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1. Introduction

Let X3, X5, X;, ... be independent and identically distributed (i.i.d.) random variables
with the probability density function (p.d.f.)

1 | T —
oo = Rerp (-22E) .

where both p € (—00, 00) and o € (0, 0o) are unknown and I(A) denotes the indicator
function of the set A. For any given r # 0 we want to estimate the power of the
scale parameter o". Let 8, = 6,(Xi,...,Xn) be an estimator of 0" based on a random

sample Xj,..., X, of size n. Then as a loss function we use the squared error loss

defined by L, = (6, — 0")?. The risk associated with the estimator &, is given by

R, = Ry(0,) = E(L,). Let w > 0 be a preassigned error bound for the risk. We want to
find the smallest sample size n = ny which satisfies that R, < w. In bounded risk point
estimation problems the error bound w is assumed to be sufficiently small, so that we
suppose that the sample size n is sufficiently large. For n > 2 set
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To =min{Xy,...,X,} and o, =(n—-1)"") (X; -Tp,).
=1

We can show that ¢,0}, with ¢, = (n—1)"T'(n—1)/T'(r +n—1) is the uniformly minimum
variance unbiased estimator of o™ provided n > max{1, 1—r}. We use, however, o} as an
estimator of ", because o, is approximately equal to c,o?, for large n and the calculation
of oy, is easier than that of c,07,. Our goal is to find an asymptotically smallest sample
size ng satisfying that R, = E(o” —0")? < w.

Estimation of o and o? are of great importance. For r = 1, namely, for the estimation
of the standard deviation by o0,, Isogai, Saito and Uno (1999) dealt with this bounded
risk point estimation problem. Minimum risk point estimation problems for r = 1 were
considered by Mukhopadhyay and Ekwo (1987), Ghosh and Mukhopadhyay (1989) and
Isogai and Uno (1994). Starr and Woodroofe (1972) treated the same problem for r = 2.
Uno and Isogai (2002) proposed a fully sequential procedure for the estimation of o” with
normal scale parameter 0. For a review one may refer to Mukhopadhyay (1988), Ghosh
and Sen (1991) and Ghosh, Mukhopadhyay and Sen (1997). Sometimes, it is of interest
to measure mean A = u + o in o—units and hence to estimate po~!. For a normal
distribution with mean y and variance 02 both unknown, Sriram (1990) considered the

“sequential point estimation problem for uo~! by using an estimator of o” with r = —1.

We shall now compute the risk R, = E(o], — 0")? to find ny. We can show that for

n > max{2, 1 - 2r}

R.<oo and R, =r%%n"!+ O(n™?) as n— oo

Ignoring the order term above, we can find the asymptotically smallest sample size ng
satisfying that R, < w. Suppose

1.2 0,27'

r?0"n"1 <w, orequivalently, n > =n* (say). (1.1)

For simplicity n* is assumed to be an integer. Then ny = n* is the asymptotically besf
fixed sample size if o is known. Unfortunately, the asymptotically best fixed sample size
procedure ng cannot be used since o is unknown. Further there is no fixed sample size
procedure satisfying our condition. Thus we need to find a sequential sampling rule.

In Section 2 we shall propose a fully sequential procedure for this estimation problem

and give two theorems concerning the second order approximation to its average sample



size and risk associated with our procedure. We shall also consider a class of sequential
estimators derived on the basis of the idea of bias-correction and compare them from the

point of view of risk. In Section 3 we shall provide brief simulation results.

2. Results

In this section we shall propose a fully sequential procedure N motivated by the form
of n* in (1.1) and give two theorems concerning the second order approximation to its
average sample size E(N) and risk Ry = E(o% —0")? as w — 0. We shall also consider a
class of sequential estimators, including the ordinary estimator o%;, based on the idea of
bias-correction. The comparison will be made from the point of view of risk. It will turn
out that we can find an appropriate sequential estimator to reduce the risk associated
with the ordinary one. |

In this paper we propose the stopping rule defined by

2 +2r
N = N,(r) =inf{n2m:n2 T:" l,.}, (2.1)

where m is a starting sample size satisfying that m > max{2, 1 — 2r} and [; is a given

positive function of = on (0, 00) such that
b 1 .
l.=1+ p +o0 (;) as r — oo with a constant .

We can show that P(N,(r) < 00) =1 for all w > 0 and r # 0. Once the sampling stops
at the Nth stage, we estimate 0" by o. Then the risk associated with o}, is given by
Ry = E(o% — o")% The following two theorems are concerned with the second order

approximation to the average sample size and risk.

Theorem 2.1. If m > m,(r), then asw — 0
E(N)=n*+p+1ly—r(2r +1) +o(1),

where

() 1+6r if r>0
mi\r) =
' 1—2r if r<0

and p is a certain constant with 0 < p < 1 + 2r2.
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Theorem 2.2. If m > my(r), then as w — 0

n* (%—1) =11r2+8r+1+-2—(r—1)2—p—lo+o(1),

where
max {1+ 10r,7+8r} if r>0
may(r) =

7 — 14r if r<O.

Remark 2.1. (i) If we take an arbitrary constant /g such that
2 3 2
lo > 11r +8r+1+z(r—1) - p, (2.2)

then from Theorem 2.2 we have that Ry < w for sufficiently small w > 0. Thus our
condition on the risk is satisfied for sufficiently small w.

