PRECISE ASYMPTOTIC FORMULAS FOR NONLINEAR EIGENVALUE PROBLEMS

広島大学・総合科学部 柴田徹太郎 (Tetsutaro Shibata)

Faculty of Integrated Arts and Sciences,

Hiroshima University

1. Introduction. We consider the following nonlinear two-parameter problem

$$-u''(x) + \lambda u(x)^q = \mu u(x)^p, \quad x \in I = (0,1),$$

$$u(x) > 0, \quad x \in I,$$

$$u(0) = u(1) = 0,$$
 (1.1)

where 1 < q < p and $\lambda, \mu > 0$ are parameters.

The purpose of this paper is to establish the asymptotic formulas for the eigencurve $\mu = \mu(\lambda)$ with the exact second term as $\lambda \to \infty$ by using a variational method. We also establish the critical relationship between p and q from a point of view of the decaying rate of the second term of $\mu(\lambda)$.

In Shibata [8], by using a standard variational framework (see Section 2), the variational eigencurve $\mu = \mu(\lambda)$ was defined to analyze $S_{\lambda,\mu}$ and the following asymptotic formula for $\mu(\lambda)$ as $\lambda \to \infty$ was established:

$$\mu(\lambda) = C_1 \lambda^{(p+3)/(2p-q+3)} + o(\lambda^{(p+3)/(2p-q+3)}), \tag{1.2}$$

$$C_{1} = \left(\frac{(p+1)(q+3)}{(p+3)(q+1)} \frac{1}{\gamma^{p+1}} \frac{2}{p-q} \sqrt{\frac{\pi(q+1)}{2}} \left(\frac{p+1}{q+1}\right)^{\frac{q+3}{2(p-q)}} \frac{\Gamma\left(\frac{q+3}{2(p-q)}\right)}{\Gamma\left(\frac{p+3}{2(p-q)}\right)}\right)^{\frac{x(p-q)}{2p-q+3}},$$

$$\Gamma(r) = \int_{0}^{\infty} y^{r-1} e^{-y} dy \quad (r > 0). \tag{1.3}$$

By this formula, we understood the first term of $\mu(\lambda)$ as $\lambda \to \infty$. However, the remainder estimate of $\mu(\lambda)$ has not been obtained. The purpose here is to obtain the exact second term of $\mu(\lambda)$ as $\lambda \to \infty$. We emphasize that the second term depends deeply on the relationship between p and q, and the critical case is p = (3q - 1)/2. As far as the author knows, this kind of criticality is new for two-parameter problems and great interest by itself. Finally, it should be mentioned that the asymptotic behavior of such eigencurve is also effected by the variational framework (cf. [6, 7]).

2. Main Results. Let $H^1_0(I)$ be the usual real Sobolev space. $||u||_r$ denotes the usual L^r -norm. For $u \in H^1_0(I)$

$$E_{\lambda}(u) := rac{1}{2} \|u'\|_2^2 + rac{1}{q+1} \lambda \|u\|_{q+1}^{q+1},$$

$$M_{\gamma}:=\{u\in H^1_0(I): \|u\|_{p+1}=\gamma\},$$

where $\gamma > 0$ is a fixed constant. For a given $\lambda > 0$, we call $\mu(\lambda)$ the variational eigenvalue when the following conditions (2.1)-(2.2) are satisfied:

$$(\lambda, \mu(\lambda), u_{\lambda}) \in \mathbf{R}_{+} \times \mathbf{R}_{+} \times M_{\gamma} \text{ satisfies (1.1)}.$$
 (2.1)

$$E_{\lambda}(u_{\lambda}) = \inf_{u \in M_{\gamma}} E_{\lambda}(u). \tag{2.2}$$

Then $\mu(\lambda)$ is obtained as a Lagrange multiplier and is represented explicitly as follows:

$$\mu(\lambda) = \frac{\|u_{\lambda}'\|_{2}^{2} + \lambda \|u_{\lambda}\|_{q+1}^{q+1}}{\gamma^{p+1}}.$$
(2.3)

