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CELLULAR BASES OF THE TWO-PARAMETER VERSION OF
THE CENTRALISER ALGEBRA FOR THE MIXED TENSOR
REPRESENTATIONS OF THE QUANTUM GENERAL LINEAR
GROUP

J. ENYANG

ABSTRACT. An explicit combinatorial construction is given for the cellular
bases, in the sense of Graham and Lehrer, for the centraliser algebra for the
mixed tensor representations of the quantum general linear group.

1. INTRODUCTION

Let g = gl(k,C) and V denote the natural representation of U;(g). If V* is the
dual space of V' considered as a Ug(g)-module then the mixed tensor representation
of Us(g) is defined to be the rational representation T™" = V®™ & (V*)®", Schur-
Weyl duality in this context has been considered by Kosuda and Murakami in [7]
where they constructed a generalised Hecke algebra H,’f%n(q‘) such that the action
of Hf, () on T™™ generates Endy, g)(T"™™). Subsequently, Leduc [8] has defined
a two parameter version A,, (7, §) of the generalised Hecke algebra of Kosuda and
Murakami, from which Hf, ,,(g) is recovered by making the specialisation 7 = g*.

The main purpose of this paper is to give an explicit combinatorial construction
of the representations of A,, ,(%,§); it is shown that each cellular basis, in terms
of Graham and Lehrer, for the tensor product of (classical) Iwahori-Hecke algebras
H,,(§) ® H,(§) will give rise to a cellular structure on A,, ,(7,§). By this means,
we produce for instance, an analogue of the Murphy basis [11] for the algbebra
A n(f,q), along with naturally defined cell modules, the basis of which will be
indexed by certain multi-tableau. By Graham and Lehrer, these cell modules (which
generalise the Specht modules from the classical theory of the representations of
the symmetric group), will be absolutely irreducible for generic parameters 7 and
¢ and, in the non-generic setting will have a radical defined in terms of a certain
associative, symmetric bilinear form.

The irreducible representations of A, (¥, §) have also been constructed by Ko-
suda [5] by means of an analogue of the Kazhdan-Lusztig basis of the Iwahori-Hecke
algebra of type A, though without reference to Graham and Lehrer’s machinery of
cellular bases. It being that the Kazhdan-Lusztig basis for the Iwahori-Hecke alge-
bra of type A is cellular, the procedures given below, which explicitly relate cellular
structures on A, (7, §) to cellular structures on the Iwahori-Hecke algebras, allow
us to again recover the results of [5].

The author would like to thank M. Kosuda for bringing the results of [5] to his
attention, G. Benkart and S. Doty for several stimulating discussions, and B. Srini-
vasan for her support and encouragement while this project was undertaken.

2. PRELIMINARIES

In this section we establish the basic notation and state some known results
which will be used subsequently. A reference for the material presented in this
section is [9]. :
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2.1. The Symmetric Group. Let &, denote the symmetric group acting on the
integers {1,2,...,n} on the right. The elementary transpositions in &, are the
elements

S={si=(,i+1)|1<i<n}.

The elementary transpositions, together with the relations

s?2=1 forl<i<mn
$iS; = 8;j8; for2<|i—jland1<%,j<n
8;S8i+18; = Si+18:iSi+1 forl1<i<n-—1

give a presentation for G, as a Coxeter group. Let w be a permutation in &,. An
expression w = §;, Si, - - - 84, for w in terms of elementary transpositions is said to
be reduced if w cannot be written as a proper sub-expression of s;;s;, ...s;,. In
this case we say w is a permutation with length k and write {(w) = k. Note that
while there are usually several reduced expressions for w, the length of w will not
depend on this choice. The length function on &,, is determined by the properties

o fuwy+1 i (Dw < (6 + Dw,
(1) I(saw) = {z(w) —1 otherwise;

and,

l(w)+1 if Qw™ ! <@+ 1w,
l(w) =1 otherwise,

(2) l(ws;) = {

together with the normalizing condition {(1s, ) = 0.

2.2. Compositions and Tableaux. Let k¥ > 0 be an integer. A partition of k is
a non-increasing sequence v = (v, v, ...) of integers such satisfying 3 ,-, vi = k.
We will write v F k to denote the fact that v is a partition of k. If v is a partition it
will also be convenient to write |v| = k whenever 3_,-, v; = k. If 1, v are partitions

of k, then write u > v and say p dominates v, if ZJ_I HE 2 Zz—l vy for all j > 0.
The fact that 4 > v and g # v will be denoted by p > v.
The diagram of a partition v + k& is the set of nodes

W={GJjI1<j<rviandi>1}CNxN

Let v + k. A v-tableau is a bijection t : [V] — {1,2,...,k}; equivalently a v-
tableau t may be regarded as a labeling of the nodes of [v] by the integers 1, 2,..., k.
For example, if k = 7 and v = (4,2, 1), then

21416]7]
(3) t=1[1]3

9]
is a v-tableau. The super-standard tableau t¥ is the unique v-tableau in which has
as its entries the integers 1,2,..., k appearing in increasing sequence from left to
right and top to bottom. In case k = 7 and v = (4,2,1) we have

1[2[3[4]
(4) t¥ =516

L7

A v-tableau t is said to be row standard if the entries of each row of t increase when
read from left to right and a row standard v-tableau t is said to be standard if the
entries of each column of t increase when read from top to bottom. The tableau
of (3) is row standard but not standard. We will denote by Std(u) the collection of
standard v-tableaux.
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Let v + k be a partition. The symmetric group & acts from the right on the
set of v-tableaux by permuting entries. Let, for example, n = 5 and v = (3, 2);

if t = , then t(1,2)(4,5) = . If t is a v-tableau, then d(t) € Sy is the

permutation defined by the equation t¥ d(t) = t. The Young subgroup of &, =
Sy, xS, x...6,, will be the row stabiliser of t¥ in Gy; that is

S, = (sili,i + 1 are in the same row of t” ).

