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Abstract : The author had researched optimal stopping problems where each of offers appearing subsequently
and randomly can be reserved as well as accepted or rejected in $[2][3][4][5][6]$ . In these models, it is assumed
that the cost paid for an offer reserved did not return at the time of its recalling. So, the model in this
paper regards it adeposit, that is, the reserving cost for the offer recalled will be paid back at the time of
recalling. Amajor finding is that almost all the properties in [2] keep also in the current model, that is, an
offer reserved during the search process must not be recalled prior to the deadline.

1. Introduction
The author had studied optimal stopping problems where adecision maker is allowed to reserve

offers as well as accept or reject them. In [2] he dealt with abasic model that every offer reserved
is assumed to be recallable at any time after reservation. In [3] every reservation is restricted to
expire after $k$ periods from reserving point where $k$ is afinite fixed number. Amajor common
result of them is that an offer reserved during the search process must not be recalled prior to its
maturity of reservation or the deadline of the process. The author felt strange because he thought
it natural that we could reach atime at which we began to feel wasteful for pursuing the search
process further, and decided at that time to stop the process by recalling an offer reserved.

So as to confirm whether the property is essential to our stopping problems, in [4] we studied a
model where remaining periods after termination of the process is assumed to be exchangeable for
some monetaly value. In [6] adecision maker got ability to decide the term of reservation as well
as what offer to be reserved. In these models, however, we obtained the same property as above.

Before determinating that the property is essential, we should check an influence by the way
of treatment of the reserving cost. In these models, the cost to reserve an offer is not repayed
even when the offer is recalled. In many real business, however, we can draw back the cost for
reservation at the time of transaction. Therefore, in the present paper, we shall deal with such a
model that the reserving cost for the recalled offer returns at the time of recalling. Amain result
is that the property above keeps also in this new model.

The model is precisely described in section 2. Preliminaries for the analyses are introduced in
section 3, and the optimal equation of the model is formulated in section 4. In section 5we analyze
the properties of the optimal decision rule, and they are summarized in section 6.

2. Model
Suppose you must find and get as good an offer as possible during atime horizon you have so

as to search for offers. Offers can be found at periodic intervals, but at any point in time, if you
want to ovserve one, asearch cost $s>0$ is to be paid at the preceding point in time. The values
of offers appearing subsequently are i.i.d. random variables following adistribution $F$ such that
$F(w)=0$ for $w<0,0<F(w)<1$ for $0\leq w<b$ , $F(w)=1$ for $b\leq w$ with $0<b<\infty$ , and the
expectation is $\mu$ .

Every time you find anew offer, called acurrent offer, you must inspect it and decide how to
manage it. The choices available are accepting it, passing it up, and reserving it. Reserving an
offer, of course, enables you to recall it at any time after that, but it is not free. So as to reserve
an offer $w$ , you must pay areserving cost $r(w)$ , but it returns when you recall the offer. That is,
if you recall areserved offer $x$ , you will obtain not only the value $x$ but also $r(x)$ at the time of
recalling. Passing up the current offer, you lose the right to recall it forever
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Although you have some offers recallable, there is only one offer to be remembered because
you can accept only one offer. It is, of course, the most lucrative of all reserved offers. Let us
call it leading offer. Then, the actions which can be taken at each time except for the deadline
are summarized as the following four: accepting the current offer and stopping the search (AS),
reserving the current offer and continuing the search (RC), passing uP the current offer and stopping
the search by recalling the leading offer (PS), and passing up the current offer and continuing the
search (PC), where AS, $\mathrm{R}\mathrm{C}$ , PS, and PC represent the four decisions, respectively. At the deadline,
only decisions AS and PS are permitted.

In the model, we consider the value of time by adiscount factor $\beta$ such as $0<\beta\leq 1$ , that is,
the present value of $q$ monetary units obtained at the next time is given by $\beta q$ monetary units.

The objective of this model is to find an optimal decision rule that guides you to which action
should be taken at each decision point so as to maximize the total expected discounted present
net profit obtainable in the process ahead. That profit is the expectation of the present discounted
value you can gain at the time of stopping the search, that is, accepting or recalling an offer, minus
the expectation of the amount of search costs and reserving costs paid over the periods from the
present point in time to the termination of the search.

Finally, let us make the following assumptions.
(1) $\beta\mu>s$ .
(2) $r(w)$ is continuous and nondecreasing in $w$ , and $0=r(0)\leq r(b)<\infty$ .
(3) $r(w)=0$ for $w\leq 0$ and $r(w)=r(b)$ for $b\leq w$ .

Assumption(l) is to avoid trivial case where continuation of search lose meanings. Since $\beta\mu-s$

is the expected discounted net profit attainable from one more search, if $\beta\mu\leq s$ , everyone hopes
to quit the searching as early as possible. Althogh the proof is omitted here, it can be shown
theoretically.

As for Assumption(2), nondecreasing property means that the higher is the value of offer, the
more is the cost needed to reserve it. The inequality $0=r(0)\leq r(b)<\infty$ may be intuitively clear.
Continuation and Assumptions(3) are introduced only for analytic reasons.

