}\mathrm{h}\mathrm{e}$ ordi-
nary least squares (OLS) [1], maximum like-
lihood estimation (MLE) [32], nonlinear least
squarae (NLS) [33], and algebraic estimation
(AE) [10] $\mathrm{p}\mathrm{r}\mathrm{o}\mathrm{c}\mathrm{e}\mathrm{d}\mathrm{u}\mathrm{r}\mathrm{a}\mathrm{e}-\mathrm{o}\mathrm{n}$ several sets of data.
They concluded that $\mathrm{N}\mathrm{L}\mathrm{S}$ yielded better pre-
dictions as well as more valid estimates of stan-
dard error for the parameter aetimates. On the
other hand, the OLS is the easiest to imple-
ment. Therefore, we $\mathrm{w}\mathrm{i}\mathrm{u}$ look at the OLS and
$\mathrm{N}\mathrm{L}\mathrm{S}$ procedurae in detail in the following two
sections.
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5.1.1 Ordinary least squares procedure

The OLS procedure involves estimation of the
parameters by taking the discrete or regression
analogue of the differential equation (69). The
regression equation is given as

$X(i)=\alpha_{1}+\alpha_{2}N(ti-1)+\alpha_{3}N^{2}(t_{i-1})$ , (72)

where

$X(i)$ $=$ $N(ti)-N(ti-1)$ , (73)
$\alpha_{1}$ $=$ $pk$ , (74)
$\alpha_{2}$ $=$ $q-p$, and (75)
$\alpha_{3}$ $=$ $-q/k$ . (76)

Given regression coefficients $\hat{\alpha}_{1},\hat{\alpha}_{2},$ and $\hat{\alpha}_{3}$ ,
the estimates of parameters $p,$ $q,$ and $k$ are easy
to obtain:

$\hat{p}$ $=$
$\frac{-\hat{\alpha}_{2}+\sqrt{\hat{\alpha}_{2^{2}}-4\hat{\alpha}_{1}\hat{\alpha}_{3}}}{2}$ , (77)

$\hat{q}$ $=$
$\frac{\hat{\alpha}_{2}+\sqrt{\hat{\alpha}_{2^{2}}-4\hat{\alpha}_{1}\hat{\alpha}_{3}}}{2},$

and (78)

$\hat{k}$

$=$
$\frac{-\hat{\alpha}_{2}-\sqrt{\hat{\alpha}_{2^{2}}-4\hat{\alpha}_{1}\hat{\alpha}_{3}}}{2\hat{\alpha}_{3}}$ . (79)

The main advantage of the OLS estimation
procedure is that it is easy to implement.

However, the $\mathrm{O}\mathrm{L}\mathrm{S}$ procedure has three short-
comings [32]. Firstly, as is clear ffom Eq. (72),
in the presence of only a few data points and
the likely multicolinearity of variables $(N(t_{\dot{\iota}-1})$

and $N^{2}(t_{\dot{\iota}-1})),$ one may obtain parameter esti-
mates that are unstable or possess wrong signs
(examples [4, 32, 33]). Secondly, the standard
errors of the estimates are not available since
parameters $p,$ $q,$ and $k$ are nonlinear functions
of $\alpha_{1},\alpha_{2},$ and $\alpha_{3}$ . The error term, however,
does contain the net effect of au sources of er-
$\mathrm{r}\mathrm{o}\mathrm{r}.$ Thirdly, the derivative of $N(t)$ which is
obtained at $t:-1$ by the right-hand side of Eq.
(73) will always be overestimated for time in-
tervals before the point of inflection and under-
estimated after that. That is, a time-interval
bias is present in the OLS approach since dis-
crete time-series data are used to aetimate $\mathrm{a}$

continuous-time model.
$1\hat{\alpha}_{1}>0,\hat{\alpha}_{2}>0$ , and $\hat{\alpha}_{3}<0$ because $\hat{p},\hat{q}$ , and $\hat{k}$ are

positive.

5.1.2 Nonlinear least squares estima-
tion

The nonlinear least squares estimation proce-
dure suggested by Srinivasan and Mason [33]
was designed to overcome some of the short-
comings of $\mathrm{M}\mathrm{L}\mathrm{E}$ procedure [32], which itself
was designed to overcome the shortcomings of
the OLS procedure of Schmittlein and Mahajan
[32]. From the cumulative distribution function
given by

$F(t)= \frac{1-e^{-bt}}{1+ae^{-u}}$ , (80)

Srinivasan and Mason suggest that parameter
estimates $\hat{p},\hat{q},$ and $\hat{k}$ can be obtained by us-
$\mathrm{i}\mathrm{n}\mathrm{g}$ the following expression for the number of
adopters $X(i)$ in the $i\mathrm{t}\mathrm{h}$ time interval $(t:-1,t:)$ :

$X(i)=k(F(t_{\dot{l}})-F(t:-1))+\mu:$, (81)

where Pi is an additive error term. Based on
Eq. (81), parameters $p,q,$ and $k$ and their
asymptotic standard errors can be directly ae-
timated.