For example, when v = (4,2,1) and t” is given by (4), then &, = (s1, 82,83) X (s5).

A multi-partition of k is a tuple of partitions v = (¢, (2 .. .) satisfying
the condition that 3,5, |v?| = k. The diagram of the multi-partition v =
(v, @) V() is defined simply to be the corresponding tuple of diagrams
] = (v, [¢@)], ..., [¥®)]). Since our definitions of multi-tableaux will vary ac-
cording to context, we will confine ourselves here to the definition of diagram of a
multi-partition and postpone the introduction of multi-tableaux.

2.3. The Iwahori-Hecke Algebra of the Symmetric Group. Let R be a do-
main and ¢? be an invertible element in R. The Iwahori-Hecke algebra Hg,»(g?)
associated with &,, is the unital associative R-algebra generated by the elements
{Xi|1 <i < n} subject to the relations

(X: —¢>)(X:i+1)=0 for 1 <i < n,
XiXip1 X = Xi1 XiXina for 1 <i<n-—2, and,
Xin=Xin for2§|i—j| and 1 <1i,57 <n.

If w is a permutation in &, with reduced expression w = s;, ...s;,, the element
Xuw of Hp n(g?) is defined by

Xw =X1'1 "'X‘ik'

By Matsumoto’s Theorem (Theorem 1.8 of [9]), X, is a well defined element of
Hr,n(g?). The next statement follows from (1) and (2) together with the defining
relations for Hr,n(g?)- .

Lemma 2.1. If w € &,, and s is an elementary transposition, then

Xuws if l(ws) > l(w),

XwXs = {quws + (@2 — )Xy if l(ws) < l(w);

and,
X, Xy = {ng if l(sw) > L(w),
P Xow + (@2 — )Xy  if I(sw) < l(w).
The next statement is Lemma 2.3 of [11]. |
Lemma 2.2. Let *,1,# be the maps defined by:
* 1 Xy — X1
f: Xy o (—g?) 0 X5
B X = (—g®)! XL

for each w € &, extended to Hr.n(g?) by linearity. Then * and 1 are R-algebra
anti-involutions of Hr,n(g?) and t is an R-algebra automorphism of Hr n(g?).
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2.4. The Murphy Basis for the Iwahori-Hecke Algebra. In [11] Murphy
gives a nice basis for Hr »n (¢%) indexed by pairs of standard tableaux, a basis which
allows him to define a filtration on Hg ,(g?) by two-sided ideals and to describe
the representations of Hg »(g?). In this section we recall Murphy’s construction
and refer the reader to [11] or [9] for the details.

For a partition A - n, Murphy defines the element my € Hg,»(q?) by

my = Z Xwa
weS
and associates to each pair s, t of standard A-tableaux the element

Mst = X g(o)MaXd(y)-
Let N* denote the R-submodule of # g »(g?) generated by the elements
{mee = X ymuXacy | s, t € Std(u) and p &> A}
and N* be the R-submodule of N* generated by
{met = X3 5ymuXaqy | s, t € Std(u) and p > A}

The following result is due to Murphy (Theorem 4.17 and Theorem 4.18 of [11] or
Theorem 3.2 of [9]). ' :

Theorem 2.3. The Iwahori-Hecke algebra Hpr,n(g?) has a free R-basis
M = {mg|s,t € Std(A) and A+ n}.

Moreover, the following hold:
(1) The R-linear map determined by mg¢ — Mys, for all msy € A , is an algebra
anti-involution of Hr,n(g?).
(2) Suppose that h € Hp n(q?) and that t € Std(A). Then there exist av € R,
for v € Std(\), such that

(5) Mmeth = Z aymg, mod N
vEeStd(A)

for all s € Std().

The crucial point about (5) is that the elements v and a, depend on t and h but
not on s. Also, as a consequence of Theorem 2.3, both N* and N> are two sided
ideals of Hg »(g?) and the dominance order on partitions gives rise to a filtration
of Hr,n(g?) by two-sided ideals.

The right Specht module S* is defined to be the H g ,(¢?)-submodule of N*/N*
generated by the elements

(6) {N* + mu |t € Std()) }.

By the last item of Theorem 2.3, the set (6) is a free R-basis for S*. For
s € Std()\), let m, denote the element N*+m, € S*. Murphy defines a symmetric
bilinear form ( , } : S* x S* — R by setting

(mg, my)ymy = mpgsmia, mod N>,
Since ( , ) satisfies the condition (ms,mh) = (msh*,m,) for all h € Hrn(g?), it
follows that the set rad(S*) = {a € S*|(a,b) = 0 for all b € S*} will be a right

Hr,n(g?)-module. Consequently Murphy defines D> = §*/rad(S?*). The first item
below is Theorem 6.2 of [11] while the second item is Theorem 6.3 of [11].

Theorem 2.4. Let R be a field. Then
(1) Then either D> = 0 or D> is an absolutely irreducible Hrn(g?)-module.
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(2) The collection { D* | A+ n and D> # 0} is a complete set of pairwise non-
isomorphic absolutely irreducible H g, n(q?)-modules.

2.5. Cellular Algebras. The definition of a cellular algebra, due to Graham and
Lehrer in [2] was motivated by Kazhdan-Lusztig theory. In this section we state
the main results of Graham and Lehrer and refer the reader to the exposition in [9]
for a more thorough treatment. For an equivalent but basis free approach to the
subject, the reader is referred to a work of Koénig and Xi [3].

Definition 2.1. Let R be a domain and A a unital associative R algebra with a
free R basis. Let A be a finite set with partial order < and suppose that for each
A € A there is a finite index set Z(\) such that there exists a set

€ ={co, € Alo,u€Z()\) and A € A}

which'is an R-basis for A. For A € A, let A* denote the R-submodule of 4 generated
by the elements

{cbulo,u € Z(u) where p € A and A < u}.

