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1 Introduction
Convertible bonds or more generally equity-linked securities have greatly evolved in the
past decade. Convertible bonds are hybrid securities issued by afirm where the holder
has the right to convert the bond into the common stocks of the firm according to pre-
specified conditions. An essential feature of ordinary convertible bonds is that they may
be converted at any time until apre-specified maturity date into stocks at apre-specified
ratio, $i.e.$ , afixed conversion ratio. In recent years, however, various convertible bonds
have been issued with additional conversion provisions. Among others, some Japanese
bank convertibles have areset clause whereby the conversion ratio is adjusted upwards, or
equivalently, the conversion price adjusted downwards if the underlying stock price does
not exceed pre-specified trigger prices. For investors, it has abenefit of resuscitating con-
vertible bond prices, while for the issuer it has another benefit of prompting conversions.
Hence, convertible bonds with this provision are usually issued when the outlook for the
issuer is unfavorable. In fact, reset convertibles first emerged in the Japanese market after
the 1996 deregulation [1]. This paper analyzes some features of aconvertible bond with
the reset clause via both analytic and Monte Carlo simulation approaches.

Another typical provision of convertible bonds is acall provision such that the issuer
has the right of redemption prior to maturity. This call provision is usually subject to
some kind of restriction, $e.g.$ , an initial non-redemption period of 3years for atraditional
convertible debt with 5, 7or 10 years maturity [2, pp. 1132-1133]. For the callable
convertible bond, Ingersoll [3] developed aone-factor pricing model based on the value
of the firm, so that he obtained optimal call and conversion strategies; see Brennan and
Schwartz [4] for ageneral pricing algorithm. See also Brennan and Schwartz [5] for a
tw0-factor model with interest rates as the second factor. The call provision has often
been added to Japanese convertible bonds. From actual data in the market, however, the
provision would not in fact be exercised under ordinary circumstances, and there are only
afew cases that the bond is called [1]. It may worth noting that most recent mandatorily
convertibles are non-callable [2, p. 1128]. Hence, we only deal with non-callable convertible
bonds in this paper.

Assume that the underlying stock receives no dividends and that the risk-free rate
of interest is constant during the period up to maturity. These assumptions are partly
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justified in Japan, because dividend yields on Japanese equity is traditionally very low and
the interest rates on Japanese Government debt denominated in yen has been particularly
low as well as less volatile since 1998. If the underlying stock has no credit risk of the
issuer, no conversion occurs prior to maturity under these assumptions, $i.e.$ , conversion
may occur only at maturity.

The price of any convertible bonds can be approximately viewed as asum of values
of an otherwise identical non-convertible bond plus an embedded option to convert the
bond into the underlying stock:

convertible bond price (Vcb) $=\mathrm{s}\mathrm{t}\mathrm{r}\mathrm{a}\mathrm{i}\mathrm{g}\mathrm{h}\mathrm{t}$ bond value $(V_{\mathrm{S}\mathrm{B}})$ $+\mathrm{c}\mathrm{o}\mathrm{n}\mathrm{v}\mathrm{e}\mathrm{r}\mathrm{s}\mathrm{i}\mathrm{o}\mathrm{n}$ option value $(V_{\mathrm{C}\mathrm{O}})$ .

In general, these two components interact with each other and so prove to difficult to
separate. However, in some situations, the embedded option can be separated and easily
valued. Aseparable case is, for example, that the convertible bond is non-callable and
non-convertible until maturity. As abasic framework for pricing, we use the bond plus
option valuation whether or not the underlying stock has credit risk of the issuer. We
principally focus on the price of conversion option, which is essential in analyzing the
price of convertible bonds under the constant interest-rate assumption.

This paper is organized as follows: First, we consider the case that the issuer has no
credit risk, for which the conversion option must necessarily be the European type. In
Section 2, we develop an exact formula for the conversion option value of the credit-riskless
European convertible bond with the reset clause in the classical one-factor Black-Scholes-
Merton framework. In Section 3, we show in the framework of Monte Cairo simulation
that conversion option value estimates of the American credit-risky convertible bond with
the reset clause are located in acertain region defined by this formula. From estimates of
the conversion probability, we also show that there exists in the latter half of the trading
interval an optimal reset time for both investors and the issuer. Finally, in Section 4, we
provide afew concluding remarks.