The $\mathrm{N}\mathrm{L}\mathrm{S}$ procedure overcomes the time-
intervaJ bias present in the $\mathrm{O}\mathrm{L}\mathrm{S}$ procedure.
Furthermore, since the error term may be con-
sidered to represent the net effect of sampling
errors, excluded variables (such as economic
conditions and marketing mix variables), and
$\mathrm{m}\mathrm{i}\mathrm{s}$-specification of the density function, the
derived standard errors for the parameter ae-
timates may be more realistic. However, since
the $\mathrm{N}\mathrm{L}\mathrm{S}$ procedure employs various search rou-
tines in estimating the parameters, parameter
estimates may sometimes be very slow to con-
verge or may not converge, the final estimates
may be sensitive to the initial dues for $p,q$,
and $k$ , or the procedure may provide a non-
global optimum.

5.2 Discrete Bass model

We propose a discrete Bass model, which is $\mathrm{a}$

form of a discrete Riccati equation [5]. The dis-
crete Bass model enables us to forecast the dif-
fusion innovation without using a continuous-
time Bass model, because the discrete model
has an exact solution.
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The discrete Bass model is described as fol-
lows:

$\frac{N_{n+1}-N_{n-1}}{2\delta}$

$=p(k- \frac{N_{n+1}+N_{n-1}}{2})$

14 $( \frac{k}{2}(N_{n+1}+N_{n-1})-N_{n+1}N_{n-1})$ . (82)

The exact solution to equation (82) is written
as

$N_{n}=k( \frac{1-(\frac{1-\delta(q+p)}{1+\delta(q+p)})^{\frac{n}{2}}}{1+p\mathrm{f}\mathrm{l}(\frac{1-\delta(q+p)}{1+\delta(q+p)})^{\frac{n}{2}}})$ , (83)

where $n=7t.$ This equation has also appeared
in work on SRGM [37].

Applying $\mathrm{O}\mathrm{L}\mathrm{S}$ to the discrete Bass model
is easy because the model is basically a time-
discrete equation. The $\mathrm{O}\mathrm{L}\mathrm{S}$ procedure is the
simplest method of parameter estimation for
the discrete Bass model. In the continuous
Bass model, the forward difference equation,
which acts as aregression equation in the $\mathrm{O}\mathrm{L}\mathrm{S}$

procedure, is an approximation of the differ-
ential equation. However, in the discrete Bass
model, the model itself is directly applied as the
regression equation. Moreover, a solution of
the discrete Bass model provides the same val-
$\mathrm{u}\mathrm{e}\mathrm{s}$ as asolution of the continuous Bass model
through the following equations:

$p_{d}=\kappa p$, (84)
$q_{d}=\kappa q$ , (85)

$\kappa=\frac{1}{\delta(\mathrm{p}+q)}(\frac{1-\exp(-2(q+p))}{1+\exp(-2(q+p))})$ , (86)

where $p_{d}$ and $q_{d}$ mean $p$ and $q$ in Eq. (83),
respectively.

We propose two regression models. The first
is the following equation:

$S_{n}=2(a+b(N_{n+1}+N_{n-1})+cN_{n+1}N_{n-1})+\epsilon(n)$ ,
(87)

where

$S_{n}=N_{n+1}-N_{n-1}$ , (88)
$a=kp$, (89)

$b=\mathrm{L}^{-}A2$
’ (90)

$c=-k\mathrm{A}$ , (91)
$\epsilon(n)$ : error, and $E[\epsilon(n)]=0$ . (92)

Given regression coefficients2 $a,$ $b$ , and $c$ , pa-
rameter estimates $\hat{p},\hat{q},$ and $\hat{k}$ are easily ob-
tained as follows:

$\hat{p}$ $=$ $-b+\sqrt{b^{2}-ac}$, (93)
$\hat{q}$ $=$ $b+\sqrt{b^{2}-ac},$ and (94)

$\hat{k}$

$=$ $\frac{-b-\sqrt{b^{2}-ac}}{c}$ . (95)

The other regression model is the following
equation:

$M_{n}=A+BN_{n-1}+C(N_{n+1}-N_{n-1})+\epsilon(n)$,
(96)

where

$M_{n}=N_{n+1}N_{n-1}$ , (97)
$A=\underline{k}_{f,q}^{2}$, (98)

$B= \frac{k(q-p)}{q}$ , (99)

$C= \frac{k(q-p-1)}{2q}$ , (100)
$\epsilon(n)$ : error, and $E[\epsilon(n)]=0$. (101)

Given regression $\mathrm{c}\mathrm{o}\mathrm{e}\mathrm{f}\mathrm{f}\mathrm{i}\mathrm{c}\mathrm{i}\mathrm{e}\mathrm{n}\mathrm{t}\mathrm{s}^{3}A,$ $B$ , and $C$ , pa-
rameter estimates $\hat{p},\hat{q},$ and $\hat{k}$ are easily $\mathrm{o}\mathrm{k}$

tained as follows:

$\hat{p}$ $=$ $\frac{-B+\sqrt{B^{2}+4A}}{2B-C}$ , (102)

$\hat{q}$ $=$ $\frac{B+\sqrt{B^{2}+4A}}{2B-C},$ and (103)

$\hat{k}$

$=$ $\frac{B+\sqrt{B^{2}+4A}}{2}$ . (104)

These procedures have the advantage of sim-
plicity, which is also provided by parameter
estimation through the OLS procedure in the
continuous Bass model.