Then (A, ¥) is a cellular basis and A a cellular algebra if
(1) the R-linear map * : A — A determined by * : ¢}, — ¢, for all A € A and
u,v € Z(A) is an algebra anti-automorphism of A; and,
(2) if A € A,v € Z(A\) and a € A, then there exist ay € R, for t € Z()\), such
that

) cd.a Z ac)y mod A*

teZ ()

for all u € Z(A).

The essential feature of the expression (7) is that the elements t € Z()\) and the
constants ay are determined entirely by a and v and are independent of u.

Examples of cellular algebras include Ariki-Koike algebras (including the Iwahori-
Hecke algebras), the Brauer and Temperly-Lieb algebras (Theorem 4.10 and The-
orem 6.7 of [2]) and the Birman-Murakami-Wenzl algebras (Theorem 3.11 of [12]).
Note that a cellular algebra may have more than one cellular basis; the Murphy
basis, for instance, makes the Iwahori-Hecke algebra into a cellular algebra, as does
the Kazhdan-Lusztig basis for the Iwahori-Hecke algebra (see, for example, Theo-
rem 5.5 of [2]). ‘

For A € A, denote by A* the R-submodule of A generated by the elements
c¥, where v,u € Z(u) and g > X. Observe that A* C A* and that A*/A* has
an R-basis given by A* + ¢}, where v,u € Z()). The next statement is now a
straightforward consequence of the definitions (Lemma 2.3 of [9]).

Lemma 2.5. Let (¥, A) be a cellular basis for A and \ be an element of A.
(1) Suppose that u € Z(\) and that a € A. Then for all v € Z()\),
a*c), = Z aicy, mod A* '
teZ ()
where, for each t, oy is the element of R determined by (7).

(2) The R-modules A* and A* are two-sided ideals of A.
(3) Ifs,t € Z(A\), then there are asy € R such that for any u,v € Z(N),

(8) co.co, = agicy, mod A,

vs “tu —

The second item of Lemma 2.5 shows that there is a filtration of A by the ideals
A>: indeed, the posets of ideals A* ordered by containment is isomorphic to the
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poset (A, <). The third item shows that each of the quotients A*/A* is equipped
with a bilinear form; this bilinear form will be defined below.

Let A € A be fixed. For v € Z()\), define C) to be the R-submodule of A/ A>
generated by the elements { A* + ¢}, |u € Z()\)}. By (7), the algebra A has a
well-defined action on C) by right multiplication. Moreover, under this action
CQ = C whenever v,u € Z()\). Given the latter observation, the right cell module
C* is defined to be the right A-module which is free as an R-module with basis
{c)|o € Z(\)} and right A-action given by

coa = E oy
t

where the « are given by (7). Then the map C2) — C* defined by ¢, + A* — cp
is an isomorphism of right A-modules. The left cell module C** is defined to be
the left A-module which is free as an R-module with basis {cg | v € Z()) } and left

A-action given by
a*c) = E acp
t

where a; are once more determined by (7). With this definition, it is easy to see
that C**» = Hompg(C*, R) as left A-modules. As a right A-module we have the
decompositon

A/A=C*®rC* = @ Cy.

vEZI(N)
By Lemma 2.5 there is a bilinear form (, ) : C* x C* - R

(c2,cd) = ase for all s,t € Z(N),
where a,; are determined by (8). The following statements follow readily from the
definitions (Proposition 2.9 of [9]).

Proposition 2.6. Let A\ € A anda € A. Then

(1) (e}, ) = (cd,cd) for allu,b € T(X).

(2) (cpa,cd) = (cd,cla*) for all u,v € Z(N).

(3) bed, = (b,c))e) for allu,o € Z(X) and b € C*.

The radical of the module C* is defined to be »

(9) rad(C*) = {a € C*|(a,b) =0 for allbe C*}.
By the second item of Proposition 2.6, rad(C?) is an A-submodule of C*, motivating
the definition D* = C*/rad(C?*).

Proposition 2.7. Let R be a field and let A\ € A.

(1) If D> # 0, then D> = 0 or D> is absolutely irreducible. ,
(2) The intersection of the mazimal submodules of C* is equal to rad(C?).

In principle at least, the following Theorem of Graham and Lehrer (Theorem 2.19
of [9]) allows us to classify the simple A-modules.

Theorem 2.8. Suppose that R is a field. Then
{D*|A€ A and D #0}
is a camplete set of pairwise non-isomorphic irreducible A-modules.
Graham and Lehrer also give the following equivalences (Corollary 2.21 of [9]).

Theorem 2.9. Suppose that R is a field. Then the following are equivalent.

(1) A is (split) semisimple.
(2) C*» = D* for all X € A.
(3) rad(C*) =0 for all X € A.
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Proposition 2.10. Let A and B be R-algebras which are cellular with respect to
the bases (1), A1) and (¥, A?)) respectively. Then C = AR B is cellular with
the basis (¥, A), where

€ = {ad, @b} |ad, € €W and bX € w2},
and A = {(AD,A@) A1) € AWM and A € AP} is ordered by (A, A2)) <
(u(1)7u(2)) if A < uM) gnd A2 < “(2),

. . . (1) (2) (1 2
Proof. Since € is a basis for C over R and the map *: a), ®b)" — a){’ ® b2

defines an algebra anti-involution of C, we must now verify that (¥, A) satisfies the
condition (2) of Definition 2.1. Let A = (AD X(®)) € A. If a € A and b € B, then
there exist ay, 8y € R, for h € Z(A(V)) and g € Z(A\?), together with @ € A*"’ and
b € B*® such that |

(1) (2) (1) (2) (1) - (2) 3
(ady ®bY )a®b)=al, a®by b= ayady +a|® (Zﬂgbﬁ, +b)
b . a

(1) (2) (2) > . (2)
= Z apay, ® Zﬁgbi\b + Z apay, ®b + Z,Bga ® by,
b 8 - b 8

= apady’ ® > Babdy” mod (A © BXY 4+ A2V g BA?).
b P

Now observe that (A A®)) < (u(), 4@ if AD) < p® and A® < p@ or AV <
p® and M@ < 4@ thus if A = (A®,A2)) then C* is generated as an R-module
by

{at.’ @ 0" [A® < u® and A® < u® or AV < 4D and A® < @)

and we have shown that

1) (2) (1) (2) X
(a'ﬁu ® bi\s )(a’ ® b) = Z al’)ﬂg a;\b X btAh mod C)‘.
h.g

Since C is generated as an R algebra by a® b, for a € A and b € B, this completes
the proof of the Proposition. 0

3. THE ALGEBRA A, (7, q)

While the algebra A, »(#,§) is an associative algebra over a field k = C(#, §),
rather than working over the rational function field x, we produce cellular bases
{b; } for a generic algebra over an appropriate localization R of a polynomial ring
over Z and then obtain bases for A,, ,(#,§) by specializations to «.