3. Preliminaries
Let us define afunction $\psi$ as

$\psi(x)=\int_{0}^{b}\max\{w, x\}dF(w)$ , (3.1)

which can be expanded as
$\psi(x)=\mu+\int_{0}^{x}F(w)\mathrm{d}w$ . (3.2)

Lemma 3.1
(a) $\psi(x)=\mu$ for $x\leq 0$ , $x<\psi(x)$ for $x<b$ , and $\psi(x)=x$ for $b\leq x$ .
(b) $\psi(x)$ is continuous, convex, and nondecreasing in $x$ , and strictly increasing in $x\geq 0$ .

$\mathrm{P}\mathrm{r}\mathrm{o}\mathrm{o}\mathrm{f}$ See Ikuta [1]. 1

4. Optimal Equation and Optimal Decision Rule
Let point in time $t$ , simply referred to as time $t$ later on, be equally spaced and numbered

backward from the deadline $t=0,\cdot$ thus $t$ also represents the number of periods remaining.
Suppose that we are at time $t$ with having an offer $x$ as the leading offer and $w$ as the current

offer. Then, if taking decision AS, we stop searching by getting the offer $w$ . If taking decision PS,
we terminate searching by receiving not only the offer $x$ but also $r(x)$ , which is the reserving cost
paid at the time of reserving the offer $x$ .
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When we choose decision $\mathrm{P}\mathrm{C}$ , we are to continue the search by paying the search cost $s$ , and
the leading offer of the next point in time remains to be $x$ . As for decision $\mathrm{R}\mathrm{C}$ , we first pay the
reserving cost $r(w)$ for the offer $w$ , and then spend the search cost $s$ . The leading offer of the next
time is the larger one between $w$ and $x$ , that is, $\max\{w, x\}$ . But it can be easily shown that at any
time, we have no need to reserve an offer as long as its value is inferior to that of the leading offer
of that time. Hence, if taking decision RC at time $t$ , we can regard $w$ as the leading offer of next
time, that is, time $t-1$ .

Now, let us denote $u_{t}(w, x)$ the maximum total expected present discounted net profit by
starting time $t$ on which we have acurrent offer $w$ and the leading offer $x$ . Then, it follows that

$u_{t}(w, x)= \max$ $\{\begin{array}{lll}\mathrm{A}\mathrm{S} w\mathrm{R}\mathrm{C} -r(w)-s+\beta v_{t-1}(w)\mathrm{P}\mathrm{S} x+r(x)\mathrm{P}\mathrm{C} -s+\beta v_{t-1}(x)\end{array}\}$ , $t\geq 0$ , (4.1)

where
$v_{t}(x)= \int_{0}^{b}u_{t}(w, x)\mathrm{d}F(w)$ , $t\geq 0$ ; $v_{-1}(x)=-\infty$ . (4.2)

We immediately get $u0(w, x)= \max\{w, x+r(x)\}$ , which indicates that we must stop the process
on the deadline by accepting either the current offer or the leading offer. Note here that the equality,
(3.1) and (3.2) yield, for any $x\in \mathbb{R}$ ,

$v_{0}(x)= \psi(x+r(x))=\mu+\int_{0}^{x+r(x)}F(w)\mathrm{d}w$ . (4.3)

Let us define two functions $z_{t}^{o}(x)$ and $z_{t}^{r}(w)$ as follows.

$z_{t}^{o}(x)= \max\{x+r(x), -s+\beta v_{t-1}(x)\}$ , $t\geq 0$ , (4.4)

$z_{t}^{r}(w)= \max\{w, -r(w)-s+\beta v_{t-1}(w)\}$, $t\geq 0$ . (4.5)

Clearly, $z_{0}^{o}(x)=x+r(x)$ and $\mathrm{z}1(\mathrm{w})=w$ . From (4.1) we find that $z_{t}^{o}(x)$ and $z_{t}^{r}(w)$ stand for
the total expected present discounted net profits attainable by passing up or not passing up the
current offer $w$ , respectively, at time $t$ , and then following the optimal strategy. Therefore, the set
of current offers which should be accepted or reserved can be denoted by

$W_{t}(x)=\{w : z_{t}(x)\leq z_{t}(w)\}$ , $t\geq 0$ . (4.6)

From above,

$v_{t}(x)= \int_{0}^{b}\max\{z_{t}^{r}(w), z_{t}^{o}(x)\}\mathrm{d}F(w)$ .

Finally, we introduce afunction $f$ as

$f_{t}(x)=\beta v_{t-1}(x)-(x+r(x))-s$ , $t\geq 1$ . (4.7)

And let $\lambda_{t}$ denote asolution of equation $f_{t}(x)=0$ , if exists, that is,

$ft(\lambda t)=\beta vt-1(\lambda t)-(\lambda t+r(\lambda t))-s=0$ , $t\geq 1$ . (4.8)

Comparing (4.4) and (4.5) with (4.7), we find that $\lambda_{t}$ is the indifferent point of time $t$ in terms
of $x$ between decisions PS and PC as well as the indifferent point of time $t$ in terms of $x$ between
decisions AS and $\mathrm{R}\mathrm{C}$ .