Applying the $\mathrm{N}\mathrm{L}\mathrm{S}$ procedure to the discrete
Bass model is also relatively easy, because the
discrete Bass model has an exact solution (83).
We propose two $\mathrm{N}\mathrm{L}\mathrm{S}$ procedures for the dis-
crete Bass model. One of these providae esti-
mated parameter $\hat{p},\hat{q},$

$\mathrm{m}\mathrm{d}\hat{k}$ by using the fol-
lowing expressions for the number of adopters
$X_{n}$ in the $n\mathrm{t}\mathrm{h}$ time intervaJ:

$X_{\hslash}=N_{n+1}-N_{n-1}+\mu_{\hslash}$, (105)
$2a>0,$ $b>0$ , and $c<\mathrm{O}$ because $\hat{p},\hat{q}$, and $\hat{k}$ are

poeitive.
$3A>0,$ $B>0,$ and $C<\mathrm{O}$ because $\hat{p},\hat{q},$ and $\hat{k}$ are

poeitive.
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where $\mu_{n}$ is an additive error term.
The other $\mathrm{N}\mathrm{L}\mathrm{S}$ procedure for the discrete

Bass model is the following equation:

$\mathrm{Y}_{n}=N_{n+1}N_{n}+\nu_{n}$ (106)

where $\mathrm{Y}_{n}$ is the ratio between the number of
adopters at the $n\mathrm{t}\mathrm{h}$ time-step and that at the
$(n+1)\mathrm{s}\mathrm{t}$ time-step.

These procedures have the advantage of al-
lowing the direct estimation of the asymp-
totic standard errors of the parameters, as does
the $\mathrm{N}\mathrm{L}\mathrm{S}$ procedure with the continuous Bass
model. Moreover, since the error terms in these
procedures may be considered to represent the
net effect of sampling errors, excluded vari-
ables, and mis-specification of the density func-
tion, the derived standard errors for the param-
eter estimates may be as realistic as those of the
$\mathrm{N}\mathrm{L}\mathrm{S}$ procedure for the continuous Bass model.

Either of the $\mathrm{O}\mathrm{L}\mathrm{S}$ procedures in the discrete
Bass model overcomes the three shortcomings
of the $\mathrm{O}\mathrm{L}\mathrm{S}$ procedure in the continuous Bass
model: the time-interval bias, standard error,
and multicolinearity.

When we use the discrete Bass model to
avoid using the continuous model in forecasting
the diffusion of innovation, there is no time-
interval bias because the model is a discrete
model. Ehrthermore, even if the discrete Bass
model is regarded as only the procedure used
to obtain the parameters for the continuous
model, the $\mathrm{O}\mathrm{L}\mathrm{S}$ procedures do not suffer ffom
a time-interval bias because a solution of the
discrete Bass model gives the same values as a
solution of the continuous Bass model, as was
already stated in this section.

$\mathrm{R}\mathrm{o}\mathrm{m}$ Eq. (82), Eq. (87) is equivalent to Eq.
(105), and Eq. (96) is equivalent to Eq. (106)
under no constraints. Therefore, the same pa-
rameter estimation is done through both Pro-
cedures in the discrete Bass model. This is a
significant advantage of the discrete Bass model
because we can get the global optimum through
$\mathrm{O}\mathrm{L}\mathrm{S},$ and then apply $\mathrm{N}\mathrm{L}\mathrm{S}$ to obtain the stm-
dard error. By using both procedures together,
we overcome their shortcomings in separate ap-
plication. That is, the standard error of the re-
sults of the OLS procedure is obtained through
the $\mathrm{N}\mathrm{L}\mathrm{S}$ procedure. Equations (87) and (96)

overcome the three shortcomings of $\mathrm{N}\mathrm{L}\mathrm{S}:$ that
final parameter estimates are sensitive to the
initial values of $p,q$ , and $k$ , that parameter esti-
mates may sometimes be very slow to converge
or may not converge at all, and that the op-
timum provided by the procedure may not be
global.