Let r,g be indeterminates over Z and R be the localization of Z[r%!,¢*!] at

(¢2 — 1). Define the element z in R as
r—r1

z2=—

g—q!

and let m,n be non-negative integers. The generic algebra A,, ,(r, q) is the unital
associative algebra with generators

{T:,T;,E|1<i<m,1<j<n}
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subject to the the following relations:

(T; —¢®>)(Ti+1) =0 for1<i<m
(T — AT +1)=0 forl1<i<n
T T, = T; 1 TiTia for1<i<m
TiTi1Ti = Ti1 TiTia for1<i<n
T.T; = T;T; ' for i —j|>2and1<i<m
TiTj=TjTi for|i—jj>2and1<i<n
TiTj=TjTi forl<i<mandl1<j<n
ET, =T,E forl<i<m
ET; = T:E - forl<i<mn

ETH'E = (¢r)*'E
ETF'E = (¢r)*'E
ET'ThET\, = ET,'TVET)
T\ET*TET, = T\ET;'T\E.
From the fact that 77 — ¢?7y' = (g% — 1) we have
ET\E — ¢?ET{'E = (¢°> — 1)E?
grE — (¢qr)"'E = (¢* - 1)E?

which yields E? = zE. For 2 <i < m and 2 < j < n we define the elements E; ;
recursively by E;; = FE and

Eip=Ti1Ei_1:Ti1 for1<k<n
and
Ey,; = Tj__llEk,j_lf’j"_ll for1 <k <m.
The following additional relations can be deduced from the defining relations:
E; ;T Eqi; = (qr)™ By, |
E;;TE Eyj = (qr)*' By,
E;;T; Eij = (qr)*' Ey 5,
E; ;T E; j = (qr)*' Ei ;,
E;jExy = Ex E;; ifi# kandj#l,
E;;jEiv1,j+1T; = Ei,jEi+1,j+1Tj.

In each case above the indices are chosen from all valuesof 1 <i<mand1<j<n
for which the given expression makes sense.

Observe that there is an algebra anti-involution of A,, »(r, ¢g), defined on gener-
ators by * : Ty, — T\py—1, * : T, — T,,_l and * : £ — E and that the map * fixes
E;jforl1<i<mandl<j<n.

4. SPECIALIZATIONS OF A, n(7,q)

Later we will use the specializations of Am.n(r,q) to a field k = C(7, g).

Definition 4.1. Let ¢ : R — C(#, §) be the ring homomorphism given by ¢ : r — 7
and ¢ : ¢ — §. Then A, »(7,§) is the x-algebra A, »(r,q) ®r K.

141
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5. THE WALLED BRAUER ALGEBRAS

An (m, n)—IBrauer diagram is a graph consisting of two horizontal rows of m +n
vertices, together with “wall” between the m-th pair and the m+1-st pair of vertices,
such that (i) each vertex is incident to exactly one edge; (ii) every edge connecting
vertices in the same row must cross the wall, and; (iii) no edge connecting vertices
in different rows crosses the wall. Figure 1 is example of a (5, 3)-Brauer diagram.

e B

FI1GURE 1. A (5, 3)-Brauer diagram.

Let y be an indeterminate over Z. The generic walled Brauer algebra B, »(y) is
the Z[y]-span of the (m, n)-diagrams equipped with the usual product for multiply-
ing Brauer-diagrams (for example see [1]). Using Schur-Weyl duality, Benkart et
al, have given a description the representations of the walled Brauer algebras over
a field of characteristic zero in [1].

The algebra A,, »(r,q) may be regarded as a two parameter deformations of
the algebra B, »(y). In particular, Leduc has shown, in Corollary 2.15 of [8], the
following.

Theorem 5.1. Suppose § is not a root of unity and that # # ¢*, for k < m + n.
If §j is either an indeterminate over C or an integer, m + n < 4, then the algebras
Amn(7,4) = Amn(r,q) ®r & and By n(§) = Bm,n(y) ®z(y C(@) are semi-simple
and have the same numerical invariants. Moreover,

min{m,n}

Amn(F )= B P Cra

where C¢ » is a full matriz ring and I'y is the set of bi-partitions
(10) Iy = {(,\<1>,,\<2))|,\<1> Fm ~— f and A® I-n—f}

for each integer 0 < f < min{m,n}.*

6. CELLULAR BASES FOR A, ,(7,q)

To construct cellular bases for the algebra A, »(7,¢q), let, as in Theorem 5.1, f
denote an integer 0 < f < min{m,n} and let I'y be the set of bi-partitions given
by (10). For the purposes of this chapter a multi-partition v of m + n will be an

ordered tuple of partions (¢, ..., v®)) where v(1) = v3) = (1) and (+@,v®) €
I'y for an integer 0 < f < min{m,n}. The diagram [v] is the ordered tuple of
diagrams ([v(V],...,[¢v*)]) and a v-multi-tableau t is pair of bijections [v(V] U
[v®)] - {1,...,m} and v JU[r®] > {1,...,n} such that the nodes [V ]U[v?]
are labelled by the integers {1,...,m} and the nodes [v(3)]U[v(¥)] are labelled by the
integers {1,...,n}. For example, if m = 7, n = 6 and v = ((12), (3, 2), (1?), (2,12?))
then