Therefore, the optimal decision rule can be described by using $W_{t}(x)$ and $\lambda_{t}$ .
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5. Analysis
Lemma 5.1

(a) $v_{t}(x)$ is continuous and nondecreasing in $x$ for any $t\geq 0$ , and nondecreasing in $t$ for any $x$ .
(b) $v_{t}(x)\geq\mu$ for any $x$ , $x+r(x)<v_{t}(x)$ for $x<b$ , and $v_{t}(b)=b+r(b)$ .

Proof: (a) Since $v_{0}(x)=\psi(x+r(x))$ , the assertion holds true for $t=0$ due to Lemma 3.1(b).

Suppose the assertion holds true for $t-1$ . Then, the expression for PS and PC in (4.1) both
satisfy the two properties because $r(x)$ is assumed to be continuous and nondecreasing in $x$ . So
also does the expression for AS since it is independent of $x$ . For any $w$ , both $r(w)$ and $v_{t-1}(w)$ are
constant in $x$ . Hence, the expression for RC also has the properties. Since all four expressions in
the braces of (4.1) satisfy the two properties, so also does $v_{t}(x)$ .

As for the assertion with $t$ , it can be easily shown by induction starting with $v1(x) \geq\int_{0}^{b}\max\{w$ , x-l-
$r(x)\}\mathrm{d}F(w)=vo(x)$ .

(b) First, clearly we have $v_{t}(x) \geq\int_{0}^{b}w\mathrm{d}F(w)=\mu$ for every $t$ . Secondly, if $x<b$ , we get
$x+r(x)<\psi(x+r(x))=v\mathrm{o}(x)\leq v_{1}(x)\leq\cdots$ due to Lemma 3.1(b) and assertion (a).

Finally, it easily shown that $u_{t}(w, b)=b+r(b)$ for any $w$ such that $0\leq w\leq b$ due to assertion
(a), which implies that $v_{t}(b)=b+r(b)$ . @

Lemma 5.2 For any $t\geq 0$ and $\rho\geq 0$ , we have $vt(x+\rho)-vt(x)\leq\rho+r(x+\rho)-r(x)$ .

$\mathrm{P}\mathrm{r}\mathrm{o}\mathrm{o}\mathrm{f}$ Fix any $\rho\geq 0$ . Clearly, $\rho+r(x+\rho)-r(x)\geq 0$ . It follows from (4.3) that

$v_{0}(x+ \rho)-v_{0}(x)=(\mu+\int_{0}^{x+\rho+r(x+\rho)}F(w)\mathrm{d}w)-(\mu+\int_{0}^{x+r(x)}F(w)\mathrm{d}w)$

$= \int_{x+r(x)}^{x+\rho+r(x+\rho)}F(w)\mathrm{d}w\leq\int_{x+r(x)}^{x+\rho+r(x+\rho)}\mathrm{d}w=\rho+r(x+\rho)-r(x)$ ,

which implies that the assertion holds true for $t=0$ .
Suppose the assertion holds for $t-1$ , that is, $vt-1(X+\rho)-vt-1(x)\leq\rho+r(x+\rho)-r(x)$ . For

any real numbers $A_{1}$ , $A_{2}$ , $B_{1}$ and $B_{2}$ we generally have

$\max\{A_{1}, A_{2}\}-\max\{B_{1}, B_{2}\}\leq\max\{A_{1}-B_{1}, A_{2}-B_{2}\}$ . (5.1)

From these two relations and (4.4), we obtain

$zt(x+ \rho)-z_{t}^{o}(x)\leq\max\{\rho+r(x+\rho)-r(x), \beta(v_{t-1}(x+\rho)-v_{t-1}(x))\}$

$\leq\max\{\rho+r(x+\rho)-r(x),\beta(\rho+r(x+\rho)-r(x))\}=\rho+r(x+\rho)-r(x)$ .

By using this, (??) and (5.1),

$v_{t}(x+ \rho)-v_{t}(x)=\int_{0}^{b}(\max\{z_{t}^{r}(w), zt(x+\rho)\}-\max\{z_{t}^{r}(w), z_{t}^{o}(x)\})\mathrm{d}F(w)$

$\leq\int_{0}^{b}\max\{0, zt(x+\rho)-z_{t}^{o}(x)\}\mathrm{d}F(w)$

$\leq\int_{0}^{b}\max\{0,\rho+r(x+\rho)-r(x)\}\mathrm{d}F(w)=\rho+r(x+\rho)-r(x)$ .

Since we have also confirmed the truth of the assertion for $t$ , the inductive proof is completed. I

Let $x_{b}$ denote the root of equation $x+r(x)=6$, which exists uniquely with satisfying $0<x_{b}<b$ .
Because $x+r(x)$ is continuous and strictly increasing, and there holds $\mathrm{O}+r(0)=0<b<b+r(b)$ .
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We then have

$x+r(x)\{$
$<$ $b$

$=$ $b$

$>$ $b$

for $x<x_{b}$ ,
for $x=x_{b}$ ,
for $x>x_{b}$ .

(5.2)

Lemma 5.3
(a) $f_{t}(x)$ is nonincreasing on $\mathbb{R}$ , and strictly decreasing in $x\leq x_{b}$ .
(b) $f_{t}(x)<0$ for $x_{b}\leq x$ .
(c) $v_{t}(x)\leq b$ for $x\leq x_{b}$ .