The existence of $\mu(\lambda)$ for a given $\lambda > 0$ is ensured in [8, Theorem 2.1] and $\mu(\lambda)$ is continuous for $\lambda > 0$ (cf. [8, Theorem 2.2]). Finally, let

$$\begin{split} K_1 &:= \left(\sqrt{2} \left(\frac{q+1}{p+1}\right)^{(q-1)/(2(p-q))} \frac{\Gamma\left(\frac{1}{q+1}\right) \Gamma\left(\frac{q-1}{2(q+1)}\right)}{\sqrt{\pi(q+1)}} C_1^{(q-1)/(2(p-q))}\right)^{2(q+1)/(q-1)}, \\ K_2 &:= \frac{1}{2} \int_0^1 \frac{s^{(2p-3q-1)/2}(1-s^{p+1})}{(1-s^{p-q})^{3/2}} ds, \\ K_3 &:= \frac{2^{2(p+2)/(q+1)}}{q+1} \int_0^1 \frac{y^{(2p-2q+2)/(q+1)}}{(1+y)^{2(p+2)/(q+1)}(1-y)^{(2p-2q+2)/(q+1)}} dy, \\ J_0 &= \frac{\sqrt{\pi}}{p-q} \frac{q+3}{p+3} \frac{\Gamma\left(\frac{q+3}{2(p-q)}\right)}{\Gamma\left(\frac{p+3}{2(p-q)}\right)}. \end{split}$$

Theorem 2.1. (1) Assume p > (3q-1)/2. Then the following asymptotic formula holds as $\lambda \to \infty$:

$$\mu(\lambda) = C_1 \lambda^{(p+3)/(2p-q+3)} \left\{ 1 + C_2 (1+o(1)) \lambda^{-2(p+1)(q+1)/((2p-q+3)(q-1))} \right\}, \quad (2.4)$$

where

$$C_2 = K_1 \left(1 - \frac{2(p-q)K_2}{(2p-q+3)J_0} \right).$$

(2) Assume p < (3q-1)/2. Then as $\lambda \to \infty$:

$$\mu(\lambda) = C_1 \lambda^{(p+3)/(2p-q+3)} \left\{ 1 - C_3 (1 + o(1)) \lambda^{-(p+1)/(q-1)} \right\}, \tag{2.5}$$

where

$$C_3 = \frac{2(p-q)}{(2p-q+3)J_0} K_3 K_1^{(2p-q+3)/(2(q+1))}.$$

(3) Assume p = (3q - 1)/2. Then as $\lambda \to \infty$:

$$\mu(\lambda) = C_1 \lambda^{(p+3)/(2p-q+3)} \left\{ 1 - C_4 (1+o(1)) \lambda^{-2(p+1)(q+1)/((2p-q+3)(q-1))} \log \lambda \right\},$$
(2.6)

where

$$C_4 = \frac{2(p-q)(p+1)}{(q-1)(2p-q+3)^2 J_0} K_1.$$

The basic idea of the proof is as follows. Put

$$\nu(\lambda) = \lambda^{\frac{p-1}{2(p-q)}} \mu(\lambda)^{\frac{1-q}{2(p-q)}},$$

$$w_{\lambda}(t) = \left(\frac{\mu(\lambda)}{\lambda}\right)^{\frac{1}{p-q}} u_{\lambda}(x), \quad t = \nu(\lambda) \left(x - \frac{1}{2}\right).$$
(2.7)

Then it follows from (1.1) that w_{λ} satisfies

$$-w_{\lambda}''(t) = w_{\lambda}(t)^{p} - w_{\lambda}(t)^{q}, \quad t \in I_{\nu(\lambda)} := \left(-\frac{1}{2}\nu(\lambda), \frac{1}{2}\nu(\lambda)\right),$$

$$w_{\lambda}(t) > 0, \quad t \in I_{\nu(\lambda)},$$

$$w_{\lambda}\left(\pm\frac{1}{2}\nu(\lambda)\right) = 0.$$

$$(2.8)$$

Then by [8, Lemma 5.1],

$$\nu(\lambda) \to \infty$$
 (2.9)