M EEE A Y La (B AR [E
2]- 6171+ (20 (] [e]> 2TsT » 4]

)

EISf-
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are both v-multi-tableaux. If t is a multi-tableau we will write t() for the labelled

diagram t[v(9] fori = 1,...,4. If v = (M), ..., v4)) is a multi-partition, the multi-
tableau t¥ will have the integers 1,2..., f appear sequentially from top to bottom
in [¢(1] and [v(®] while the integers f +1,...,m appear from left to right and top
to bottom in [V('z)] and the integers f + 1,...,n appear from left to right and top

to bottom in [v¥)]. In the example where v = ((12),(3,2), (1%),(2,1?)), then t” is
the multi-tableaux

a e-@Ea )

A v-multi-tableau t is row standard if the entries in each row of t(¥) increase
from left to right for i = 2,4. A row standard v-multi-tableau is standard if
t = ¢B3) = ¢*" and the entries in each column of t(2) and t(4) increase read from
top to bottom. Denote by Std(v) the collection of standard v-multi-tableaux.

Given permutations w € &,, and v € S,, we let t¥(w,v) denote the multi-
tableaux obtained by allowing w to permute the entries of " and ¢® and v
to permute the entries of ® and . For example, if w = (1,7)(2,5,3,6) and
v = (1,2)(4, 6, 5) then, referring to the multi-tableaux (11), we have

[6T4]3] 210
tu(w:’v):(a’ 7—2— :
Given a multi-partition v, write &, for the direct product &,z x &, where

S, is the row stabiliser in &,, of *® and S, is the row stabiliser of ™ in
GS,.. Referring to the above example where t” is the multi-tableaux (11),

Gy = (33,3;1,36) x <S3).

For 0 < f < min{m,n}, let Dy denote the diagonal subgroup of G5 x Gy in
S;m X &, given by

Df=((s5,8:)|1<i<f)
and set Dy = (1) when f = 0.
The next statement generalises the well known result giving a set of distinguished

coset representatives for a parabolic subgroup of the symmetric group (Proposi-
tion 3.3 of [9]).

Proposition 6.1. Let 0 < f < min{m,n} and v = (vD,...,vW) be a multi-
partition of m +n with v = (1F), for i = 1,3. If
(t1,...,ts) = t¥(w,v) is row standard and t;

is increasing read from top to bottom ’

D, = {(w,v) €S, x6,

then @, is a complete set of right coset representatives for DsS, in Spyp X Gn.
Moreover, if (w,v) € D, then l(uw) = l(u) + l(w) and I(tv) = I(t) + l(v) for all
(u,t) € S,.

Proof. Suppose that D6, (v,u) = DsS,(w,t) andlet s = t“(v,u) andu = t¥ (w, t).
Then the permutation of rows which takes s(1) to u(!) also takes s3) to u® while
s and u® (resp. s and u(%)) differ by a reordering of the entries of each row.
Therefore 2, is a compete set of coset representatives for D56, in & X Gy
Now fix (w,v) € 2,; then t“(w,v) is row standard so (jlw < (7 + Dw (resp.
(k)v < (k + 1)v) whenever j and j + 1 are in the same row of t*® (resp. k and
k + 1 are in the same row of t"(4)). Thus I(sjw) = (w) + 1 (resp. I(sxv) = I(v) + 1)
whenever (s;,1) € &, (resp. (1,s%) € 6,).

Now suppose that (u,t) € &, and that 1 < [(t). Thent = sxt’ and I(¢) = IW(t'y+1
for some sx with (1, sx) € S,; therefore (k)t' < (k + 1)t’. Now (k)t' and (k + 1t
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belong to the same row of t”“), so (k)t'v < (k+1)t'v and hence [(sgt'v) = I(t'v) + 1.
By induction therefore I(tv) = I(sxt'v) = I(t'v) + 1 =1(t') + I(v) + 1 = I(t) + I(v).
If 1 < l(u), then an identical argument shows that [(uw) = {(u) + [(w). )

For 0 < f < min{m,n}, let B denote the ideal in A,, (7, q) generated by the
element

f
I] E..
=1

and set Bf = {0} if f > m or f > n. We thus obtain a filtration of A,, »(r,q)
(12) Ann(r,q)=B° 2 B 2--- 2 {0}

by by two sided ideals.

By Theorem 2.3 and Proposition 2.10, the algebra Hp,m—5(q¢?) ® Hr,n-s(q?),
for 0 < f < min{m, n}, is cellular. By identifying Hg,m— s(g?) with the subalgebra
of Hr,m(g?) generated by { X;|f <1 <m} and Hg,n-s(g?) with the subalgebra
of Hr,n(g?) generated by { X; | f < 1 < n }, we define an R-module homomorphism
t:Hrm—5(q%) ® Hr,n-f(g?) = B as

f
L Xy ®@ Xy = [] BiiTu T
i=1
The map ¢ will allow us to produce a cellular structure on Bf /Bf+! corresponding
to a cellular structure on Hg m—f(g?) ® Hr,n-r(g?). The cellular structure on
Bf/Bf+! will be used to refine the filtration (12) and so obtain a cellular basis for

-Am,n (7'1 Q) .
Now fix, for each integer 0 < f < min{m,n}, a cellular basis (¥, As) for the
algebra Hr m—s(q%?) ® Hr,n—s(g?); that is for each f, the collection

Cr = {cd.lo,u€Zs(N\), A€ As}

is a free R basis for Hr,m-f£(g?) ® Hr,n-s(g?) satisfying the Definition 2.1; it will

be necessary to assume that the anti-involution ¢}, — ¢, coincides with the anti-

involution defined by X, ® X, — X, -1 ® X,-1. For A € Ay we let A* denote the
R-submodule of Hg,m—5(q?) ® Hr,n—s(g?) generated by the elements

{coulo,u € Zs(pn) and p > A}
so that A* =3 _, A*. For each cyy = ¢, we define the element by, € Bf /Bf+!
to be
bou = t(Cou) + BIH1 ,
and let B> C Bf/Bf+! denote the A,, »(r, g)-bimodule generated by the elements
{bou0,u € T; () }.
We set B* C B* to be the A,, (7, g)-bimodule generated by
{bou|v,u € Zs(p) for p > A}

and define the right cell module C} to be the right A,, (7, ¢)-submodule of B*/B*
generated by the elements

{B* +bou JueZs(\) }.
Our purpose is to construct a free R-basis for each of the B*, B* and C? and to

show that C) is a cell module for A,, »(r,q) in the sense of Graham and Lehrer.
The next statement is an immediate consequence of the above definitions.