Proof: (a) Choose any $x_{1}$ and $x_{2}$ such that $x_{1}<x_{2}$ . For $t=1$ , it follows from (4.3) and (4.7) that

$f_{1}(x_{2})-f_{1}(x_{1})= \beta\int_{0}^{x_{2}+r(x_{2})}F(w)\mathrm{d}w-\beta\int_{0}^{x_{1}+r(x_{1})}F(w)\mathrm{d}w-(x_{2}+r(x_{2}))+(x_{1}+r(x_{1}))$

$= \beta\int_{x_{1}+r(x_{1})}^{x_{2}+r(x_{2})}F(w)\mathrm{d}w-\int_{x_{1}+r(x_{1})}^{x_{2}+r(x_{2})}\mathrm{d}w=\int_{x_{1}+r(x_{1})}^{x_{2}+r(x_{2})}(\beta F(w)-1)\mathrm{d}w$. (5.3)

By noting that $\beta F(w)-1\leq 0$ for any $w$ such that $x_{1}+r(x_{1})<w<x_{2}+r(x_{2})$ , from (5.3) we have
$f1(x_{2})-f1(x_{1})\leq 0$ . Furthermore, if $x_{2}<x_{b}$ , then $x_{1}+r(x_{1})<x_{2}+r(x_{2})<b$, thus $\mathrm{P}\mathrm{F}(\mathrm{w})-1<0$

for any $w$ such that $x_{1}+r(x_{1})<w<x_{2}+\mathrm{r}(\# 2)$ . Hence, (5.3) implies $f_{1}(x_{2})-f_{1}(x_{1})<0$ when
$x_{1}<x2<xb$ . Therefore, we conclude the truth of the assertion for $t=1$ .

Next, suppose the assertion is true for $t$ , that is, $f_{t}(x_{1})\geq f_{t}(x_{2})$ when $x_{1}<x_{2}$ , and especially
$f_{t}(x_{1})>f_{t}(x_{2})$ when $x_{1}<x_{2}<x_{b}$ .

We shall now show that $v_{t}(x)-(x+r(x))$ is nonincreasing on $\mathbb{R}$ and strictly decreasing in
$x\leq x_{b}$ . Applying (5.1) we gain

$vt(x_{i})-(x_{i}+r(x_{i}))= \int_{0}^{b}\max$ $\{\begin{array}{l}w-(x_{i}+r(x_{i}))-r(w)-s+\beta v_{t-1}(w)-(x_{i}+r(x_{\dot{\iota}}))0-s+\beta v_{t-1}(x_{i})-(x_{i}+r(x_{i}))(=f_{t}(x..))\end{array}\}$ $\mathrm{d}F(w)$ , $i=1,2$.

(5.4)
From this, (5.1) and the assumption $f_{t}(x_{2})-\mathrm{f}\mathrm{t}(\mathrm{x})\leq 0$ , we obtain

$v_{t}(x_{2})-(x_{2}+r(x_{2}))-\mathrm{V}\mathrm{t}(\mathrm{x})+(x_{1}+\mathrm{r}(\mathrm{x}2))$ (5.5)

$\leq\int_{0}^{b}\max$ $\{\begin{array}{l}-x_{2}-r(x_{2})+x_{1}+r(x_{1})-x_{2}-r(x_{2})+x_{1}+r(x_{1})0f_{t}(x_{2})-f_{t}(x_{1})\end{array}\}$ $\mathrm{d}F(w)=\int_{0}^{b}0\mathrm{d}F(w)=0$, (5.6)

which indicates that $v_{t}(x)-(x+r(x))$ is nonincreasing on R.
For awhile from here, assign the four expressions in the braces of (5.4) $A_{i}$ , Bi, $C_{\dot{l}}$ , and $D_{:}$ ,

respectively, in order.
Suppose $x_{2}<x_{b}$ . then $x_{1}+r(x_{1})<x_{2}+r(x_{2})<b$, thus $0<w-(x_{2}+r(x_{2}))<w-(x_{1}+r(x_{1}))$ ,

that is, $C_{2}=C_{1}<A_{2}<A_{1}$ for any $w$ such that $x_{2}+r(x_{2})<w\leq b$ . Hence,

$v_{t}(x_{\dot{\iota}})-(x_{*}. +r(x_{i}))$

$= \int_{0}^{x_{2}+r(x_{2})}\max\{A_{i}, B_{\dot{l}}, C_{i}, D:\}\mathrm{d}F(w)+\int_{x_{2}+r(x_{2})}^{b}\max\{A_{i}, B_{i}, D:\}\mathrm{d}F(w)$ , $i=1,2$ . (5.7)

In asimilar fashion to (5.6), we have

$\int_{0}^{x_{2}+r(x_{2})}\max$ {A2 , $B_{2}$ , $C_{2}$ , $D_{2}$ } $dF(w)- \int_{0}^{x_{2}+r(x_{2})}\max\{A_{1}, B_{1}, C_{1}, D_{1}\}\mathrm{d}F(w)\leq 0$ . (5.8)
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Lemma 5.1(a) indicates

$D_{2}-D_{1}=f_{t}(x_{2})-f_{t}(x_{1})=\beta v_{t-1}(x_{2})-\beta v_{t-1}(x_{1})-x_{2}-r(x_{2})+x_{1}+\mathrm{r}(\mathrm{x}2)$

$\geq-x_{2}-r(x_{2})+x_{1}+r(x_{1})=A_{2}-A_{1}=B_{2}-B_{1}$ .