as $\lambda \to \infty$. Put $z_{\lambda} = w_{\lambda}/\|w_{\lambda}\|_{\infty}$. Then it is easy to see from (2.3) that

$$\mu(\lambda) = \frac{\lambda^{(p+3)/(2(p-q))}\mu(\lambda)^{-(q+3)/(2(p-q))}(\|w_{\lambda}'\|_{2}^{2} + \|w_{\lambda}\|_{q+1}^{q+1})}{\gamma^{p+1}}$$

$$= \frac{\lambda^{(p+3)/(2(p-q))}\mu(\lambda)^{-(q+3)/(2(p-q))}\|w_{\lambda}\|_{p+1}^{p+1}}{\gamma^{p+1}}$$

$$= \frac{\lambda^{(p+3)/(2(p-q))}\mu(\lambda)^{-(q+3)/(2(p-q))}\|w_{\lambda}\|_{\infty}^{p+1}\|z_{\lambda}\|_{p+1}^{p+1}}{\gamma^{p+1}}.$$
(2.10)

Therefore, it is crucial to study the asymptotic behavior of $\|w_{\lambda}\|_{\infty}$ and $\|z_{\lambda}\|_{p+1}$ as

3. Asymptotic behavior of $||w_{\lambda}||_{\infty}$. We put

$$||w_{\lambda}||_{\infty} = \left(\frac{p+1}{q+1}(1+\epsilon(\lambda))\right)^{1/(p-q)}.$$
(3.1)

Then by [8, (5.10), Lemma 5.2], we know that $\epsilon(\lambda) > 0$ and $\epsilon(\lambda) \to 0$ as $\lambda \to \infty$.

Lemma 3.1. The following equality holds for $\lambda > 0$:

$$\nu(\lambda) = \sqrt{2(q+1)} \left(\frac{p+1}{q+1} (1 + \epsilon(\lambda)) \right)^{-(q-1)/(2(p-q))} L(\epsilon(\lambda)), \tag{3.2}$$

where

$$L(\epsilon) = \int_0^1 \frac{1}{m(\epsilon, s)} ds,$$

$$m(\epsilon, s) = \sqrt{s^{q+1} - s^{p+1} + \epsilon(1 - s^{p+1})} \quad (\epsilon > 0).$$
(3.3)

Proof. Multiply the equation in (2.8) by w'_{λ} . Then for $t \in I_{\nu(\lambda)}$

$$\frac{d}{dt}\left(\frac{1}{2}(w_{\lambda}'(t))^{2} + \frac{1}{p+1}w_{\lambda}(t)^{p+1} - \frac{1}{q+1}w_{\lambda}(t)^{q+1}\right) = 0.$$

We know that $w_{\lambda}(0) = \|w_{\lambda}\|_{\infty}$ and $w'_{\lambda}(0) = 0$, since $u_{\lambda}(1/2) = \|u_{\lambda}\|_{\infty}$ and $u'_{\lambda}(1/2) = \|u_{\lambda}\|_{\infty}$

0. Then put t = 0 to obtain

$$\frac{1}{2}w_{\lambda}'(t)^{2} + \frac{1}{p+1}w_{\lambda}(t)^{p+1} - \frac{1}{q+1}w_{\lambda}(t)^{q+1} \equiv \frac{1}{p+1}\|w_{\lambda}\|_{\infty}^{p+1} - \frac{1}{q+1}\|w_{\lambda}\|_{\infty}^{q+1}.$$

Note that $w_{\lambda}'(t) < 0$ for $t \in (0, \nu(\lambda)/2)$, since $u_{\lambda}'(x) < 0$ for $x \in (1/2, 1)$. Then it

follows from this and (3.1) that for $t \in (0, \nu(\lambda)/2)$

$$-z_{\lambda}'(t) = \|w_{\lambda}\|_{\infty}^{(q-1)/2} \sqrt{\frac{2}{q+1}} \sqrt{z_{\lambda}(t)^{q+1} - z_{\lambda}(t)^{p+1} + \epsilon(\lambda)(1 - z_{\lambda}(t)^{p+1})}$$

$$= \|w_{\lambda}\|_{\infty}^{(q-1)/2} \sqrt{\frac{2}{q+1}} m(\epsilon(\lambda), z_{\lambda}(t)).$$
(3.4)