Table 7 shows the condition number, the de-
terminant of correlation matrix $R,$ and the vari-
ance inflation factors (VIFs) for three proce-
dures: the conventional $\mathrm{O}\mathrm{L}\mathrm{S}$ procedure (OLS),
discrete analogue 1 of the $\mathrm{O}\mathrm{L}\mathrm{S}(87)$ (dOLSl),
and discrete analog 2 of the OLS (96) $(\mathrm{d}\mathrm{O}\mathrm{L}\mathrm{S}2)$,
where we chose the exact solution $(p=0.002$,
$q=1,$ $m=100)$ to differential equation (69)
as the data from every period ffom $t=0$ to
$t=11.$ The $\mathrm{V}\mathrm{F}$ in the conventional OLS row
is the VIF of the variable $N(t_{\dot{*}-1})$ in Eq. (72).
$\mathrm{R}\mathrm{o}\mathrm{m}$ the definition of the $\mathrm{V}\mathrm{F},$ the value of
the $\mathrm{V}\mathrm{F}$ of the variable $N(t:-1)$ is the same as
that of the $\mathrm{V}\mathrm{I}\mathrm{F}$ of the other variable, $N(t:)^{2}$ .
The $\mathrm{V}\mathrm{I}\mathrm{F}$ in the dOLSl row is the VIF of the
variable $(N_{n+1}+N_{n-1});$ the $\mathrm{V}\mathrm{I}\mathrm{F}$ in the $\mathrm{d}\mathrm{O}\mathrm{L}\mathrm{S}2$

row is the $\mathrm{V}\mathrm{F}$ of the variables $N_{n-1}$ in Table
7. $\mathrm{d}\mathrm{O}\mathrm{L}\mathrm{S}2$ excludes the problem of multicolin-
earity. Therefore, with this procedure, awrong
sign for a parameter suggests that the obtained
data is not appropriate for the Bass model.

Table 7: Condition number, $\det R$ , and VIF.
on ltl0n

Procedure number $\det R$ $\mathrm{V}\mathrm{I}\mathrm{F}$Procedure
on ltlon
number $\det$ $R$ VIF

$\mathrm{O}\mathrm{L}\mathrm{S}$ 14.0111 0.01428 20.85
dOLSl 11.68 0.01914 12.68
$\mathrm{d}\mathrm{O}\mathrm{L}\mathrm{S}2$ 3.548 0.2059 1.000

5.3Parameter estimation

The accuracy of the parameter aetimate pro-
vided by the conventional OLS procedure $\mathrm{m}\mathrm{d}$

the two OLS procedures in the discrete Bass
model was compared. To compare the accuracy
of the parameter estimates only, we choee data
which satisfy the exact solution $(p=0.002,$ $q=$

$1,$ $k=100)$ of differential equation (69) in ev-
$\mathrm{e}\mathrm{r}\mathrm{y}$ period ffom $t=0$ to $t=11$ (the same data
as was used in the previous section). This data
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has a point of inflection where $t^{*}=6.2022$ and
$N(t^{*})=49.9$ . We analyzed three sets of data;
data 1: the data up to the point just before
the point of inflection $(t=0,1, \cdots, 6),$ data 2:
the data uP to the point just after the point of
inflection $(t=0,1, \cdots, 7)$ , and data3:the data
up to the ceiling $(t=0,1, \cdots, 11)$ .

The results of comparison of the conventional
OLS, dOLSl and $\mathrm{d}\mathrm{O}\mathrm{L}\mathrm{S}2$ procedures are given
in Table 8. Both dOLSl and $\mathrm{d}\mathrm{O}\mathrm{L}\mathrm{S}2$ provide
accurate estimates. Since we used the exact
solution to provide the data, an accurate pro-
cedure should reproduce the values of the pa-
rameters of the exact solution. Table 8 shows
that both dOLSl and $\mathrm{d}\mathrm{O}\mathrm{L}\mathrm{S}2$ reproduced $k$ per-
fectly, even when the data did not include the
point of inflection and there were fewer than
eight data points.

Table 8: Estimated parameter $k$ .
Data set OLS dOLSl $\mathrm{d}\mathrm{O}\mathrm{L}\mathrm{S}2$Data set OLS dOLSl $\mathrm{d}\mathrm{O}\mathrm{L}\mathrm{S}2$

data 1 55.71 100 100
data 2 71.61 100 100
data 3 97.27 100 100

The accuracy of the conventional $\mathrm{O}\mathrm{L}\mathrm{S}$

$\mathrm{p}\mathrm{r}\sim$

cedure is poor daepite the fact that the data
is drawn ffom an exact solution of the differ-
ential equation. In particular, the conventional
OLS procedure yields poor estimates of the pa-
rameters with data 1. This is consistent with
the findings of Heeler and Hustad [4] and Srini-
vasan and Mason [33]. Through empirical stud-
$\mathrm{i}\mathrm{e}\mathrm{s}$ , they found that stable and robust estimates
of the parameters of the basic diffusion $\mathrm{m}\mathrm{o}\mathrm{d}-$

$\mathrm{e}\mathrm{l}\mathrm{s}$ cannot be obtained unless one uses at least
eight data points, within which the point of
inflection falls. The estimates of parameters
with data 2 were $\mathrm{a}\mathrm{k}\mathrm{o}$ not accurate enough, even
though data 2satisfies the above condition.