From this, the assumption $f_{t}(x_{2})-f_{t}(x_{1})<0$ , and $F(x_{2}+r(x_{2}))<1$ , we get

$\int_{x_{2}+r(x_{2})}^{b}\max$ {A2, $B_{2}$ , $D_{2}$ } $\mathrm{d}F(w)-\int_{x_{2}+r(x_{2})}^{b}\max\{A_{1}, B_{1}, D_{1}\}\mathrm{d}F(w)$

$= \int_{x_{2}+r(x_{2})}^{b}(D_{2}-D_{1})\mathrm{d}F(w)=$ $(f_{t}(x_{2})-f_{t}(x_{1}))(1-F(x_{2}+r(x_{2})))<0$ . (5.9)

Owing to (5.7), (5.8) and (5.9), we deduce $v_{t}(x_{2})-(x_{2}+r(x2))-v_{t}(x_{1})+(x_{1}+r(x_{1}))<0$,
implying that $v_{t}(x)-(x+r(x))$ is strictly decreasing in $x<x_{b}$ .

Finally, by noting that $f_{t+1}(x)=\beta(v_{t}(x)-(x+r(x)))+(\beta-1)(x+r(x))-s$ , we arrive at the
truth of the assertion.

(b) and (c) shall be proven together by induction on $t$ . Easily we have, for $x\leq x_{b}$ ,

$v_{0}(x)= \int_{0}^{b}\max\{w, x+r(x)\}\mathrm{d}F(w)\leq\int_{0}^{b}\max\{w, b\}\mathrm{d}F(w)=b$,

which implies $f1(x_{b})=\beta v\mathrm{o}(x_{b})-(x_{b}+r(x_{b}))-s\leq\beta b-b-s=(\beta-1)b-s<0$. This inequality and
assertion (a) lead us to $f1(w)<0$ for $w\geq x_{b}$ . UP to here the first step of the proof is completed.

Suppose $v_{t-1}(x)\leq b$ for $x\leq x_{b}$ and $f_{t}(x)<0$ for $x_{b}\leq x$ , where note that the latter inductive
assumption is equivalent $\mathrm{t}\mathrm{o}-r(w)-s+\beta v_{t-1}(w)<w\leq b$ for $x_{b}\leq w$ . Then, for $x\leq x_{b}$ ,

$v_{t}(x) \leq\int_{0}^{b}\max$ $\{\begin{array}{ll}b -r(w)- s+\beta v_{t-1}(w)b -s+\beta b \end{array}\}$ $\mathrm{d}F(w)$

$= \int_{0}^{b}\max\{b, -r(w)-s+\beta v_{t-1}(w)\}\mathrm{d}F(w)$

$= \int_{0}^{x_{b}}\max\{b, -r(w)-s+\beta v_{t-1}(w)\}\mathrm{d}F(w)+\int_{x_{b}}^{b}\max\{b, -r(w)-s+\beta v_{t-1}(w)\}\mathrm{d}F(w)$

$\leq\int_{0}^{x_{b}}\max\{b, -r(w)-s+\beta b\}\mathrm{d}F(w)+\int_{x_{b}}^{b}\max\{b, b\}\mathrm{d}F(w)$

$= \int_{0}^{x_{b}}b\mathrm{d}F(w)+\int_{x_{b}}^{b}b\mathrm{d}F(w)=b$ ,

from which we get $f_{t+1}(x_{b})=\beta v_{t}(x_{b})-(x_{b}+r(x_{b}))-s\leq\beta b-b-s=(\beta-1)b-s<0$ . This
inequality and assertion (a) show $f_{t+1}(x)<0$ for $x\geq Xb$ . We have thus completed the proof. 1

Lemma 5.4 $\lambda_{t}$ exists uniquely with satisfying $0<\lambda_{1}\leq\lambda_{2}\leq\cdots\leq\lambda_{t}\leq\cdots<x_{b}$ .

Proof: By remembering assumptions $r(0)=0$ and $\beta\mu-s>0$ and using (4.3) and (4.7) we obtain
$\mathrm{f}\mathrm{i}(\mathrm{w})=\mathrm{P}\mathrm{v}\mathrm{o}(0)-(0+r(0))-s=\beta\mu-s>0$. From this and Lemma 5.3(a,b) we conclude that $\lambda_{1}$

exists uniquely with $0<\lambda_{1}<x_{b}$ .
For any $t\geq 1$ , suppose $\lambda_{t}$ exists uniquely. Then, it follows from (4.7) and Lemma 5.1(a) that

$0=f_{t}(\lambda_{t})\leq f_{t+1}(\lambda_{t})$ . Owing to this inequality and Lemma 5.3(a,b) we conclude that $\lambda_{t+1}$ also
exists uniquely with satisfying $\lambda_{t}\leq\lambda_{t+1}<x_{b}$ . We have thus completed the proof. I
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Corollary 5.5 For $t\geq 1$ :
(a) (1) if $x<\lambda_{t}$ , then $x+r(x)<-s+\beta v_{t-1}(x)$ , thus $z_{t}^{o}(x)=-s+\beta v_{t-1}(x)$ .