2Exact Analysis of Credit-Riskless Convertible
Bonds

For aclass of non-callable convertible bonds with the reset clause, we first consider a
special case such that the issuer has no credit risk. Under the assumptions of no dividends
on the underlying stock and the flat term structure of the risk-free interest rate, no
conversion occurs prior to maturity, $i.e.$ , the conversion option must necessarily be the
European type. Hence, we can use the economic framework of the contingent claims
analysis pioneered by Black and Scholes [6] and Merton [7] for valuing the conversion
option: Assume that the capital market is well-defined and follows the efficient market
hypothesis. Let $S_{t}$ denote the underlying stock price at time $t$ and assume ageometric
Brownian motion model

$dS_{t}=S_{t}(rdt+\sigma dW_{t})$ , $0\leq t\leq T$. (1)

The interest rate $r$ , the volatility $\sigma$ and the maturity $T$ of the convertible bond are assumed
to be positive constants. The process $W\equiv\{W_{t};0\leq t\leq T\}$ is the standard Brownian
motion process under aprobability measure $\mathrm{P}$ which is risk-neutral, $i.e.$ , is chosen so that
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the stock has mean rate of return $r$ . In addition, let $\{F_{t)}. t\geq 0\}$ be the natural filtration
corresponding to $W$ .

Let $K(>0)$ be the original conversion price, and let $\tau(\in(0, T))$ be the reset time.
Then, the actual conversion price of the reset convertible is changed to $aS_{\tau}$ if $S_{\tau}<K/a$

for apre-specified constant $a\geq 1$ , or it remains $K$ otherwise. This implies that the
conversion price is adjusted downwards from $K$ to $aS_{\tau}$ when $S_{\tau}<K/a$ . In other words,
the conversion ratio is adjusted upwards from $B/K$ to $B/(aS_{\tau})$ when $S_{\tau}<K/a$ , where
$B$ is the par value of the convertible bond.

Assume that the convertible bond receives acoupon of amount $C(>0)$ at time $T_{i}$

$(i=1, \ldots, n)$ where $0<T_{1}<T_{2}<\cdots<T_{n}\leq T$ . For the straight bond value Vsb, we
immediately have

$V_{\mathrm{S}\mathrm{B}}=C \sum_{i=1}^{n}e^{-rT_{i}}+Be^{-rT}$ . (2)

On the other hand, for the conversion option price $V\mathrm{c}\mathrm{o}$ , we have

Theorem 1Let Vco be the conversion option value of the credit-riskless, non-callable,
convertible bond with the reset clause at time t $=0$ . Then,

$V_{\mathrm{C}\mathrm{O}}=S_{0}(\Phi(d_{1}^{+})-ae^{-r(T-\tau)}\Phi(d_{1}^{-}))\Phi(-d_{0}^{+})$

$+ \int_{\ln(K/aS_{0})}^{\infty}(S_{0}e^{-r\tau}\Phi(d_{2}^{+}(y))e^{y}-Ke^{-rT}\Phi(d_{2}^{-}(y)))\psi(y)dy$, (3)

where $\Phi(\cdot)$ is the $cdf$ of the standard norrmal distr ibution, i.e., for $x\in \mathbb{R}$

$\Phi(x)=\int_{-\infty}^{x}\phi(y)dy$ $with$ $\phi(y)=\frac{1}{\sqrt{2\pi}}e^{-\mathrm{L}^{2}}2$ ,

$\psi(y)=\frac{1}{\sigma\sqrt{\tau}}\phi(\frac{y-(r-\frac{1}{2}\sigma^{2})\tau}{\sigma\sqrt{\tau}})$ ,

and the parameters $d_{0}^{+}$ , $d_{1}^{\pm}$ and $d_{2}^{\pm}(y)$ are defined by

$d_{0}^{+}= \frac{\ln(aS_{0}/K)+(r+\frac{1}{2}\sigma^{2})\tau}{\sigma\sqrt{\tau}}$ ,

$d_{1}^{\pm}= \frac{-\ln a+(r\pm\frac{1}{2}\sigma^{2})(T-\tau)}{\sigma\sqrt{T-\tau}}$ ,

$d_{2}^{\pm}(y)= \frac{y+\ln(S_{0}/K)+(r\pm\frac{1}{2}\sigma^{2})(T-\tau)}{\sigma\sqrt{T-\tau}}$ .