Whenever adata set is aset from an exact
solution of Eq. (69), the dOLSl and $\mathrm{d}\mathrm{O}\mathrm{L}\mathrm{S}2$

procedures reproduce all values of the param-
eters, $\mathrm{i}.\mathrm{e}.,$ $k,$ $p$, and $q;$ theoretically, this is
because the solution of Eq. (82) is the same
as that of Eq. (69) through $\mathrm{E}\mathrm{q}\mathrm{s}$. (84), (85),
and (86). This is independent of the number of

data points and the values of the parameters.
However, the conventional $\mathrm{O}\mathrm{L}\mathrm{S}$ procedure does
not reproduce values of the parameters and de
pends on the number of data points, as shown
in Table 8, because regression Eq. (72) does
not have an exact solution and gives only an
approximation of the Bass model.

We also evaluated the discrete Bass model
on actual data. This data was the same as
that used by Mahajan et al. [11], which was on
the data diffusion of seven products: room air
conditioners, color televisions, clothes dryers,
ultrasound, mammography, foreign language,
and accelerated program. These seven prod-
ucts represent a diverse set of innovations, and
thus of sets of data, for all of which a minimum
of eight annual data points covering the peak
(point of inflection), is available. In addition,
these products have been used extensively in
the diffusion modeling literature to illustrate
the application of alternative diffusion models
or estimation procedures [1, 9, 32, 33].

To compare the predictive performance of
the four estimation procedures, the OLS and
the $\mathrm{N}\mathrm{L}\mathrm{S}$ procedure in the continuous Bass
model and the two OLS procedures in the dis-
crete Bass model, results related to a statistic of
fit (MSE) are given in Rble 9. The numbers (1,
2, $\cdots,$

$7$) in the left column repraeent, raepec-
tively, room air conditioners, color televisions,
clothes dryers, ultrasound, mammography, for-
eign language, and accelerated program. The
statistics of fit for $\mathrm{d}\mathrm{O}\mathrm{L}\mathrm{S}2$ is not directly com-
parable with those of the other estimation $\mathrm{p}\mathrm{r}(\succ$

cedures, because the error term of $\mathrm{d}\mathrm{O}\mathrm{L}\mathrm{S}2$ is
different from the error terms of the other es-
timation procedures. However, from $\mathrm{E}\mathrm{q}\mathrm{s}$. (87)
and (96), the error term $\epsilon(n)$ may be regarded
as following

$\epsilon(n)=\frac{k}{q}\epsilon(n)$ . (107)

Therefore, we compared the fit statistics of
$\mathrm{d}\mathrm{O}\mathrm{L}\mathrm{S}2$ with those of other procedures by us-
$\mathrm{i}\mathrm{n}\mathrm{g}$ this equation.

Of the four procedures (the OLS, $\mathrm{M}\mathrm{L}\mathrm{E},$
$\mathrm{N}\mathrm{L}\mathrm{S}$,

and $\mathrm{A}\mathrm{E}$ procedures in the continuous Bass
model), the $\mathrm{N}\mathrm{L}\mathrm{S}$ procedure provides the best
fit to the data [11]. Mahajan et al. stated
that, if we assume global optimum parameter
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Table 9: Mean squared error.
$\mathrm{O}\mathrm{L}\mathrm{S}$ $\mathrm{N}\mathrm{L}\mathrm{S}$ dOLSl $\mathrm{d}\mathrm{O}\mathrm{L}\mathrm{S}2$OLS NLS dOLSl $\mathrm{d}\mathrm{O}\mathrm{L}\mathrm{S}2$

1 41,265 26,267 13,205 15,177
2 282,522 119,474 38,477 40,320
3 20,818 16,367 7,692 9,115
4 $\beta$ 11.6 5.26 6.09
5 $\beta$ 3.9 2.19 2.30
6 $\beta$ 0.5 0.0949 0.0993
7 11.3 6.2 0.528 0.544

OLS $\mathrm{N}\mathrm{L}\mathrm{S}$ dOLSl $\mathrm{d}\mathrm{O}\mathrm{L}\mathrm{S}2$

1 0.0170 0.0094 0.0139 0.0107
2 0.0357 0.0185 0.02448 0.02194
3 0.0196 0.0136 0.01790 0.014322
4 $\beta$ 0.0013 -0.01755 -0.02826
5 $\beta$ 0.0004 -0.02501 -0.030308
6 $\beta$ 0.0019 -0.0249 -0.02871
7 0.0120 0.0007 -0.01825 -0.0215363

estimates, the $\mathrm{N}\mathrm{L}\mathrm{S}$ procedure should, by defi-
nition, provide the best fit in terms of the mean
squared error [11]. However, a comparison of
the statistics of fit in Table 9 indicates that
both dOLSl and $\mathrm{d}\mathrm{O}\mathrm{L}\mathrm{S}2$ provided a better fit
to the data than did the $\mathrm{O}\mathrm{L}\mathrm{S}$ or $\mathrm{N}\mathrm{L}\mathrm{S}$ in terms of
mean squared error. The fit statistic of dOLSl
was the best of all. A $\beta$ in Table 9 indicates
cases where the $\mathrm{O}\mathrm{L}\mathrm{S}$ procedure yielded an in-
correct sign for the regression coefficient $\hat{\alpha}_{1}$ in
the regression equation.