(2) if $x=\lambda_{t}$ , then $x+r(x)=-s+\beta v_{t-1}(x)$ , thus $z_{t}^{o}(x)=x+r(x)=-s+\beta v_{t-1}(x)$ .
(3) if $x>\lambda_{t}$ , then $x+r(x)>-s+\beta v_{t-1}(x)$ , thus $z_{t}^{o}(x)=x+r(x)$ .

(b) (1) if $w<\lambda_{t}$ , then $w<-r(w)-s+\beta v_{t-1}(w)$ , thus $zl(w)=-r(w)-s+\beta v_{t-1}(x)$ .
(2) if $w=\lambda_{t}$ , then $w=-r(w)-s+\beta v_{t-1}(w)$ , thus $zl(w)=w=-r(w)-s+\beta v_{t-1}(x)$ .
(3) if $w>\lambda_{t}$ , then $w>-r(w)-s+\beta v_{t-1}(w)$ , thus $z_{t}^{r}(w)=w$ .

Proof: Obvious due to Lemmas 5.3(a) and 5.4. I

Lemma 5.6 $z_{t}^{o}(x)$ is continuous and nondecreasing in $x$ .

Proof: Since $r$ is assumed to be continuous and nondecreasing, it follows from Lemma 5.1(a) that
both $x+r(x)$ and $-s+\beta v_{t-1}(x)$ are nondecreasing in $x$ . Hence, due to (4.4) we have confirmed
the truth of the assertion. I

Lemma 5.7 For $t\geq 1$ , we have $z_{t}(w)\leq\lambda_{t}+r(\lambda_{t})$ for $w\leq\lambda_{t}+r(\lambda_{t})$ , and $z_{t}(w)=w$ for
$\lambda_{t}+r(\lambda_{t})\leq w$ .

Proof: We first show an assertion $z_{t}(w)\leq\lambda_{t}+r(\lambda_{t})$ for $w\leq\lambda_{t}$ and $z_{t}(w)=w$ for $\lambda_{t}\leq w$ .
If $w<\lambda_{t}$ , it follows from (4.8) and Lemma 5.1(a) $\mathrm{t}\mathrm{h}\mathrm{a}\mathrm{t}-r(w)-s+\beta v_{t-1}(w)\leq-s+\beta v_{t-1}(\lambda_{t})=$

$\lambda_{t}+r(\lambda_{t})$ , implying

$z_{t}^{r}(w)= \max\{w, -r(w)-s+\beta v_{t-1}(w)\}\leq\max\{\lambda_{t}, \lambda_{t}+r(\lambda_{t})\}=\lambda_{t}+r(\lambda_{t})$.

If $w>\lambda_{t}$ , then $f_{t}(w)<0$ by Lemma 5.3(a), thus $z_{t}^{r}(w)= \max\{w, -r(w)-s+\beta v_{t-1}(w)\}=w$ .
We have finished the proof of the assertion. This assertion immediately enables us to confirm

the truth of this lemma. $\bullet$

Lemma 5.8 For $t\geq 1$ we have $\lambda_{t}=\lambda_{t+1}$ if and only if $v_{t-1}(\lambda_{t})=v_{t}(\lambda_{t})$ .

Proof: If $\lambda_{t}=\lambda_{t+1}$ , due to (4.8) we get $\mathrm{f}\mathrm{t}(\mathrm{X}\mathrm{t})=0$ and $f_{t+1}(\lambda_{t})=f_{t+1}(\lambda_{t+1})=0$ , thus $f_{t}(\lambda_{t})=$

$f_{t+1}(\lambda_{t})$ , that is, $\beta v_{t-1}(\lambda_{t})-(\lambda_{t}+\mathrm{r}(\mathrm{X}\mathrm{t})\}-s=\mathrm{p}\mathrm{v}\mathrm{t}(\mathrm{X}\mathrm{t})-(\lambda_{t}+\mathrm{r}(\mathrm{X}\mathrm{t})\}-s$ . Hence, $v_{t-1}(\lambda_{t})=v_{t}(\lambda_{t})$ .
Conversely, if $v_{t-1}(\lambda_{t})=v_{t}(\lambda_{t})$ , it follows from (4.8) that

$ft+1(\lambda t)=\beta vt(\lambda t)-(\lambda t+r(\lambda t))-s=\beta vt-1(\lambda t)-(\lambda t+r(\lambda t))-sft(\lambda t)=0$.

Since $\lambda_{t+1}$ is an unique root of $f_{t+1}(x)=0$ as seen in Lemma 5.4, we deduce $\lambda_{t}=\lambda_{t+1}$ . $\bullet$

Let us define anumber Aas aroot of equation

$\beta\mu-s-\beta\int_{0}^{x+r(x)}F(w)\mathrm{d}w-(x+r(x))=0$ . (5.10)

Theorem 5.9 $\lambda_{t}=\lambda$ for every $t\geq 1$ .