Proof. From the definition of the reset clause and the risk-neutral pricing theory, we
obtain

$V_{\mathrm{C}\mathrm{O}}=e^{-rT}\mathrm{E}[(S\tau-aS_{\mathcal{T}})^{+}1\{S_{\tau}<K/a\}+(S_{T}-K)^{+}1\{s_{\tau}\geq K/a\}|F\circ]$ . (4)

For the ease of exposition, we change the variable $S_{\tau}$ into $\mathrm{Y}_{\tau}$ by $S_{\tau}=S_{0}e^{Y_{\mathcal{T}}}$ . Applying
It\^o’s lemma to (1), we obtain

$d \log S_{t}=(r-\frac{1}{2}\sigma^{2})dt+\sigma dW_{t}$ ,
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from which
$\log S_{\tau}-\log S_{0}=(r-\frac{1}{2}\sigma^{2})\tau+\sigma W_{\tau}$ .

Hence, $Y_{\tau}$ can be written as

$Y_{\tau}=(r- \frac{1}{2}\sigma^{2})\tau+\sigma W_{\tau}$ .

$\mathrm{o}\mathrm{f}\mathrm{c}\mathrm{o}\mathrm{n}\mathrm{d}\mathrm{i}\mathrm{t}\mathrm{i}\mathrm{o}\mathrm{n}\mathrm{a}1\mathrm{C}1\mathrm{e}\mathrm{a}\mathrm{r}1\mathrm{y},Y_{\tau}\sim$ $N((r- \frac{1}{2}\sigma^{2})\tau\sigma^{2}\tau)\mathrm{e}\mathrm{x}\mathrm{p}\mathrm{e}\mathrm{c}\mathrm{t}\mathrm{a}\mathrm{t}\mathrm{i}\mathrm{o}\mathrm{n}\mathrm{s}\mathrm{y}\mathrm{i}\mathrm{e}1\mathrm{d}\mathrm{s}$

and its pdf is given by $\psi(\cdot)$ . Then, the tower property

$V_{\mathrm{C}\mathrm{O}}$ $=$ $e^{-rT}\mathrm{E}[\mathrm{E}[(S\tau-aS_{0}e^{Y_{\tau}})^{+}1\{Y_{\tau}<\ln(K/aS_{0})\}+(S_{T} -K)^{+}1\{Y_{\tau}\geq\ln(K/aS_{\mathrm{O}})\}|F_{\mathcal{T}}]|F_{0}]$

$=$ $e^{-rT} \int_{-\infty}^{1\mathrm{n}(K/aS_{0})}\mathrm{E}[(S_{T}-aS_{0}e^{y})^{+}|S_{\tau}]\psi(y)dy$

$+e^{-rT} \int_{\ln(K/aS_{0})}^{\infty}\mathrm{E}[(S_{T}-K)^{+}|S_{\tau}]\psi(y)dy$

$=$ $e^{-r\tau}( \int_{-\infty}^{1\mathrm{n}(K/aS_{0})}C_{\mathrm{B}\mathrm{S}}(S_{0}e^{y}, T, aS_{0}e^{y})\psi(y)dy+\int_{\ln(K/aS_{0})}^{\infty}C_{\mathrm{B}\mathrm{S}}(S_{0}e^{y}, T, K)\psi(y)dy)$

where $C_{\mathrm{B}\mathrm{S}}(S_{t}, T, K)$ is the Black-Scholes pricing formula for the European call option at
time $t$ with the exercise price $K$ and the maturity $T$ , $i.e.$ ,

$C_{\mathrm{B}\mathrm{S}}(S_{t}, T, K)\equiv e^{-r(T-t)}\mathrm{E}[(S_{T}-K)^{+}|S_{t}]=S_{t}\Phi(d^{+})-Ke^{-r(T-t)}\Phi(d^{-})$,

with
$d^{\pm}= \frac{\ln(S_{t}/K)+(r\pm\frac{1}{2}\sigma^{2})(T-t)}{\sigma\sqrt{T-t}}$ .

