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1. Introduction. We consider the following nonlinear two-parameter problem
—u(z) + )\u(:r);l = pu(z)?, z€I=(0,1),
u(z) >0, z€l, (1.1)
u(0) = u(1) =0,
where 1 < ¢ < p and A, u > 0 are parameters.

The purpose of this paper is to establish the asymptotic formulas for the eigencurve
p = p(A) with the exact second term as A — oo by using a variational method. We
also establish the critical relationship between p and q from a point of view of the

decaying rate of the second term of u(\). ~

In Shibata (8], by using a standard variational framework (see Section 2), the vari-
ational eigencurve p = u(\) was defined to analyze S, , and the following asymptotic

formula for ©(A) as A — oo was established:

p(X) = CLAPH3)/(2p=a+3) | o( A(P+3)/(2p—q+3)) (1.2)



C =

(p+1)(¢g+3) 1 2 [m(g+1) <p+1>ﬂq‘°+“_3"7r<2(p—q)
(p+3)(g+1)ytip—gq 2 q+1/" 1‘( p+3 ) ’
2(p—q)

(1.3)

I'(r)= /Ooo y" e Vdy (r>0).

By this formula, we understood the first term of wu()) as A — oo. However, the
remainder estimate of x(A) has not been obtained. The purpose here is to obtain the
_ezact second term of u(A) as A — oo. We emphasize that the second term depends
deeply on the relationship between p and g, and the critical case is p = (3¢ — 1)/2. As
far as the author knows, this kind of criticality is new for two-parameter problems and
great interest by itself. Finally, it should be mentioned that the asymptotic behavior

of such eigencurve is also effected by the variational framework (cf. [6, 7]).

2. Main Results. Let H(I) be the usual real Sobolev space. ||u||, denotes the

usual L™-norm. For u € H}(I)
q+1?

1 1
- E)\(u) := 5||u/||g + mAHu”‘lﬂ

M, :={u € Hy(I) : |[ullp+1 =7},

where v > 0 is a fized constant. For a given A > 0, we call u()\) the variational

eigenvalue when the following conditions (2.1)-(2.2) are satisfied:
(A, n(N),un) € Ry x Ry x M, satisfies (1.1). ‘ (2.1)

E,\(U,\) = uier}\f/.‘f., E)\(u) (22)



Then p()\) is obtained as a Lagrange multiplier and is represented explicitly as follows:

1
I3 + Mluallgi
- 1

ey (2.3)

The existence of u()\) for a given A > 0 is ensured in [8, Theorem 2.1] and u(}) is

continuous for A > 0 (cf. [8, Theorem 2.2]). Finally, let

2(g+1)/(g-1)

-1)/(2(p- 1 g—1
K, = ﬁ(qH)(q Ve "))F<q+1)F<2<q+1>)c(q—1)/<2<p—q))

p+1 V(g +1) ' ’

1 [l s(2p—39-1)/2(1 _ gp+1
Kz! —-/ 5 ( 5 )
0

T2 (1 — sp—9)3/2 %
22(p+2)/(q+1) rl y(2p—2q+2)/(q+1)
K3 = q +1 A (1 + y)2(p+2)/(q+1) (1 _ y)(zp_2q+2)/(q+1) dy,

Joo YT q+3r(2_(q%)
O_p—qp+3p(§g_3_®)'

Theorem 2.1. (1) Assume p > (3¢ — 1)/2. Then the following asymptotic formula

holds as A — oo:
u(A) = CyAP+3)/(2p—a+3) {1 +Ca(1+ 0(1)))\—-2(P+1)(q+1)/((2p—<1+3)(q—1))}’ (2.4)

where

C, = K, (1_ (z(p—Q)Kz )

2p—q+3)Jo
(2) Assume p < (3¢ —1)/2. Then as A — oo:

- p(A) = C \P+3)/(2p—q+3) {1 - C5(1+ 0(1)))\—(p+1)/(q—1)} , (2.5)

where

2(p—q) (2p—q+3)/(2(q+1))
Cs = K K\*P1 a+1))
ST @p-q+3)d ?



(3) Assume p = (3¢ — 1)/2. Then as A — oo:

u(\) = Cl)\(p+3)/(2p—q+3) {1 — Cu(1+ 0(1))A—z(p+1)(q+1)/((2p—q+3)(q—1)) 10g)\} ,

where

__ 2p-g(p+1)
(¢-1)(2p—q+3)*Jo

Cy K;.