Put $s = z_{\lambda}$. Then (3.1) and (3.4) yield

$$\begin{split} \frac{\nu(\lambda)}{2} &= \int_0^{\nu(\lambda)/2} \frac{-z_\lambda'(t)}{\sqrt{\frac{2}{q+1}} \|w_\lambda\|_\infty^{(q-1)/2} m(\epsilon(\lambda), z_\lambda(t))} dt \\ &= \sqrt{\frac{q+1}{2}} \left(\frac{p+1}{q+1} (1+\epsilon(\lambda)) \right)^{-(q-1)/(2(p-q))} \int_0^1 \frac{1}{m(\epsilon(\lambda), s)} ds. \end{split}$$

This implies (3.2). \square

Lemma 3.2. For $0 < \epsilon \ll 1$

$$L(\epsilon) = \frac{\Gamma\left(\frac{1}{q+1}\right)\Gamma\left(\frac{q-1}{2(q+1)}\right)}{(q+1)\sqrt{\pi}}\epsilon^{-(q-1)/(2(q+1))} + o(\epsilon^{-(q-1)/(2(q+1))}). \tag{3.5}$$

Proof. Put

$$L_1(\epsilon) := L(\epsilon) - \int_0^1 \frac{1}{\sqrt{s^{q+1} + \epsilon}} ds. \tag{3.6}$$

Put $s = \epsilon^{1/(q+1)} \tan^{2/(q+1)} \theta$. Then

$$\int_{0}^{1} \frac{1}{\sqrt{s^{q+1} + \epsilon}} ds$$

$$= \frac{2}{q+1} \epsilon^{-(q-1)/(2(q+1))} \int_{0}^{\tan^{-1}(1/\sqrt{\epsilon})} \sin^{-(q-1)/(q+1)} \theta \cos^{-2/(q+1)} \theta d\theta$$

$$= \frac{2}{q+1} (1+o(1)) \epsilon^{-(q-1)/(2(q+1))} \int_{0}^{\pi/2} \sin^{-(q-1)/(q+1)} \theta \cos^{-2/(q+1)} \theta d\theta$$

$$= \frac{1}{q+1} (1+o(1)) \epsilon^{-(q-1)/(2(q+1))} \frac{\Gamma\left(\frac{1}{q+1}\right) \Gamma\left(\frac{q-1}{2(q+1)}\right)}{\sqrt{\pi}}.$$
(3.7)

Next, we calculate $L_1(\epsilon)$. Note that for $0 \le s \le 1$

$$m(\epsilon, s) = \sqrt{s^{q+1}(1 - s^{p-q}) + \epsilon(1 - s^{p+1})} \ge \sqrt{(s^{q+1} + \epsilon)(1 - s^{p-q})}.$$
 (3.8)

By this, we obtain

$$\begin{split} &|L_{1}(\epsilon)| \\ &= \int_{0}^{1} \frac{(1+\epsilon)s^{p+1}}{m(\epsilon,s)\sqrt{s^{q+1}+\epsilon}(m(\epsilon,s)+\sqrt{s^{q+1}+\epsilon})} ds \\ &\leq \int_{0}^{1} \frac{(1+\epsilon)s^{p+1}}{\sqrt{(s^{q+1}+\epsilon)(1-s^{p-q})}\sqrt{s^{q+1}+\epsilon}(\sqrt{(s^{q+1}+\epsilon)(1-s^{p-q})}+\sqrt{s^{q+1}+\epsilon})} ds \\ &\leq (1+\epsilon) \int_{0}^{1} \frac{s^{p+1}}{(s^{q+1}+\epsilon)^{3/2}\sqrt{1-s^{p-q}}} (1+\sqrt{1-s^{p-q}}) ds \\ &\leq 2 \int_{0}^{1} \frac{s^{p+1}}{(s^{q+1}+\epsilon)^{3/2}\sqrt{1-s^{p-q}}} ds \\ &= 2 \int_{0}^{\delta} \frac{s^{p+1}}{(s^{q+1}+\epsilon)^{3/2}\sqrt{1-s^{p-q}}} ds + 2 \int_{\delta}^{1} \frac{s^{p+1}}{(s^{q+1}+\epsilon)^{3/2}\sqrt{1-s^{p-q}}} ds \\ &:= I + II, \end{split}$$