Hence,

$V_{\mathrm{C}\mathrm{O}}$ $=$ $S_{0}( \Phi(d_{1}^{+})-ae^{-r(T-\tau)}\Phi(d_{1}^{-}))\int_{-\infty}^{1\mathrm{n}(K/aS_{0})}e^{y-r\tau}\psi(y)dy$

$+ \int_{\ln(K/aS_{0})}^{\infty}(S_{0}e^{-r\tau}\Phi(d_{2}^{+}(y))e^{y}-Ke^{-rT}\Phi(d_{2}^{-}(y))\psi(y)dy$ ,

which leads to (3). $\square$

Remark 1For two special cases when $\tau=0$ and $\tau=T$ , we can easily obtain explicit
forms of $V_{\mathrm{C}\mathrm{O}}$ : From (4),

$\lim_{\tauarrow 0}V_{\mathrm{C}\mathrm{O}}=\{$

$C_{\mathrm{B}\mathrm{S}}(S_{0}, T, aS_{0})$ , $S_{0}<K/a$
$C_{\mathrm{B}\mathrm{S}}(S_{0}, T, K)$ , $S_{0}\geq K/a$ ,

and
$\lim_{\tauarrow T}V_{\mathrm{C}\mathrm{O}}=C_{\mathrm{B}\mathrm{S}}(S_{0}, T, K)$ .
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Remark 2To compute the conversion option value $V_{\mathrm{C}\mathrm{O}}$ , it is necessary to execute a
numerical integration on the infinite interval [$\ln(K/aS_{0})$ , $\infty)$ . This integration is, however,
reduced to an approximate integration on abounded interval as follows: For sufficiently
small $\epsilon$ $>0$ , define

$M_{\epsilon}= \inf\{y|\min\{\Phi(d_{2}^{+}(y)), \Phi(d_{2}^{-}(y))\}>1-\epsilon\}$ .

The the second term in the right-hand side of (3) can be approximated by

$\int_{\ln(K/aS_{0})}^{M_{\epsilon}}(S_{0}e^{-r\tau}\Phi(d_{2}^{+}(y))e^{y}-Ke^{-rT}\Phi(d_{2}^{-}(y)))\psi(y)dy+S_{0}\Phi(d_{3}^{+})-Ke^{-rT}\Phi(d_{3}^{-})$, (5)

where $d_{3}^{\pm}=(-M_{\epsilon}+r \pm\frac{1}{2}\sigma^{2})/\sigma\sqrt{\tau}$ . This approximation can be easily implemented by
using mathematical softwares, producing accurate values quickly for practical purposes.

Figure 1illustrates values of the conversion option embedded in aconvertible bond
with the reset clause as afunction of the reset time $\tau$ , where $a=1$ , $T=5$ and $K=$

1000 1050, 1100. Assume $S_{0}=1000$ and $\sigma=0.3$ for the underlying stock, and also
assume $r=0.02$ for the risk-free interest rate. To compute these values, we used the
truncation approximation (5) with $M_{\epsilon}=4.8$ for which $\epsilon$ $<10^{-6}$ holds. The two extreme
values when $\tau=0$ and $\tau=T$ were directly computed by using the Black-Scholes formula.
From Figure 1, we see that the maximum value of $V_{\mathrm{C}\mathrm{O}}$ is attained when the reset time
is in the center of the trading interval if $S_{0}=K$ . The lower the conversion ratio, the
earlier the reset time that gives the maximum value of $V_{\mathrm{C}\mathrm{O}}$ . Also, we see that the lower
the conversion ratio, the more rapidly the value of $V_{\mathrm{C}\mathrm{O}}$ decreases as $\tau$ tends to $T$ .

reset time $\tau$

Figure 1: Conversion Option Values of Credit-Riskless Reset Convertible Bonds

3Simulation Analysis of Credit-Risky Convertible
Bonds

As shown in $\mathrm{H}\mathrm{u}\mathrm{l}\mathrm{l}$ [$8$ , pp. 634-635], the impact of default risk on contracts where the holder
has early exercise decisions is alittle bit tricky: It is well known that ariskless America
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call option on astock with no dividends would not be exercised early. However, if the
underlying stock has default risk, the holder might choose to exercise the option prior
to maturity rather than hold. The same motivation of early exercise can be found in
credit-risky convertible bonds. The higher the underlying stock, the more in-the-money
convertible bonds, and hence the payoff from conversion exercise becomes greater than
the present value of the expected value of holding, due to credit risk of the issuer.