The basic idea of the proof is as follows. Put

V(A) = AT6=0 (X)) T
wy(t) = (E()\i)> &= ux(z), t=v()) (:c — %) )

Then it follows from (1.1) that wy satisfies
" _ p q — 1 1
—wy (t) = wa(t)? —wa(t)?, t€ L = —51/()\), 51/()\) ,
wx(t) >0, te€ Iy()\),

wi (i%v(A)) —0.

Then by (8, Lemma 5.1],

v(A) = o0

as A = 0o. Put zx = wy/||wa|leo- Then it is easy to see from (2.3) that

_ AP+3)/(2(P=9) 1y ()~ (a+3)/ =) (||}, |2 + [Jwa |2}

g+1
#A) = T
B )\(p+3)/(2(p—4))”()\)—(q+3)/(2(p—Q))“wknﬁii
- 7P+1
B )\(p+3)/(2(p—q))“(>\)—(q+3)/(2(p—q))||w/\||z°:jl”z/\“ﬁi
- f'yp'i‘l '

(2.6)

(2.7)

(2.9)

(2.10)

Therefore, it is crucial to study the asymptotic behavior of ||wxljec and ||zx|lp+1 as



3. Asymptotic behavior of ||w)||o. We put

1/(p—9q)
sl = (X4 e0n) )

Then by [8, (5.10), Lemma 5.2], we know that €(\) > 0 and €()\) — 0 as A — oo.

Lemma 3.1. The following equality holds for A > 0:

+1 —(a-1)/(2(p—q))
) = VIGTD) (P ko) ), (2)

where

|
L(e):/o (e )" (3.3)

m(e,s) = /89t — sP+L 4 ¢(1 — sP*1) (e > 0).
Proof. Multiply the equation in (2.8) by w). Then for t € I,(»)

HECOR

We know that wy(0) = ||wx||co and w)(0) = 0, since ux(1/2) = ||u>‘||oo and v} (1/2) =

@ = @) =0

p+1 q+

0. Then put ¢t = 0 to obtain

1 .

wa(t)PF — wa(t)? = ——|lw AII’”’”1 —— AL

p+1 q-|-1 p+1 qg+1

Note that w)(t) < 0 for ¢t € (0,1())/2), since uj(z) < 0 for z € (1/2,1). Then it

follows from this and (3.1) that for ¢t € (0,v(\)/2)

—24(t) = [lwal| §~V/? \/ZA(t =2 (@)PH + ()1 -2 @)PH)

= [lwx II("‘IW\/ e, 21 (1))

Put s = 2. Then (3.1) and (3.4) yleld _
v(d) _ /"W? —2,(t) ”
—2—Ilwxllg‘é_1)/2m(e(>\),zA(t))

-\ —(g-1)/(2(p—1q))
jatiiptl, e(\) / _ 1 4
2 \g+1 m(e(A), s)

This implies (3.2). O

(3.4)




Lemma 3.2. For0<e<k1

(o) ()
L(e) = I/ \2EHD) ~(-1)/(2(a+1)) 4 p(e=(a-D/(2a+1)),

(g+1)vm
Proof. Put
Li(e) i= L(e) — / Sq+1+6
Put s = €/(@+1) tan?/(@+)) 9, Then
/ 1
———ds
0o Vsitlfe
YO
= _2_6—(q—1)/(2(q+1))/ "sin— (@~ D/(a+1) g oo5=2/(a+1) ggp
qg+1 0

| B
= 2 (14 o(1))e(a-D/(2a+) / " in=(a=1/(@+D) g os=2/a+D) g g
g+1 A

1 -1
— —(1+ 0(1)) —(g—-1)/(2(g+1)) r (¢1+_1> r (2fq+15) -
q +1 N

Next, we calculate L (e). Note that for 0 < s <'1

m(e, s) = /s71(1 — sP~9) + €(1 — sPt1) > /(5911 + €)(1 — sP9).