Proposition 6.2. Let 0 < f < min{m,n} and A € Ay. Then



145

J. ENYANG

(1) Bif/Bf““ = ZAGA, Bf\"
(2) B> C B*;
(3) (A*) C B> and L(A*) C B*.

We now set about constructing bases for the quotients Bf /Bf+! and hence for
Am.n(r,q). In each case the basis will be expressed in terms of €5 and %, where v
is the multi-partition with (2 = (m — f) and v¥) = (n — f).

Given (w,v) € &, X &, it will be convenient to write T§ for (—¢2)"*)T_*, and
T for (—~q2)’(")Tv'_11. Note that we have not defined { to be a map of A, »(7,q).
Proposition 6.3. Let1 < j < f < min{m,n} and (v,w) € Gn xS,. If(j+1)v <
(J)v < f, then

fI B, 1,0t = { 7€ i BuiTun, Thw if 1(s5w) < (w)
1,04 v - ~ ~ ;
=1 Y [1_, EiiTos,; ((¢2 — DTE —TE,)  if l(w) <I(s;w).

Proof. If (j + 1)v < (j)v, we have [T/, Ei;ToTY = [T, Ei:T;Ts;uT. Now
E;;iEjw, i1 TiTe,o T8 = By jEjr1 i1 TyTe,o Th = Ej i Eir i To e TiTY
so, in case I(sjw) < l(w), we have
f A A f N
1 BT T8 = T] B:iTo, o T5TITE 0 = =0 [ ] BiiTojo T
=1 i=1 i=1
If I(w) < l(s;w) we argue similarly, using the fact that ’f’j = (g2 - 1) — T}, to
complete the proof. ‘ O

Corollary 6.4. Let 1 < f < min{m,n} and A\ € Ay. If (w,v) € &,, x S, and
u € Zs()\) then there exist a(yyz), for (u,t) € Sy x Sp, such that (Du < (¢ + 1Lu
forl<i< f and

buuTwT,}} = Z a(u’t)bnuTuj:‘tu mOd BA.
(u,t)

Moreover, in this expression, the (u,t) and a(,;:) do not depend on v or u.

Proof. If (j+1)w < (j)w for some 1 < j < f then by Proposition 6.3, we can rewrite
bouTT? as a linear combination of bouTs,w T and beuTs,w T}, ,. Since I(s;w) < {(w)
and the statement holds true in case {(w) = 0, we are done by induction. O

Our next observation is that straightening laws in Hg,m—7(g?) ® Hr,n-r(q?) are
inherited by Bf/Bf+1.

Lemma 6.5. Let 1 < f < min{m,n} and X\ € As. If (w,v) € &y x &, and
u € Zz(\) then there exist a(y.t),as € R, for (u,t) € G;» X &, and s € Zs(A), such
that ()u < (i + 1)u whenever f < i < m and (i)t < (i + 1)t whenever f <i < n,
and .
bouTwTd =D aqey D asbosTuT?
(u,t) s€Zs(N)

for allv € Tf(X).

Proof. By Corollary 6.4 we may assume that (jlw < (j + 1)w whenever 1 < j < f.
Now suppose that f < n and that (j + 1)w < (j)w for some f < j < n. Then
[(sjw) < l(w) and, by definition of the map ¢,

bt,,,‘Tu,’f",‘,1 = L(C.,u)wag = L(cuu)Tstij}} = t(CouX; ® 1)T5ij3.
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Now there exist as € R, for s € Zy(), such that for all v € Zy()\),
CouX; ®1 = Z ascos mod A,
Ss€Zs(N)
and since ((A*) C B?, it follows that
tcouX; ® 1)Tsjw’.f“1‘,i = Z asb(cnn)Tsjwfg mod B*
sE€EZs(N)

Z asmesij}} mod B*.
s€ELs(A)

By induction on {(w) we may therefore suppose that
bouTuwT? = D asbe,TuT! mod B,
s€Zs(AN)
where (1)u < (i + 1)u whenever f < i < m. Applymg a similar argument to v
completes the proof of the Lemma. g
From Corollary 6.4 and Lemma 6.5 we obtain the féllowing.'

Lemma 6.6. Let 0 < f < min{m,n}, A € Ay and v be the multi-partition with
v =(m~—f) and v = (n— f). Ifu € Zs(\) and (w,v) € S,, X S,, then there
exist ayt),as € R, for (u,t) € D,, and s € Lf(\), such that

bouTwTE = D aquy Zasbn,T T} mod B>
(u,t)
for all v € Zf(N).

The next few Lemmas show that we have the required multiplicative properties
for a cellular basis.