We use Monte Carlo simulation to analyze features of the credit-risky and non-callable
convertible bond with the reset clause, since its analysis is quite difficult. Various ap-
proaches have been developed to account for credit risk in valuing convertible bonds
without reset clauses; see Nyborg [9] for areview. Most of these approaches commonly
used the total value of the firm as astochastic factor in their models. While such ap-
proaches are self-consistent, they contain many parameters and can be impractical. As
an approach similar to this paPer, Tsiveriotis and Fernandes [10] used asingle-factor
model based on stock price and numerically solved asystem of two coupled Black-Scholes
equations that govern the convertible bond price and its cash-Only part, respectively.

The first step in Monte Carlo simulation is to generate sample paths of the process
$S\equiv\{S_{t};0\leq t\leq T\}$ . Let $N$ be the total number of sample paths and let $M$ be the
number of time steps in the following discrete-time version of (1):

$S_{ij}=S_{i,j-1}(1+r\triangle t+\sigma\sqrt{\triangle t}\xi_{ij})$ , $j=1$ , $\ldots$ , $M$, $i=1$ , $\ldots$ , $N$ , (6)

where $\triangle t=T/M$ and $S_{ij}$ is the simulated stock price at time $t_{j}\equiv j\triangle t(j=0, \ldots, M)$

in the $i$-th sample path starting from $S_{i0}=S_{0}$ $(i=1, \ldots, N)$ . The variables $\{\xi_{ij}\}$ are
iid standard normal random numbers. As acredit-risk dynamics, assume that defaults
may occur depending on the stock price at that time. More specifically, assume that the
issuer defaults during the time interval $[t_{j-1}, t_{j})$ with probability $\lambda(S_{i,j-1})\triangle t$ given that
it survives until time $t_{j-1}<T$ , where $\lambda(S_{t})\geq 0$ is the instantaneous default rate. For
the case that $\lambda(\cdot)$ is independent of $S$ , this assumption clearly implies that the time of
default, say $D$ , is exponentially distributed with parameter $\lambda$ , $\mathrm{i}.\mathrm{e}.$ , $\mathrm{P}\{D>t\}=e^{-\lambda t}$ for
$t\geq 0$ . Consequently, aprocedure of generating sample paths of the process $S$ in our
simulations can be summarized as follows:

$S_{ij}:=0$ for $j=1$ , $\ldots$ , $M$ , $i=1$ , $\ldots$ , N. $\triangle t:=T/M$ . $i:=1$ .
While $i\leq N$ :

$S_{i0}:=S_{0}$ . $j:=1$ .
While $j\leq M$ :

Generate $\nu_{ij}$ randomly from $U(0,1)$ .
If $\nu_{ij}>\lambda(S_{i,j-1})\triangle t$:

Generate $\xi_{ij}$ randomly from $N(0,1)$ .
$S_{ij}:=S_{i,j-1}(1+r\triangle t+\sigma\sqrt{\triangle t}\xi_{ij})$ .

Else: $j:=M$ .
$j:=j+1$ .

$i:=i+1$ .
Return ( $S_{ij}$ for $j=0$ , $\ldots$ , $M$ , $i=1$ , $\ldots$ , $N$ ).

Note that the stock price is defined as zero when the default occurs, since we primarily
focus on either the conversion option value or the conversion probability.