Table 10: Parameter estimates of $k$ .
$\mathrm{O}\mathrm{L}\mathrm{S}$ $\mathrm{N}\mathrm{L}\mathrm{S}$ dOLSl $\mathrm{d}\mathrm{O}\mathrm{L}\mathrm{S}2$

$1$ $17.1\mathrm{E}6$ $18.7\mathrm{E}6$ $18.0\mathrm{E}6$ $17.1\mathrm{E}6$

$2$ $35.5\mathrm{E}6$ . $39.7\mathrm{E}6$ $39.1\mathrm{E}6$ $38.4\mathrm{E}6$

$3$ $15.3\mathrm{E}6$ $16.5\mathrm{E}6$ $16.19\mathrm{E}6$ $15.3\mathrm{E}6$

OLS $\mathrm{N}\mathrm{L}\mathrm{S}$ dOLSl $\mathrm{d}\mathrm{O}\mathrm{L}\mathrm{S}2$

1 $17.1\mathrm{E}6$ $18.7\mathrm{E}6$ $18.0\mathrm{E}6$ $17.1\mathrm{E}6$

2 $35.5\mathrm{E}6$ . $39.7\mathrm{E}6$ $39.1\mathrm{E}6$ $38.4\mathrm{E}6$

3 $15.3\mathrm{E}6$ $16.5\mathrm{E}6$ $16.19\mathrm{E}6$ $15.3\mathrm{E}6$

4 $\beta$ 167.4 187.2 180.2
5 $\beta$ 111.4 122.1 121.2
6 $\beta$ 37.6 40.1 39.6
7 63.6 64.4 65.5 65.1

Tables 10 and 11 show the parameters esti-
mated by the OLS, $\mathrm{N}\mathrm{L}\mathrm{S},$ dOLSl, $\mathrm{m}\mathrm{d}\mathrm{d}\mathrm{O}\mathrm{L}\mathrm{S}2$

procedures. Again, $\beta$ indicates where the OLS
procedure yielded an incorrect sign for the re-
gression coefficient $\hat{\alpha}_{1}$ in the regression equa-
tion. The results for the parameter estimates
in Table 11 show that both dOLSl and $\mathrm{d}\mathrm{O}\mathrm{L}\mathrm{S}2$

provided the wrong sign for the regression coef-
ficient $a$ in Eq. (87) and for the regression coef-
ficient $A$ in Eq. (96) for ultrasound, mammog-

raphy, foreign language, and accelerated $\mathrm{p}\mathrm{r}x$

gram. Both $a$ in Eq. (87) and $A$ in Eq. (96)
are the regression coefficients of the constant
term.

Table 11: Parameter estimates of $p$ .

A wrong sign in Table 11, however, does not
indicate multicolinearity. Tables 12, 13, and
14, respectively, show the condition number,
determinant of the correlation matrix, and vari-
ance inflation factors for each product. These
tables show that there is no multicolinearity
in $\mathrm{d}\mathrm{O}\mathrm{L}\mathrm{S}2.$ Cases where the wrong signs were
applied have smaller condition numbers, larger
determinants of the correlation matrices, and
smaller VIFs than the cases that had the right
signs. Therefore, the wrong sign on a parame-
$\mathrm{t}\mathrm{e}\mathrm{r}$ suggests that the obtained data is not ap-
propriate for the Bass model.

Table 12: Condition number.
OLS dOLSl $\mathrm{d}\mathrm{O}\mathrm{L}\mathrm{S}2$

1 11.943 12.615 7.743
2 13.321 15.768 10.123
3 13.145 14.499 9.723

OLS dOLSl $\mathrm{d}\mathrm{O}\mathrm{L}\mathrm{S}2$

1 11.943 12.615 7.743
2 13.321 15.768 10.123
3 13.145 14.499 9.723
4 13.380 13.436 4.513
5 14.982 13.648 3.703
6 13.132 13.213 4.700
7 13.546 11.736 3.503
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6 $\mathrm{D}_{\acute{1}}\mathrm{s}\mathrm{c}\mathrm{r}\mathrm{e}\mathrm{t}\mathrm{e}$ stochastic logistic
curve model

Table 13: Determinant of correlation matrix.
OLS dOLSl $\mathrm{d}\mathrm{O}\mathrm{L}\mathrm{S}2$

1 0.01913 0.01614 0.03135
2 0.01453 0.009096 0.01152
3 0.01485 0.01138 0.01817

OLS dOLSl $\mathrm{d}\mathrm{O}\mathrm{L}\mathrm{S}2$

1 0.01913 0.01614 0.03135
2 0.01453 0.009096 0.01152
3 0.01485 0.01138 0.01817
4 0.01565 0.01459 0.08556
5 0.01222 0.01383 0.1650
6 0.01658 0.01518 0.08084
7 0.01578 0.01973 0.1836

As shown in the previous sections, the proposed
discrete models yield accurate estimates of pa
rameters, even with small amounts of input
data. These models, however, are deterministic
equations, so they do not yield the distribution
of an estimate. In this section, we propose $\mathrm{a}$

discrete stochastic logistic equation that has an
exact solution and then derive an SRGM from
it, such that the distribution of an estimate is
yielded along with the estimates themselves.