where $0 < \delta \ll 1$ is a fixed constant. Let $C_{j,\delta} > 0$ $(j = 1, 2, \cdots)$ be constants depending only on δ . Put $s = \sin^{2/(p-q)} \theta$. Then

$$II \leq \frac{2}{\delta^{3(q+1)/2}} \int_{\delta}^{1} \frac{1}{\sqrt{1 - s^{p-q}}} ds$$

$$= \frac{2}{\delta^{3(q+1)/2}} \frac{2}{p - q} \int_{\sin^{-1} \delta^{(p-q)/2}}^{1} \sin^{(2+q-p)/(p-q)} \theta d\theta$$

$$\leq C_{1,\delta}.$$
(3.10)

Moreover, put $s = \epsilon^{1/(q+1)}t$. Then for $0 < \epsilon \ll 1$

$$I \leq \frac{2}{\sqrt{1 - \delta^{p-q}}} \int_{0}^{\delta} \frac{\epsilon^{(p+1)/(q+1)} t^{p+1}}{\epsilon^{3/2} (t^{q+1} + 1)^{3/2}} \epsilon^{1/(q+1)} dt$$

$$\leq 2 \frac{\delta^{p+1}}{\sqrt{1 - \delta^{p-q}}} \epsilon^{(2p - 3q + 1)/(2(q+1))} = o(\epsilon^{-(q-1)/(2(q+1))}).$$
(3.11)

By (3.9)-(3.11), we have

$$|L_1(\epsilon)| = o(\epsilon^{-(q-1)/(2(q+1))}).$$

By this, (3.6) and (3.7), we obtain (3.5). \square

Lemma 3.3. As $\lambda \to \infty$

$$\epsilon(\lambda) = K_1(1+o(1))\lambda^{-2(p+1)(q+1)/((q-1)(2p-q+3))}.$$
(3.12)

Proof. By (1.2) and (2.7), we have

$$\nu(\lambda) = \lambda^{(p-1)/(2(p-q))} \mu(\lambda)^{(1-q)/(2(p-q))}$$

$$= C_1^{(1-q)/(2(p-q))} (1+o(1)) \lambda^{(p+1)/(2p-q+3)}.$$
(3.13)

On the other hand, by Lemmas 3.1–3.2 and Taylor expansion, we have

$$\begin{split} \nu(\lambda) &= \sqrt{2(q+1)} \left(\frac{p+1}{q+1}\right)^{-(q-1)/(2(p-q))} (1+\epsilon(\lambda))^{-(q-1)/(2(p-q))} L(\epsilon(\lambda)) \\ &= \sqrt{2} \left(\frac{p+1}{q+1}\right)^{-(q-1)/(2(p-q))} \frac{\Gamma\left(\frac{1}{q+1}\right) \Gamma\left(\frac{q-1}{2(q+1)}\right)}{\sqrt{\pi(q+1)}} \epsilon(\lambda)^{-(q-1)/(2(q+1))} (1+o(1)). \end{split}$$

By this and (3.13), we obtain (3.12). \square

4. Asymptotic behavior of $||z_{\lambda}||_{p+1}$. By (3.4) and putting $s = z_{\lambda}(t)$, we have

$$||z_{\lambda}||_{p+1}^{p+1} = 2 \int_{0}^{\nu(\lambda)/2} z_{\lambda}(t)^{p+1} dt$$

$$= 2 \int_{0}^{\nu(\lambda)/2} z_{\lambda}(t)^{p+1} \frac{-z_{\lambda}'(t)}{||w_{\lambda}||_{\infty}^{(q-1)/2} \sqrt{\frac{2}{q+1}} m(\epsilon(\lambda), z_{\lambda}(t))} dt$$

$$= \frac{\sqrt{2(q+1)}}{||w_{\lambda}||_{\infty}^{(q-1)/2}} J(\epsilon(\lambda)),$$
(4.1)

where

$$J(\epsilon) := \int_0^1 \frac{s^{p+1}}{m(\epsilon, s)} ds \qquad (\epsilon > 0). \tag{4.2}$$