By this, we obtain

| L1(e)]
(1+€)sPtl

m(e, s)V/s9T1 + e(m(e, s) + v/s7+1 +e)

/ (1 + ¢€)sPHl
V(8T +€) (1 — sP79)Vs9+ ] +¢(/(s97T 4 €)(1 — 57~9) + V/s9+1 + e)

SP+1

<@+ f)/ (s9t1 + €)3/24/1 — sP—4(1 + m)

gPt1
/ (591 +¢) )3/24/1 — sP—4 ds

gP+1 1 gh+1
/0 (s7+l 4 6)3/21/1 — sP—4 s (891 + 6)3/2\/m
=I1+4+11,

(3.5)

(3.6)

(3.7)

(3.8)



where 0 < § < 1 is a fixed constant. Let C;5 > 0 (j = 1,2,---) be constants

depending only on §. Put s = sin?/ (=9 g, Then

I1 < 2 1 ! d
= §3(et)/2 o /1T — gP—a S

2 2 [
_ in(2+e9—p)/(P—9) 940
§3@+1)/2p— ¢ /Svin—1 5(P—a)/2 S

< Cis.

Moreover, put s = €!/(@+1¢, Then for 0 < e < 1

e(P+1)/(q+1)¢p+1
\/1 — 5? q /0 €3/2(ta+1 4 1)3/26

OPT ((@p-3a+1)/@latD) — p(e—la-D/(2(a+1)),

<2——
R gy =
y (3.9)-(3.11), we have

1/(a+1) gt

|L1(€)| = 0(6_(‘]"‘1)/(2(q+1)))'
By this, (3.6) and (3.7), we obtain (3.5). O

Lemma 3.3. As )\ — o©

€(A) = K1(1 + o(1))A~2p+1)(a+1)/((a-1)(2p—a+3))

Proof. By (1.2) and (2.7), we have

v(X) = AP~1/Cp=a)) y(3)(1-a)/(2(p=2)
- C§1—Q)/(2(P—Q))(1 + 0(1)))\(p+1)/(2p—q+3)_

On the other hand, by Lemmas 3.1-3.2 and Taylor expansion, we have

v = vED (2

—(a-1)/(2(p—q))
) (1 + e(\)~ =D/ @@= [ (¢())

g+1

(3.10)

(3.11)

(3.12)

(3.13)

~(@-1/CE-) T (A1) T (&5
_ \/—<p+1) q p—q (q+1) (2 g+1 )G(A)—-(q—-l)/(2(q+l))(1+0(1)).

m(g+ 1)



By this and (3.13), we obtain (3.12). O

4. Asymptotic behavior of ||z)|p+1. By (3.4) and putting s = 2,(t), we have

) v(A)/2
JaallZtt =2 / Pt
0

v(A)/2 —2 (t)
=2 Pt 2 dt
/0 zx(t) s [G 72 Zm(e(N), 22 (0) (4.1)

2(g+1)

= “wA“g%_l)/g J(E(’\))’

where
1 1

J(€) := -n-f% (€ > 0). (4.2)

Therefore, we study the precise asymptotics of J(¢) as € — 0. Put s = sin? (P9 ¢
Then as e — 0
1 g(2p- q+1)/2

\/1-—31" ‘1

2 w/2
_° sin(P+3)/(P—9) 949
P q

(4.3)
_ T q+3r(7qm) |
T - qp+3p(_h)

"—‘Jo.

J(e) = J(0) =

We use here the formulas

/2 :
/0 sin” 0d9 = \/T- ((% i) (r > -1), o
T(r +1) = rI(r).
Therefore, put ‘
Ji(e) := J(e) = Jo := —eJa(e), | |
Tale) i= 1  sPHL(] = gPH) ' (4.5)

o m(e, s)m(0, s)(m(e, s) + m(0, s))
We study the asymptotic behavior of Jy(€) as € = 0



Lemma 4.1. (1) Ifp > (3¢ —1)/2, then Jy(e) — K3 as e — 0.

(2) If p< (3¢ —1)/2, then as e — 0
Ja(€) = K3(1 + o(1))e2p—3a+1)/(a+1)), (4.6)
(8) If p= (3¢ —1)/2, then as € = 0

Jo(e) = — (1+ o(1))loge. (4.7)

2(g+1)

Proof. (1) Since p > (3¢ — 1)/2, we have (2p — 3¢ — 1)/2 > —1. Therefore, by

Lebesgue’s convergence theorem, as € = 0

s(3p=3a-1)/2(1 _ gp+1)
Jo(€) = = / 1= - q)3/2 ds = K.

This completes the proof.