Lemma 6.7. Let 0 < f < min{m,n} and X\ € Ay. If (w,v) € &,, x S, and
u € Zy(\) then there exist a(y ), as € R, for (u,t) € 2,, s € Iy(\), such that

bouTWwTITT; = > aquy Z asbosTuT mod B>

(u,t)
for all v € Tfs(N).
Proof. Note that

. . u TR i )
bnuTngTz‘Tj = b; T‘ws. UA; 2 2 23 A7 Tf l(w) N l(wSl),
@PbouTws, THT; + (q% — bouTWTHT;  if l(ws;) < l(w).
Similarly, by writing T = (g2 —-1) — ! we may eliminate the term ’f"j from either
of the above expressions so that : _
bo T T, = 4~ bouTuTdy, i l(vsy) < l(v),
vea (g% — V)bou T T} — bDuTuT,’}sj if I(v) < l(wsy)
where ©u = w or u = ws;. Now use Lemma 6.6 to rewrite each of the resulting
summands in the required form. O

Lemma 6.8. Let (w,v) € &, X G, and XA € Ay. Then, for all v,u € Ts(N),
(1) if VDw = 1)v =1 then bou TWwTIE = 2by T, T
(2) if f< Vw™? and f < (1)v™1, then by TWTEE =0 mod Bf+1,
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Proof. We claim that if (1)w = 1 then T E = ETy; if l(w) = 0 there is nothing to
show, so suppose that w = s;, - -+ s;, is a reduced expression for w. Since s;, # S1,

TLWE = TwsikTikE = ir‘ws,—,c ETik - ETlusik T;

where, since [(ws;,) < [(w), the last equality follows by induction on l(w). This
proves the claim. An identical argument shows that under the hypotheses of
the first item T}}E = ET3 Therefore, under the same hypotheses, buuTwT}}E =
bou ETWTH = 2by,To T from which we obtain the first item.

Now for the second item. By Lemma 6.7, there is no harm in supposing that
(w,v) € 2, where v is the multi-partition v = (1), (m - f),1H),(m — f)). In
this case, (f + )w = 1 and (f + 1)v = 1. Therefore w = sfsf_1---s1u and
v = spsf_1---s1t with I(w) = l(u) + f and I(v) = I(t) + f. Moreover, since
()u =1 and (1)t = 1, we have

f f
[1E:.:TuTiEy = [] BeiTsTs-1 - o o S 4 W 2

f
=~ [[ BeiTsTyr .. TTIT)_, .. B TV T B 1 T T
=2
f ~ ~ ~ ~
= —?[] EeiTyTs—1 .. . TTT}_, - TYEy 2 Er 1 T T}
=2

where we have used the fact that E1,1T1T1"1E1,1 = E,,1E>2. Now, we repeat the
process, using successively the relations E,-,iT,'Ti'lE,-,,- = E; ;FE;+1,i+1 to eliminate,
for 2 < i < f, the terms TiTiu from the above expression, finally obtaining

s f+1 i
I EiiTuTiEr s = (¢ T] BiiTuT!
i=1 i=1
which completes the proof of the second item. , (]

Lemma 6.9. Let 0 < f < min{m,n} and X € Ay. If (w,v) € 6 X G, and
u € Zy(\) then there exist a(us),as € R, for (u,t) € 2, and s € Iy(\), such that

bouTwTIE = D ague D asbosTuTy mod B

(u,t) s
for all v € Zg(X).

Proof. By the preceding Lemmas we may suppose that (w,v) € 9, where v is the
multi-partition v = ((17), (m — f), (1f), (n — f)). We now have four minor cases to
consider individually. Firstly, if f < (1)w™! and f < (1)v~! then bouTWwTHE =0
mod B* by Lemma 6.8. Next, if 1 = (1)w™? and 1 = (1)v~" then bouTWwTHE =
2bouTWwTY, also by Lemma 6.8. Now, if 1 = (1)w™! and f < (1)v~1! then

f F f
(13) HEi,iTwT,?El,l = HEi,iEl,lTwT3E1,1 = HEi,iTwE1,1T3E1,1

i=1 i=2 i=2
Since (w,v) € 2, and f < (1)v~!, we must have (1)v = f + 1. Therefore v =
sfsf—1---s10' where l(v) = (v') + f and (1)v' = 1. It now follows that Tg,El,l =
El,ng,VSO,

N Ay o Ay A Agn ~ ~ -
El,lTv E1,1 = El’lT}tT}_l . 'TfT,g/El’l = —q2T}tT}*_1 .. 'TzuEl,lTl lEl,ngl
= —q’l'_"lEl,le—le__ll .- .Tz_lfgl,
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by E117y 'E11 = (gr)"1E; 1. Substituting the above expression into (13),

ﬂ EiiToT By = —qr—? f[ E. T T4 . TIT,
i=1 i=1
whence
bouTwTIE = —qr= oo TWTHTE_, - - THTY,.
The last expression can now be rewritten, using Lemma 6.7, as an R-linear combi-

nation of terms in the required form. Since a similar argument applies to the case
where f < (1)w™! and 1 = (1)v~!, the proof of the Lemma is now complete. ]

Corollary 6.10. Let 0 < f < min{m,n} and v be the multi-partition with v(? =
(m — f) and v® = (n — f) and suppose that A € As, (w,v) € D,.
(1) If b € Apm,n(r,q) and u € Iys(\) then there exist (u,t) € 2,, s € Zg(\) and
Q(u,t), as € R depending on u and (w,v), such that ’
bouTwTEb= D awy D asbesTuTy mod B>
(u,t)e2, s€ZLs(A) .

for all v € Zf(N).
(2) The collection

{ bouTwTt + B* | (w,v) € D, and u € Tp()\) }

generates C) as an R-module.
(3) Ift,o € Zs(\) then CQ and C) are isomorphic as right Am n(T, q)-modules.