Therefore, we study the precise asymptotics of $J(\epsilon)$ as $\epsilon \to 0$. Put $s = \sin^{2/(p-q)} \theta$.

Then as $\epsilon \to 0$

$$J(\epsilon) \to J(0) = \int_0^1 \frac{s^{(2p-q+1)/2}}{\sqrt{1-s^{p-q}}} ds$$

$$= \frac{2}{p-q} \int_0^{\pi/2} \sin^{(p+3)/(p-q)} \theta d\theta$$

$$= \frac{\sqrt{\pi}}{p-q} \frac{q+3}{p+3} \frac{\Gamma\left(\frac{q+3}{2(p-q)}\right)}{\Gamma\left(\frac{p+3}{2(p-q)}\right)}$$

$$= J_0.$$
(4.3)

We use here the formulas

$$\int_0^{\pi/2} \sin^r \theta d\theta = \frac{\sqrt{\pi}}{2} \frac{\Gamma\left(\frac{r+1}{2}\right)}{\Gamma\left(\frac{r}{2}+1\right)} \quad (r > -1),$$

$$\Gamma(r+1) = r\Gamma(r).$$
(4.4)

Therefore, put

$$J_{1}(\epsilon) := J(\epsilon) - J_{0} := -\epsilon J_{2}(\epsilon),$$

$$J_{2}(\epsilon) := \int_{0}^{1} \frac{s^{p+1}(1 - s^{p+1})}{m(\epsilon, s)m(0, s)(m(\epsilon, s) + m(0, s))} ds.$$
(4.5)

We study the asymptotic behavior of $J_2(\epsilon)$ as $\epsilon \to 0$.

Lemma 4.1. (1) If p > (3q-1)/2, then $J_2(\epsilon) \to K_2$ as $\epsilon \to 0$.

(2) If p < (3q-1)/2, then as $\epsilon \to 0$

$$J_2(\epsilon) = K_3(1+o(1))\epsilon^{(2p-3q+1)/(2(q+1))}. (4.6)$$

(3) If p = (3q - 1)/2, then as $\epsilon \to 0$

$$J_2(\epsilon) = -\frac{1}{2(q+1)}(1+o(1))\log \epsilon.$$
 (4.7)

Proof. (1) Since p > (3q-1)/2, we have (2p-3q-1)/2 > -1. Therefore, by Lebesgue's convergence theorem, as $\epsilon \to 0$

$$J_2(\epsilon)
ightarrow rac{1}{2} \int_0^1 rac{s^{(2p-3q-1)/2}(1-s^{p+1})}{(1-s^{p-q})^{3/2}} ds = K_2.$$

This completes the proof.

(2) Step 1. Assume that p < (3q-1)/2. We introduce $J_3(\epsilon)$ to approximate $J_2(\epsilon)$:

$$J_{3}(\epsilon) := \int_{0}^{1} \frac{s^{(2p-q+1)/2}}{\sqrt{s^{q+1} + \epsilon}(s^{(q+1)/2} + \sqrt{s^{q+1} + \epsilon})} ds$$

$$= J_{4}(\epsilon, \delta) + J_{5}(\epsilon, \delta)$$

$$:= \int_{0}^{\delta} \frac{s^{(2p-q+1)/2}}{\sqrt{s^{q+1} + \epsilon}(s^{(q+1)/2} + \sqrt{s^{q+1} + \epsilon})} ds$$

$$+ \int_{\delta}^{1} \frac{s^{(2p-q+1)/2}}{\sqrt{s^{q+1} + \epsilon}(s^{(q+1)/2} + \sqrt{s^{q+1} + \epsilon})} ds,$$
(4.8)