6.1 Discrete stochastic equation

We propose the following form of discrete
stochastic logistic equation:

$L_{n+1}-L_{n}= \delta\frac{A_{n+1}}{k}L_{n}(k-L_{n+1})$, (108)

Table 14: Variance inflation factors.
OLS dOLSl $\mathrm{d}\mathrm{O}\mathrm{L}\mathrm{S}2$

where $\{A_{n} : n=1,2, \ldots\}$ is a sequence of inde-
pendent and identically distributed (i.i.d.) ran-
$\mathrm{d}\mathrm{o}\mathrm{m}$ variables. Its exact solution is daecribed
by

$L_{n}= \frac{k}{1+m\prod_{j=0}^{n}(\frac{1}{1+\delta A_{\mathrm{j}}})}$ . (109)

We suppose that $\{Xj : j=1,2, \ldots\}$ in Eq.
(109)

$X_{j}= \frac{1}{1+\delta A_{j}}$ (110)
$\mathrm{O}\mathrm{L}\mathrm{S}$ dOLSl $\mathrm{d}\mathrm{O}\mathrm{L}\mathrm{S}2$

1 14.003 13.577 2.323
2 15.537 15.432 1.785
3 15.021 15.498 2.202
4 17.52 15.488 1.36
5 22.121 16.19 1.013
6 17.525 15.129 1.505
7 20.189 13.256 1.048

has the i.i.d. power-function distribution. We
consider the probability $P\{L_{n}>\underline{l}\}$ where

$\underline{l}=\frac{k}{1+m\underline{x}}$ . (111)

Then, $P\{L_{n}>\underline{l}\}$ is described as follows,

$P\{L_{n}>\underline{l}\}$

$=$ $( \exp(\gamma\log\underline{x}))\sum_{j=0}^{n-1}\frac{(-\gamma 1\mathrm{o}\mathrm{g}\underline{x})^{j}}{j!},(112)$

Therefore, the proposed equation enables us to
obtain a distribution for the estimate at a step
$n$ .
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6.2 Distribution of actual data

The assumption of the power-function distribu-
tion stated in the previous section was evalu-
ated on the same actual data as had been used
in Sect. 2. We used the last value in the data
series as the value of $k.$ The distribution of $Xj$

is shown in Fig. 9. Figure 9 indicates that $Xj$

has the power-function distribution except at
its tail, where the small amount of data leads
to deviation ffom this distribution.

Figure 9: Distribution of the actual data

7 Conclusion

Through our discussions, we have shown that
growth curve models based on integrable dis-
crete equations provide characteristics which
are beneficial in forecasting. We have applied
these discrete models to software reliability
models and a model of diffusion ffom market-
$\mathrm{i}\mathrm{n}\mathrm{g}.$ The desirable properties of integrable dis-
crete equations include their production of ac-
curate estimates and accurate estimates of $\mathrm{p}\mathrm{a}$

rameters early in the testing phase, and the fact
that they avoid multicolinearity. These discrete
models will be applicable to growth curve mod-
$\mathrm{e}\mathrm{l}\mathrm{s}$ in other fields, providing the same benefits
as have been shown in this paper.

In Sect. 2, we proposed discrete logistic
curve models, which are SRGMs that yield ac-
curate parameter estimates from even small
amounts of data. They are based on dis-
crete forms of the logistic equation which were

obtained by Morishita and Hirota. We con-
structed the SRGMs with no continuous com-
ponents because the discrete equations have ex-
act solutions. Morishita’s and Hirota’s models
give the same parameter estimates. Although
the conventional model uses a discrete equa-
tion as a regression equation, the model itself
is acontinuous time model, so it includes errors
generated by discretization. However, our pro-
posed models do not have this problem because
they are themselves discrete models. We can
thus analyze software reliability without hav-
$\mathrm{i}\mathrm{n}\mathrm{g}$ to use a continuous time model.

In Sect. 3, we proposed adiscrete Gompertz
equation that has an exact solution. The dif-
ference equation conserves the properties of the
differential equation because it has an exact so-
lution.

We also described an SRGM that yields ac-
curate parameter estimates even from small
amounts of data. It is based on the discrete
Gompertz equation. Only regression analysis is
need to estimate the parameters in the discrete
model; this is also the case for the conventional
model.