To compute the conversion option value, we adopt the Grant-Vora-Week (GVW)
method [11], which is originally developed for American put options. The GVW method
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time $\mathrm{t}$

Figure 2: Locus of Critical Prices of Credit-Risky Reset Convertible Bonds

consists of two procedures for obtaining (i) the locus of critical prices or optimal ex-
ercise boundary $S$“(t) $(0\leq t\leq T)$ at which the payoff upon exercise is equal to the
discounted expected value of holding, and (ii) the option value. The first procedure is
done by backward-moving recursions of dynamic programming, and the second one by
forward-moving simulations terminated by the stopping time

$\theta=\inf_{0\leq t\leq T}\{t|S_{t}\geq S^{*}(t)\}$ .

The second procedure in the modified GVW method for valuing the conversion option in
the reset convertible bond corresponds to computing the expected value

$\mathrm{E}[e^{-r\theta}\{(S_{\theta}-aS_{\mathcal{T}})^{+}1\{S_{T}<K/a\}+(S_{\theta}-K)^{+}1\{s_{\tau}\geq K/a\}\}1\{\theta\leq\tau\}|\mathcal{F}0]$

$+e^{-rT}\mathrm{E}[\{(S_{T}-aS_{\tau})^{+}1_{\{S_{\tau}<K/a\}}+(S_{T}-K)^{+}1\{s_{\tau}\geq K/a\}\}1\{\theta>T\}|Fo]$ .

Figures 2and 3respectively illustrate simulation results for the locus of critical prices
and the conversion option value embedded in arisky convertible bond with the reset
clause, where $a=1$ , $T=5$ and $K=11\mathrm{O}\mathrm{O}$ . Assume $S_{0}=1000$ and $\sigma=0.3$ for the
underlying stock, and $r=0.02$ for the risk-free interest rate. We used the constant
default rate satisfying $\mathrm{P}\{D>T\}=e^{-\lambda T}=0.93$ , $i.e.$ , $\lambda=-\ln(0.93)/5\approx 0.0145$ . To
compute the locus of critical prices in the modified GVW method, we used $M=50$
and $N=500,000$ , together with astandard antithetic variance reduction technique of
coupling apair of sample paths generated by (6) and

$S_{ij}’=S_{i,j-1}’(1+r\triangle t-\sigma\sqrt{\triangle t}\xi_{ij})$ , $j=1$ , $\ldots$ , $M$, $i=1$ , $\ldots$ , $N$.

For this locus of critical prices, we replicated the run 10 times, where we generated
$N=500,000$ sample paths in each run, using adifferent random number seed each
time. Taking arithmetic averages over these runs, we finally obtained the mean and
99% confidence interval of the conversion option value. The results are, however, simply
marked by bullets in Figure 3, because the width of each confidence interval is so narrow
that it cannot be distinguished from the point estimate. Together with simulation results
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reset time $\tau$

Figure 3: Conversion Option Values of Credit-Risky Reset Convertible Bonds

$..\underline{\underline{\geqq}}^{\backslash }$

$so_{\mathrm{O}}\dot{\mathrm{a}}\alpha$

$. \epsilon\frac{\circ}{\infty}$.
$\circ \mathrm{G}(J>\circ$

reset time $\tau$

Figure 4: Conversion Probabilities of Credit-Risky Reset Convertible Bonds

Figure 3also shows two curves indicating $V_{\mathrm{c}\mathrm{o}}$ and $\mathrm{P}\{D>T\}V\mathrm{c}\mathrm{o}$ for the credit-riskless
convertible bond with the same parameters.

Figure 2shows that the locus $S^{*}(t)$ is aconcave and decreasing function of $t$ , and it
is almost insensitive to $\tau$ , in particular, when the reset time is close to maturity. We see
from Figure 3that the simulation results are located between these two curves, which
certainly justifies the theoretical result that the proportional impact of default risk on the
price of an American option is less than that for asimilar European option; see $\mathrm{H}\mathrm{u}\mathrm{l}\mathrm{l}[8$ ,
p. 635]. As in the riskless cases, the bond-holder can expect high returns when the reset
time is in the former half of the trading interval. In addition, Figure 3indicates that a
certain approximation for $V\mathrm{c}\mathrm{o}$ of the credit-risky convertible bond could be developed by
combining those of the credit-riskless one.