(ii) Theorem 2.1 of Isogai, Saito and Uno (1999) with @ = 0 and b = 1 is the same as
Theorems 2.1 and 2.2 with r = 1 except for the condition on the starting sample size.
The difference of this condition is caused by the fact that this paper deals with all powers.
Further the methods of the proofs are different.

We shall here evaluate the bias of o}.

Proposition 2.1. If m > m3(r), then as w — 0

E(o}) - 0" = —%sign(r)(Br +1)(n*)"2w!/? + ofw),

max{l+6r,3+3r} if r>0
3 —5r if r<o.

sign(r) ={ ’ and ma(r) '={
r<
Taking Proposition 2.1 into account, we consider a class of sequential esf_imators {on(K),k €
(—o0, 00)} for 0" defined by
o (k) = ofy + k N~1/21/2,

Then we get the following proposition concerning the bias of o% (k).
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Proposition 2.2. If m > mg(r), then as w — 0

E(o%y(k)) = 0" + {k — sign(r)(3r + D} (n*)~Y2w'/2 + o(w).

For k = 1sign(r)(3r + 1), o (k) is a second-order asymptotically unbiased estimator.
We shall now compare the risk of o% (k) with that of oy. Let Ry(k) = E(o} (k) — o")>.
Theorem 2.3. If m > my(r), then asw — 0

%(RN(k) ~ Rw) = k? — sign(r) (5 + 1)k + o(1).

Remark 2.2 Let k = Lsign(r)(5r + 1) for r # 0. Then we have
Ry(k) < Ry for sufficiently small w > 0 if r # —3.

Thus bias-correction is asymptotically effective to reduce the risk for all 7 # 0 with using
oy + isign(r)(5r + 1)N~'/2w'/? which is not a second-order asymptotically unbiased

estimator.

3. Simulation Results

We shall give brief simulation results which are based on 100,000 repetitions. We
choose the constant lo satisfying the inequality in (2.2) in Tables 1-3. In Tables 4 and 5
we choose I such that the average sample size E(IN) approximately equals the optimal
one n*. Since we do not know any approximate value of p between 0 and % +.2r2, we use
here p=0orp= -;— + 272 as p. From these simulation results we might need to improve

the stopping rule N in (2.1).



Table 1. p=0, lh>11r*+8 +1+3(r—-1)2—p

n* = 100 r=-1 r=1 r=2
p=0,0=1 w=0.01 w=0.01 w = 0.04
m = 22 m =16 m=24

ln=1+1/n lo=38 lh=21 lp = 62
' k=2 k=3 k=55
E(N) 108.630260 116.346200 137.330710
E(o%) 0.991965 0.983436 0.951511
E(o%(k)) 1.011400 1.011567 1.048849
Ry/w 0.963153 0.984520 - 0.949165
Ry(k)/w 0.934459 0.921439 0.800041

n*(Rn(k) — Ry)/w -2.869400 -6.308015  -14.912360

Table 2. r=—1, p=3+2=25, lg>11r2+8r+1+3(r—1)2—-p=45

n* =40 =05 oc=1 g=2
p=0, lp=5 w=01 w=002  w=0.00625
m=22 k=2 0" =2 o' =1 0" =05
E(N) 45.752540  45.700810 45.738710
E(o%) 1.965109 0.982012 0.491141
E(o%(k)) 2.061243 1.030103 0.515186
Ry/w 0.918271 0.914489 0.925572
Ry(k)/w 0.865381 0.859792 0.870948
n*(Rn(k) — Ry)/w  -2.115595  -2.187878 -2.184982




Table 3. r =1, p=1+22=25 ly>11r2+8r+1+3(r—1)?-p=175

n* =40 oc=0.5 oc=1 o=2
p=0, lp=18 w = 0.00625 w = 0.025 w=0.1
m=16, k=3 o"=0.5 o"=1 o"r=2
E(N) 52.049260 52.088870 52.200480
E(o%) 0.481075 0.962627 1.928253
E(o%(k)) 0.514786 1.030025 2.062843
Ry/w 1.004848 1.002715 0.984277
Ry (k)/w 0.870552 0.871007 0.862504
n*(Rn(k) — Rn)/w -5.371849 -5.268332 -4.870901

Table 4. r = -1, p=1+22=25 [ <r(2r+1)—p=-15

n* =40 c=05 oc=1 oc=2
p=0, lg=-2 w=01 w=0025 w=0.00625
m=22, k=2 o =2 o"=1 o" =05
E(N) 39.236610  39.303210  39.232770
E(c%) 1.951794 0.976822 0.487953
E(o%(k)) 2.056594 1.029155 0.514149
Rn/w 1.034014 1.018080 1.026389
Ry(k)/w 0.942045 0.931146 0.935053
n*(Ry(k) — Ry)/w  -3.678757  -3.477360 -3.653437
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Table 5. r =1, p=1+4+2r2=25, [h<r(2r+1)—-p=105

n* =40 =05 =1 og=2
p=0, lp=0 w=0.00625 w=0.025 w=0.1
m=16, k=3 o" =05 o"=i o' =2
E(N) 37.647620  37.596930  37.616820
E(o%) 0.468557  0.936478 1.873344
E(o%(k)) 0.509244 1.017909 2.036156
Ry/w 1.470935 1.470930 1.473031
Ry (k) /w 1.107491 1.103551 1.106660
n*(Rn(k) — Ry)/w -14.537765  -14.695145  -14.654831
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