The proposed model enables us to accurately
estimate parameters early in the testing phase,
on the basis of actual data. In the conventional
model, the parameter estimates change accord-
$\mathrm{i}\mathrm{n}\mathrm{g}$ to the number of data points. The discrete
model provides parameter estimates that are
stable against variation in the number of data
points. This property is very important for an
SRGM.

In predicting total numbers of potential soft-
ware failures, it is also importmt, though dif-
ficult, to determine which model is the moet
appropriate for the early testing phase. In
Sect. 4, we proposed acriterion for use in $\mathrm{d}\triangleright$

termining the most appropriate SRGM. This
criterion, together with discrete SRGMs, $\mathrm{d}\triangleright$

termines the absolute worth of a model be-
cause the discrete SRGM perfectly reproduces
the original parameters when the data used are
from the exact solution of the equation with
these parameters. The criterion is also applica-
$\mathrm{b}\mathrm{l}\mathrm{e}$ in determining the absolute worth of a dis-
crete SRGM in operation on actual data sets.
Therefore, the proposed criterion and the dis-
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crete model enable us to identify the potential
number of failures in an item of software early
in the testing phase.

In Sect. 5, we described the discrete Bass
model, adifference equation that has an exact
solution. The discrete Bass model enables us
to analyze diffusion processes. This discrete
model has an exact solution, which is the same
as the value of the corresponding solution of
the continuous Bass model.

The two parameter estimation procedures in
the discrete Bass model, the $\mathrm{O}\mathrm{L}\mathrm{S}$ and $\mathrm{N}\mathrm{L}\mathrm{S}$ pro-
cedures, give the same parameter estimates un-
der no constraints. For actual data sets, both
dOLSl $\mathrm{m}\mathrm{d}$ the $\mathrm{d}\mathrm{O}\mathrm{L}\mathrm{S}2$ provide a better fit in
terms of mean squared error, than the $\mathrm{O}\mathrm{L}\mathrm{S}$ or
$\mathrm{N}\mathrm{L}\mathrm{S}$ procedure in the conventional Bass model.
The parameter estimation procedures in the
discrete Bass model are superior to the con-
ventional procedures in terms of this criterion.

The parameter estimation procedures in the
discrete Bass model also have certain broader
advantages over those of the conventional Bass
model. The OLS procedures of the discrete
Bass model overcome the three shortcomings
of the OLS procedure in the continuous Bass
model: the time-interval bias, standard error,
and multicolinearity. Although wrong signs
on the parameters have been regarded as $\mathrm{a}$

problem caused by multicolinearity, we found
that, in the case of the discrete method, wrong
signs could be taken as indicators that the Bass
model works poorly on the data.

In Sect. 6, a discrete stochastic logistic equa-
tion and an SRGM based on this equation were
proposed. The equation has an exact solution
and enables us to obtain adistribution of the
estimate for any step, this is not possible with
any discrete deterministic model.

In this paper, the discrete models have been
shown to have six advantages over the con-
ventional model. When the exact solution is
used as the input data, the conventional model
cannot reproduce the parameter estimates. It
provides inaccurate parameter estimates when
given data that do not encompass the inflec-
tion point. As has been done numerous times
in the past, the accuracies were confirmed as
being not too good, even with sufficient data

points. However, the parameter estimation
mechanisms in the discrete models reproduced
the values of the parameters perfectly. Even if
few data are given and the point of the inflec-
tion is not encompassed, the discrete models
reproduce the values of the parameters either
very accurately or perfectly. This is the first
advantage.

The second advantage is that the discrete
models are independent of time scale. We have
to carefully choose the time scale for the con-
ventional model because it must be used in the
regression equation and the estimates depend
on the choice of time scale. However the time
scale is not used in the discrete model’s regres-
sion equation. The same parameter estimates
are obtained whatever time scale we choose.

The third advantage is that the discrete $\mathrm{m}\mathrm{o}\mathrm{d}-$

$\mathrm{e}\mathrm{l}\mathrm{s}$ enable us to accurately estimate parameters
ffom actual data gathered early in the testing
phase. The parameter estimates of the con-
ventional model vary with the number of data
points. The discrete models provide stable val-
$\mathrm{u}\mathrm{e}\mathrm{s}$ of parameter estimates for various numbers
of data points. This property is very important
for SRGMs.

The fourth advantage is that the criterion
proposed for use with the discrete models al-
lows us to determine which model is the most
appropriate to use early in the testing phase.
The proposed criterion and discrete models en-
able us to identip potential number of failures
in software early in the testing phase.

The final advantage is that the discrete Bass
model eliminates the multicolinearity of the
conventional model.

The first and second advantages are provided
by the exact solutions to the discrete equations.
A given exact solution is equivalent to the exact
solution of the differential equation. Although
the other advantages are also provided by the
exact solutions, it is difficult to see a direct $\mathrm{r}\triangleright$

lationship. Further studiae investigation will be
needed to determine these relationships.
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