where $0 < \delta \ll 1$ is a fixed small constant. We study the asymptotic behavior of J_3, J_4 and J_5 as $\epsilon \to 0$. Note that 0 < (2p - 2q + 2)/(q + 1) < 1, since p < (3q - 1)/2. Then put $s = \epsilon^{1/(q+1)} \tan^{2/(q+1)} \theta$ and $y = \tan(\theta/2)$ to obtain

$$J_3(\epsilon) = \frac{2}{q+1} \epsilon^{(2p-3q+1)/(2(q+1))} \int_0^{\tan^{-1} 1/\sqrt{\epsilon}} \frac{\tan^{(2p-2q+2)/(q+1)} \theta}{1+\sin \theta} d\theta$$

$$= K_3(1+o(1)) \epsilon^{(2p-3q+1)/(2(q+1))}.$$
(4.9)

Similarly, we obtain

$$J_4(\epsilon, \delta) = K_3(1 + o(1))\epsilon^{(2p - 3q + 1)/(2(q + 1))}, \quad J_5(\epsilon, \delta) \le \frac{1}{\delta^{q + 1}}.$$
 (4.10)

Since p < (3q-1)/2, this along with (4.9) implies that $J_3(\epsilon)/J_4(\epsilon, \delta) \to 1$ as $\epsilon \to 0$ for a fixed δ .

Step 2. We show that as $\epsilon \to 0$

$$\frac{J_2(\epsilon)}{J_3(\epsilon)} \to 1. \tag{4.11}$$

Let an arbitrary $0 < \delta \ll 1$ be fixed. Put

$$J_2(\epsilon) = J_6(\epsilon, \delta) + J_7(\epsilon, \delta)$$

$$:= \int_0^{\delta} \frac{s^{p+1}(1 - s^{p+1})}{m(\epsilon, s)m(0, s)(m(\epsilon, s) + m(0, s))} ds$$

$$(4.12)$$

 $+\int_{\delta}^1rac{s^{p+1}(1-s^{p+1})}{m(\epsilon,s)m(0,s)(m(\epsilon,s)+m(0,s))}ds.$

Then for $0 < \epsilon \ll 1$

$$|J_7(\epsilon,\delta)| \le C_{2,\delta} \int_{\delta}^1 \frac{1-s^{p+1}}{(1-s^{p-q})^{3/2}} ds \le C_{3,\delta}.$$
 (4.13)

Moreover, by (3.8), we obtain

$$(1 - \delta^{p+1}) \int_0^{\delta} \frac{s^{(2p-q+1)/2}}{\sqrt{s^{q+1} + \epsilon} (s^{(q+1)/2} + \sqrt{s^{q+1} + \epsilon})} ds \le J_6(\epsilon, \delta)$$

$$\le \frac{1}{(1 - \delta^{p-q})^{3/2}} \int_0^{\delta} \frac{s^{(2p-q+1)/2}}{\sqrt{s^{q+1} + \epsilon} (s^{(q+1)/2} + \sqrt{s^{q+1} + \epsilon})} ds.$$

This implies

$$(1 - \delta^{p+1})J_4(\epsilon, \delta) \le J_6(\epsilon, \delta) \le \frac{1}{(1 - \delta^{p-q})^{3/2}}J_4(\epsilon, \delta). \tag{4.14}$$

By (4.10), (4.13) and (4.14), we see that $J_7(\epsilon, \delta) = o(J_6(\epsilon, \delta))$ as $\epsilon \to 0$ for a fixed δ ,

since p < (3q - 1)/2. Then by (4.9), (4.10) and (4.12)–(4.14),

$$(1 - \delta^{p+1}) \leq \liminf_{\epsilon \to 0} \frac{J_6(\epsilon, \delta)}{J_4(\epsilon, \delta)} = \liminf_{\epsilon \to 0} \frac{J_2(\epsilon)}{J_3(\epsilon)} \leq \limsup_{\epsilon \to 0} \frac{J_2(\epsilon)}{J_3(\epsilon)}$$

$$= \limsup_{\epsilon \to 0} \frac{J_6(\epsilon, \delta)}{J_4(\epsilon, \delta)} \leq \frac{1}{(1 - \delta^{p-q})^{3/2}}.$$

$$(4.15)$$

By letting $\delta \to 0$, we obtain (4.11). Then by (4.9) and (4.11), we obtain (4.6).