Figure 4illustrates the conversion probabilities of arisky convertible bond with the
reset clause as afunction of the reset time $\tau$ , by smoothing simulation results. To compute
the conversion probabilities, we used $N=500,000$ sample paths and the antithetic vari
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ance reduction technique. Taking account for the risk premium of the stock, we assumed
instead of (1) that the process S is governed by the stochastic differential equation

$dS_{t}=S_{t}(\mu dt+\sigma d\hat{W}_{t})$ , $0\leq t\leq T$,

where $\mu(>r)$ is the return rate of the underlying stock and $\hat{W}\equiv\{\hat{W}_{t};0\leq t\leq T\}$ is
a $\mathrm{P}\wedge$-Brownian motion for aprobability measure $\hat{\mathrm{P}}$ in the real world. All the conditions
and parameters except for $r$ and $\mu$ are the same as in the simulations used for illustrating
Figure 3. From Figure 4, we see that the conversion probability is anon-decreasing
function of $\tau$ , $i.e.$ , the later the reset time, the higher the conversion probability. This
immediately means that the best reset time for the issuer is $\tau=T$ . Combining this fact
with the preference of the holder, we can conclude that there exists in the latter half of
the trading interval an optimal reset time for both investors and the issuer. The curves of
conversion probabilities are relatively flat with respect to $\tau$ , which certainly reflects the
insensitivity of the critical prices shown in Figure 2.

Remark 3We have also done Monte Carlo simulations for credit-riskless reset co vert-
ible bonds, in order to obtain the conversion probability. Observing simulation results
carefully, we found that sample paths with no experience of reset are certainly higher
than the conversion price when the reset time is close to maturity. On the other hand,
sample paths with experience of reset are, roughly speaking, either higher or lower than
the conversion price with equal probability $\frac{1}{2}$ during the period until maturity. Hence, if
we let $\pi(\tau)$ be the conversion probability of the convertible bond with reset time $\tau$ and let
$\pi_{0}$ be that without reset clause, then we can propose for credit-riskless reset convertible
bonds

$\lim_{\tauarrow T}\pi(\tau)\approx\pi_{0}+\frac{1}{2}(1-\pi_{0})$ (7)

as aheuristic approximation. In fact, when $a=1$ , $T=1$ , $S0=K=1000$ , $r=0.01$ ,
$\sigma=0.3$ and $\mu=0.05$ , the simulation result is $\pi_{0}=0.455$ and hence $\pi 0+\frac{1}{2}(1-\pi \mathfrak{o})=0.7275$ ,
while $\pi(0.999)=0.724$ for which (7) almost holds.

4Concluding Remarks
Since convertible bonds are complex securities with several embedded options, there exists
in their modelling atrade-0ff between incremental gain in accuracy and computational
complexity. The model analyzed in this paper is relatively simple so that it does not cover
some important features of non-callable convertible bonds with reset clauses traded in the
actual market.

As noted in Section 1the reset clause has the benefits for both investors and the
issuer. However, it also exposes holders of the underlying stock to the risk of diluting
the value of their stocks, since the upward revision of the conversion ratio will cause the
increase of the number of latent stocks in the firm. The higher the conversion ratio, the
lower the stock price. As afuture subject, it is important to take account of this dilution
effect into modelling in asimple way.

As another subject for future studies, we need to consider atw0-factor model when the
issuer has credit risk: There exists acredit spread, due to credit risk of the issuer. The
lower the credit quality of the issuer, the higher the default probability, and hence the
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higher the credit spread. In this sense, spreads and interest rates have the same impact
on convertible bonds. Even if interest rates have the flat term structure as assumed in
this paper, credit spreads bundled with interest rates may be assumed to have aterm
structure. To obtain accurate prices for risky convertible bonds, it is necessary to develop
atw0-factor model, which has stock returns as one factor and interest rates plus spreads
as the other factor; cf. the tw0-factor Brennan-Schwartz model [5] with the value of the
firm as one factor and interest rates as the other factor. Note that this tw0-factor model
should be applied only to evaluating the straight bond value in risky convertible bonds,
because the risk-neutral pricing approach is independent of the credit risk; see Tsiveriotis
and Fernandes [10].
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