Proof: We have $0<\lambda_{t}+r(\lambda_{t})<x_{b}+r(x)=b$ because of $0<\lambda_{t}<x_{b}$ due to Lemma 5.4.
It follows from (4.1) and (4.2) that

$v_{0}( \lambda_{1})=\int_{0}^{b}\max\{w, \lambda_{1}+r(\lambda_{1})\}\mathrm{d}F(w)$

$= \int_{0}^{\lambda_{1}+r(\lambda_{1})}(\lambda_{1}+r(\lambda_{1}))\mathrm{d}F(w)+\int_{\lambda_{1}+r(\lambda_{1})}^{b}w\mathrm{d}F(w)$ . (5.11)
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From Corollary 5.5(a2) we get $z_{1}^{o}(\lambda_{1})=\lambda_{1}+r(\lambda_{1})$ . Hence, by $(?\uparrow)$ and Lemma 5.7,

$v_{1}( \lambda_{1})=\int_{0}^{b}\max\{z_{1}^{r}(w), \lambda_{1}+r(\lambda_{1})\}\mathrm{d}F(w)$

$= \int_{0}^{\lambda_{1}+r(\lambda_{1})}\max\{z_{1}^{r}(w), \lambda_{1}+r(\lambda_{1})\}\mathrm{d}F(w)+\int_{\lambda_{1}+r(\lambda_{1})}^{b}\max\{z_{1}^{r}(w), \lambda_{1}+r(\lambda_{1})\}\mathrm{d}F(w)$

$= \int_{0}^{\lambda_{1}+r(\lambda_{1})}(\lambda_{1}+r(\lambda_{1}))\mathrm{d}F(w)+\int_{\lambda_{1}+r(\lambda_{1})}^{b}w\mathrm{d}F(w)$ (5.12)

Since $v\mathrm{o}(\lambda_{1})=v_{1}(\lambda_{1})$ from (5.11) and (5.12), we get $\lambda_{1}=\lambda_{2}$ owing to Lemma 5.8.
Next, assume $\lambda_{t}=\lambda_{t+1}$ , or equivalently, $v_{t-1}(\lambda t)=vt(\lambda_{t})$ . Then, in exactly the same way as

in (5.12) we obtain

$\mathrm{v}\mathrm{t}(\mathrm{X}\mathrm{t} )=\mathrm{v}\mathrm{t}$ (Xt) $= \int_{0}^{b}\max\{z_{t}^{r}(w), \lambda_{t}+r(\lambda_{t})\}\mathrm{d}F(w)$

$= \int_{0}^{\lambda_{t}+r(\lambda_{t})}(\lambda_{t}+r(\lambda_{t}))\mathrm{d}F(w)+\int_{\lambda_{t}+r(\lambda_{t})}^{b}w\mathrm{d}F(w)$

$= \int_{0}^{\lambda_{t+1}+r(\lambda_{t+1})}(\lambda_{t+1}+r(\lambda_{t+1}))\mathrm{d}F(w)+\int_{\lambda_{t+1}+r(\lambda_{t+1})}^{b}w\mathrm{d}F(w)$

$= \int_{0}^{b}\max\{z_{t+1}^{r}(w), \lambda_{t+1}+r(\lambda_{t+1})\}\mathrm{d}F(w)=v_{t+1}(\lambda_{t+1})$ , (5.13)

from which $\lambda_{t+1}=\lambda_{t+2}$ . Therefore, by induction we conclude $\lambda_{t}=\lambda_{t+1}$ for all $t\geq 1$ .
Finally, let us consider $\lambda_{1}$ . According to (4.3) and (4.7) we have

$\mathrm{h}(\mathrm{x})=\beta(\mu+\int_{0}^{x+r(x)}F(w)\mathrm{d}w)-(x-r(x))-s$ ,

which indicates $\lambda_{1}=\lambda$ , thus the truth of the assertion is confirmed. I

Since this theorem tells that $\lambda_{t}$ , the value of the indifferent points both between AS and RC and
between pS and $\mathrm{P}\mathrm{C}$ , is independent of time, we use Ainstead of $\lambda_{t}$ from now on.

By adding this fact and Corollary 5.5 we can prescribe an optimal decision rule as follows:
Optimal decision rule: Suppose that you are at time $t$ on which you already have the leading

offer $x$ and draw an offer $w$ . Then, the optimal choices are:
(a) if $w\in W_{t}(x)$ , then:

$\bullet$ if $\lambda<w$ , AS (accept current offer $w$ and stop the search)
$\bullet$ if $w\leq\lambda$ , RC (reserve current offer $w$ and continue the search)

(b) if $w\not\in W_{t}(x)$ , then:
$\bullet$ if $\lambda<x$ , PS (pass up current offer $w$ and stop the search by accepting the leading offer $x$ )
$\bullet$ if $x\leq\lambda$ , PC (pass up current offer $w$ and continue the search)

Theorem 5.10 For $t\geq 0$ :
(a) For any $x$ , if $w\in W_{t}(x)$ , then $x+r(x)\leq w$ .
(b) If $x^{1}<x^{2}$ , then, $W_{t}(x^{1})\supseteq W_{t}(x^{2})$ .
(c) $W_{t}(x)=\{w : x+r(x)\leq \mathrm{t}\mathrm{o}\}$ for $x\geq\lambda$ .

Proof: (a) Fix any x. Since $W_{0}(x)=$ {w: $x+r(x)\leq w\}$ by definition, the assertion holds true for
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To complete the proof, we assume the assertion to be true for $t-1$ and then show the contra-
positive, that is, if $w<x+r(x)$ , then $z_{t}^{r}(x)<z_{t}^{o}(x)$ .