(3) If p = (3q - 1)/2, then by the asymptotic formula

$$\tan^{-1} x = \frac{\pi}{2} - \frac{1}{x} + O\left(\frac{1}{x^3}\right) \quad (x \gg 1),$$

and Taylor expansion of $\tan x$ at $x = \pi/4$ and (4.9), we obtain (4.7) by direct calculation. \Box

5. Proof of Theorem 2.1. By (2.10), (3.1), (4.1) and (4.5), we have

$$\mu(\lambda)^{(2p-q+3)/(2(p-q))} = \frac{\sqrt{2(q+1)}}{\gamma^{p+1}} \lambda^{(p+3)/(2(p-q))} \|w_{\lambda}\|_{\infty}^{(2p-q+3)/2} J(\epsilon(\lambda))$$

$$= \frac{\sqrt{2(q+1)}}{\gamma^{p+1}} \lambda^{(p+3)/(2(p-q))} \left(\frac{p+1}{q+1}\right)^{(2p-q+3)/(2(p-q))} \times (1+\epsilon(\lambda))^{(2p-q+3)/(2(p-q))} (J_{0} - \epsilon(\lambda)J_{2}(\epsilon(\lambda))).$$
(5.1)

Moreover, it is easy to check that

$$\left(\frac{\sqrt{2(q+1)}}{\gamma^{p+1}}\right)^{2(p-q)/(2p-q+3)} \frac{p+1}{q+1} J_0^{2(p-q)/(2p-q+3)} = C_1.$$

By this, (5.1) and Taylor expansion, we obtain

$$\mu(\lambda) = C_1 \lambda^{(p+3)/(2p-q+3)} \times \left(1 + \epsilon(\lambda) - \frac{2(p-q)}{(2p-q+3)J_0} (1 + o(1))\epsilon(\lambda)J_2(\epsilon(\lambda))\right).$$

$$(5.2)$$

Then by Lemma 3.3, Lemma 4.1 and direct calculation, we obtain Theorem 2.1. Thus the proof is complete. \Box

REFERENCES

- 1. F. V. Atkinson, Multiparameter spectral theory, Bull. Amer. Math. Soc. 74 (1968), 1-27.
- 2. P. Binding and P. J. Browne, Asymptotics of eigencurves for second order differential equations, I, J. Differential Equations 88 (1990), 30-45.
- 3. R. S. Cantrell, Multiparameter bifurcation problems for second order ordinary differential equations,, Rocky Mountain J. Math. 12 (1982), 795-806.

- 4. M. Faierman, Two-parameter eigenvalue problems in ordinary differential equations (Pitman Research Notes in Math. Series 205), Longman, Essex, 1991.
- 5. M. Faierman and G. F. Roach, Eigenfunction expansions associated with a multiparameter system of differential equations, Differential and Integral Equations 2 (1989), 45-56.
- 6. T. Shibata, Asymptotic behavior of eigenvalues of two-parameter nonlinear Sturm-Liouville problems, J. Anal. Math. 66 (1995), 277-294.
- 7. T. Shibata, The effect of the variational framework on the spectral asymptotics for two-parameter nonlinear eigenvalue problems, submitted.
- 8. T. Shibata, Two-parameter eigenvalue problems in nonlinear second order differential equations, Result. Math. 31 (1997), 136-147.
- 9. B. D. Sleeman, The two parameter Sturm-Liouville problem for order differential equations, Proc. Roy. Soc. Edinburgh **69A** (1971), 139-148.
- 10. L. Turyn, Sturm-Liouville problems with several parameters, J. Differential equations 38 (1980), 239-259.
- 11. H. Volkmer, On multiparameter theory, J. Math. Anal. Appl. 86 (1982), 44-53.