(2) Step 1. Assume that p < (3¢ — 1)/2. We introduce Js(¢) to approximate Ja(e):
| ; s (2p-a+1)/2 ;
sle) = /o Vs8It 4 ¢(s(at1)/2 + | /s9+1 +¢) °
= Ju(e€,0) + Js(€, 0)
4 s(2p—q+1)/2 : (4.8)

ds

Vsat+l 4+ e(s(‘I+1)/2 + 4/89T1 + e) .

g(2p—g+1)/2
+/6 s9t1 + ¢(slat1)/2 4 \/W
where 0 < § < 1 is a fixed small constant. We study the asymptotic behavior of J3, Jy
and Js as € = 0. Note that 0 < (2p — 29 +2)/(¢+1) < 1, since p < (3¢ — 1)/2. Then
put s = /(971 tan?/(4+1) § and y = tan(§/2) to obtain

T 1/VE tan(2p—2¢+2)/(a+1) g

1+sinf (4.9)

J3(€) = me

= K3(1 + o(1))e(?P—3a+1)/(2(a+1)

tan
(2p—3g+1)/(2(q+1)) /
0



10

Similarly, we obtain

1
= §atl’

Ta(e,8) = Ks(1 + o(1))e@P=3a+D/(a+D) | 1 §) < (4.10)

Since p < (3¢ — 1)/2, this along with (4.9) implies that J3(e)/J4(e,8) — 1 as € — 0 for
a fixed 4.
Step 2. We show that as e — 0

Jz(E)
J3(6)

—1. (4.11)

Let an arbitrary 0 <6 < 1 be fixed. Put
Jz(e) = J6(€ 5) + J7(€ (5)

3p+1(1 sp+1)
/ (e, 3)m(0, 3)(m(e, s) + m(0,5)) (4.12)
3p+1(1 3p+1)
) m(e,s)m(O, S)( (6 S) +m(0 S))

Thenfor0<ek1

11 gptl

|J7(€,0)| < Cas s (T—sp_“q)3/5d8 < Cs. (4.13)

Moreover, by (3.8), we obtain
s@p—at+1)/2

1-— p+1/
(1-07) o VoIrL T e(s@+D/Z 4 /53t )
5

s(2p—g+1)/2

1
<
= (1 - 6p—19)3/2 /0 Vst F e(s(q+1)/2 + /s4FT ¢ e)

ds < Jg(e, 6)

This implies

1

(1 - 6P+1)J4(€ 6) < JG(E 5) W‘I)T/? (6 6)

(4.14)

By (4.10), (4.13) and (4.14), we see that J7(e,d) = o(Js(€,8)) as € — 0 for a fixed &,

since p < (3¢ — 1)/2. Then by (4.9), (4.10) and (4.12)—(4.14),

Jo(e,0) . Ja(e) Ja2(e)
Pty < 6 =
(1 — 6Pt hreglof T2(e.0) llreri)l(r# J3( y S < lim e—+(1)1p A0
Ta(e.d) X (4.15)
= limsup 227 <

0T Tale,0) = (1= dpayE
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By letting § — 0, we obtain (4.11). Then by (4.9) and (4.11), we obtain (4.6).

(3) If p = (3¢ — 1)/2, then by the asymptotic formula

ct+

Qo

=

8

I
vl

1 1

and Taylor expansion of tanz at z = 7/4 and (4.9), we obtain (4.7) by direct calcula-

tion. O

5. Proof of Theorem 2.1. By (2.10), (3.1), (4.1) and (4.5), we have

V2 1
#()‘)(2p—4+3)/(2(p—q)) = %2,\(%3)/(2(?—@)||w>\||gp—q+3)/2'](e()\))

(2-a+3)/(2(p 1)
_ V2@+ 1)\ grgysee-q) (PHL) T T (5.1)
yP+1 g+1

X (1+ €(X))PP=at3)/CE=D) (1, — e(X)J2(e(N)))-

Moreover, it is easy to check that

2(p—q)/(2p—q+3)
( V2(g+ 1)) P+ 1 ap-9)/@r-at3) _ o

yPF1 g+17°

By this, (5.1) and Taylor expansion, we obtain

p(A) = O AP+3)/(2p—g+3)
(5.2)

X (1 e -1 2p2_(pq‘+q;) 7 (1 +o(1))e(A)J2(e()\))>.

Then by Lemma 3.3, Lemma 4.1 and direct calculation, we obtain Theorem 2.1. Thus

the proof is complete. [
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