First, choose any $w$ so that $w\leq x$ . Then, it follows from Lemma 5.1(a) that $vt-1(w)\leq vt-1(x)$ ,
thus $-r(w)-s+$ $\mathrm{v}\mathrm{t}-\mathrm{i}(\mathrm{w})<-s+\beta v_{t-1}(x)$, hence

$z[(w)= \max\{w,$ $-r(w)-s+$ $\mathrm{v}\mathrm{t}-\mathrm{i}(\mathrm{w})$ $< \max\{x+r(x), -s+\beta vt-1(x)\}$ .

Next, choose any $w$ so that $x<w<x+r(x)$ and let $\rho$ be anumber such that $w=x+\rho$ . Then,
$0<\rho<r(x)$ . By using Lemma 5.2 we deduce

$(-r(w)-s+\beta v_{t-1}(w))-(-s+\beta v_{t-1}(x))=\beta(v_{t-1}(w)-v_{t-1}(x))-r(w)$

$=\beta(v_{t-1}(x+\rho)-v_{t-1}(x))-r(x+\rho)$

$\leq\beta(\rho+r(x+\rho)-r(x))-r(x+\rho)$

$=\beta(\rho-r(x))+(\beta-1)r(x+\rho)<0$ ,

which also yields $z_{t}^{r}(w)<z_{t}^{o}(x)$ . As seen above, we get $z_{t}^{r}(w)<z_{t}^{o}(x)$ for both $w\leq x$ and
$x<w<x+r(x)$ , hence $w\not\in W_{t}(x)$ for $w<x+r(x)$ . We have thus completed the proof.

(b) Choose any $x^{1}$ and $x^{2}$ such that $x^{1}<x^{2}$ . Furthermore, choose any $w\in W_{t}(x^{2})$ . Then, by
(4.6) we have $z_{t}^{o}(x^{2})\leq z[(w)$ . From this inequality and Lemma 5.6 we get $z_{t}^{o}(x^{1})\leq z_{t}^{r}(w)$ , which
means $w\in W_{t}(x^{1})$ . Accordingly, any $w\in W_{t}(x^{2})$ is also an element of $W_{t}(x^{1})$ .

(c) Assertion (a) means $W_{t}(x)\subseteq\{w:x+r(x)\leq w\}$ , thus what remains to prove assertion (c)
is only to show $\{w : x+r(x)\leq w\}\subseteq W_{t}(x)$ .

Choose an $x$ so that $\lambda\leq x$ , and fix a $w$ so that $x+r(x)\leq w$ . Since $z_{t}^{o}(x)=x+r(x)$ for the $x$

due to Corollary 5.5(a3), we have $z_{t}^{o}(x)\leq z_{t}^{r}(w)$ , that is, $w\in W_{t}(x)$ for the $w$ .
We now find that any $w\geq x+r(x)$ belongs to $W_{t}(x)$ for A $\leq x$ , and then the proof is finished. $\bullet$

6. Conclusions
In this section we check three main results. What to be emphasized first is that almost the same

results as these in this research had gained, respectively, in the past model where the reserving cost
had never returned.
1. An offer reserved during the search process must not be accepted prior to the deadline.

The reason is as follows. At time $t$ , if we find an offer with value $\tilde{w}$ such that $\tilde{w}\in W_{t}(x)$ and
$\tilde{w}<\lambda_{t}$ , then we reserve it according to the optimal decision rule. But at any time $t$ after time $t$ ,
inequality $\lambda_{t’}\leq\tilde{w}$ never holds because Theorem 5.9 tells us that $\lambda_{t}=\lambda_{t’}=\lambda$ . Therefore, up to
the deadline, we cannot be in the situation where decision pS is the best, which means that at only
the deadline we are to take the decision.

In our model, every time you decide to proceed the search once more, apositive search cost
must be spent and chances to meet offers superior to reserved ones up to the deadline decrease. So,
the author think it natural that an idea “it seems waste of time for pursuing the search further, I
now decide to stop the search by recalling the offer reserved before” comes at atime prior to the
deadline.

He has thought so from his start of studying optimal stopping problems with reservation. This
idea, however, proves to be illogical not only in past models where the reservation is effective
for afinite fixed periods[3], the remaining periods have some value the reserving period is also
determinable[6] but also in the present model where the reserving cost for the recalled offer returns.
As aconsequence, the Result 1must be an essential property to optimal stopping problems with
reservation.
2. An offer to be either accepted or reserved must have avalue superior to the value you can obtain at
the time of recalling the leading offer.

This is from Theorem 5.10(a), that is, $W_{t}(x)\subseteq\{w : x+r(x)\leq w\}$ . We can think it is very
reasonable. In [2] we got asimilar result $W_{t}(x)\subseteq\{w : x\leq w\}$ .
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3. After you renew the leading offer, you must choose an offer to be either accepted or reserved more
severely.

This comes from Theorem 5.10(b), that is, $W_{t}(x_{1})\supseteq W_{t}(x_{2})$ for $x_{1}<x_{2}$ . As well as Result 2,
this is very reasonable result, and the same result had obtained in [2].
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