Proof. Since A n(r,q) is generated by the T;,T; and E, the first item is an im-
mediate consequence of Lemmas 6.7 and 6.9. The second and third items of the
Lemma follow directly from the first statement. |

Lemma 6.11. Let 0 < f < min{m,n} and v be the multi-partition with v(?) =
(m — f) and v®) = (n — f). Then the set

{ (T T bou T TH + B | (u, 1), (w,v) € D, and v,u € Ts()\) }

generates B*/B* as an R-module.
Proof. We argue by induction on <. Let A be a minimal element in (A, <) so that
B* = {0} and pick v € Zg()). Since

{ bouTWwT! + B* | (w,v) € @, and u € Z5(\) }

generates C) as a left R-module, whenever b G-Am,n (r,q) we have (w',v') € 2,
and s € Zg(A) such that
(b (TuTH* bouTWwTH* = (TWwTH)* bo T T} b*
= Z A(w',v') Z Qg (wag)* bouwaT,‘,‘, mod B*.
(w',v')ED: SEZLf(N)

Since B* = {0}, applying the anti-involution * once more shows that we have a
generating set for B* as an R-module. If A < p then proceed by induction on < to
obtain a generating set for B* as an R-module. 0



149

J. ENYANG

Proposition 6.12. Let 0 < f < min{m,n} and v = (), (m - £),1F),(n - f)).
Then the collection

(14) {(TuTtﬂ)*bouTwT}} | (u, 1), (w,v) € D,,0,u € Tp(A) and A € Af}
is a free R-basis for B | Bf+1.

Proof. That (14) generates B /Bf*+! as an R-module follows from Lemma 6.11, so
we show that the collection (14) is linearly independent over R and we do this by
constructing a corresponding R-basis for A, »(7,q).

For A € As and v,u € Zs(\), let al®”) € R, for (w,v) € Gm—2s X Gpn_zy, denote
elements satisfying
Q= Z ad¥IX, ® X,.
(w,lI)EGm_gf XSn—2f

Then the element by, € B defined by

f
(15) Euu = HEi,i * Z as:l::’v)TwTv
i=1

(wyv)egm—ﬁf xen~2[

will be a coset representative for by, in B7f.
Now recall that, since Bf /Bf+! = Prea, B>, the collection

{(Tu:i;“)* bouTwT?| (u,t), (w,v) € Dy, 0,u € Is(A) and A € Ag }

generates Bf /Bf*! as an R-module. Therefore, the collection

min{m,n}
= U {(TT) bouTwT? | (u,t), (w,v) € Dy, v, ueI,(A) and,\eA,}
f=0
generates Apm n(r,q) as an R-module and to prove the Prop051t1on, it suffices to
show the linear independence of ¥. To this end,

min{m,n}

€l= > 121> D IZ; (V)P

f=0 AEAs

"E G e

where, for 0 < f < min{m,n}, v is the multi-partition v = ((1f), (m— f), (17), (n—
f)). Now each summand in the above expression evaluates the number of walled
diagrams with f horizontal bars in the algebra Bm, n(y). From Theorem 5.1, it

follows that |%| = dimg(Am,»(r,q)). This completes the proof of the Proposition.
a

We are now in a position to show that .A,, (7, g) is cellular. Define

min{m,n}

A= |J Ay
f=0
and give A a partial order, writing A < p if either (i) X € Ay and p € A, where
f < gor, (ii) \,u € Ay and A < pin (Ay, <). Set, for each A € Ay,
' ZW) = { ¢, (w,v)) |t € Zf(A) and (w,v) € 2, }
where v is the multi-partition v = ((14), (m — f), (1), (n — f)).
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For (t, (w,v)), (s, (u,t)) in Z(\) we define
bie,(w,)) (s, (1) = (TuTF) o Tu T
and let A* be the R-module generated by

{B(g,(w,,,))(t,(u,m ’u > A and (s, (w, ) (& (4, 1)) € Z(x) }

Theorem 6.13. For 0 < f < min{m,n}, let (¢f,As) be a cellular basis for
Hm-s(g%) ® Hn—s(q?). Then the collection

€ = { 5(5,(11.1,‘0)) (t,{u,t)) (s, (’U),’U)), (t, (u,t)) € I(/\) and A € A }

s a free R-basis for Am n(r,q). Furthermore, the following hold.
(1) The R-linear map determined by

b(s,(w,v)) (t,(u,2)) ™ B(t,(u,t)) (s,(w,v))

for all IA)(s (w,0))(4,(u,t)) € € 15 an anti-involution of Am n(r,q).
(2) If X e A, (t,(u,t)) € Z(X) and b € A (T, q) then there exist Q(u,(u',t1)), fOT
(u, (u/, t )) € Z(A), such that

(bawon ()b = D @) Bowe) e wy mod A
: (u,(t’ ,u'))€Z(N)
for all (s, (w,v)) € Z(N).
Consequently (€, A) is a cellular basis for for Am n(r,q).
Proof. By Proposition 6.12, the collection of elements b(t (w, ,,))(s (u,t)) forms a free
R-basis for A, n(r q). Since b(t (w)) (s, (ut)) = (TwT)*b T, T}, we observe from

‘the definition of bts given in (15), that the map defined on generators by E — E,
Tw +— Ty-1 and T, — T,~1 is an algebra anti-involution of A4,, (7, q) which, applied

to the basis ¥, sends b(t,(w,v))(s,(w,8)) ™ D(s,(e,8))(t,(w.0)) - 0
7. A MURPHY BASIS FOR A, (7, q)

Recall that Hr m—5(¢*) ®HR n-5(9%) € Hr,m(g?>)®HRr n(¢?) was identified with
the subalgebra generated by the elements {X ®L1IXj|f<i<m,f<j<n}
A Murphy basis for Hr,m—f(¢*) ® Hr,n-(q?) can be given using Proposition 2.10.
Let Ay denote the set of multi-partitions

={()\(1) . /\(4))'()\(2),,\(4)) € T's}.
The set Af is partlally ordered by A pif

Z AP < Zp.(2) and EA“" < Z,u for all j,k > 1.

=1 i=1
To each multi-partition A € Ay, assoc1ate the element

m= 3 xe ¥ x.
vES, (2) weS, (4)
and to each pair v, u of standard A-multi-tableaux we assign the element
(16) ou = (X @) ® Xgom))ma(Xgum) ® Xguw))
and let A* be the R-submodule of Hp m—r(g?) ® Hr,n—s(¢?) generated by the
elements
{myu|v,u € Std(u) and p > A}.
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The statements below now follow from Proposition 2.10.
(1) The set
€ = {ms]s,t € Std(X) and A € Ay}

is an R-basis for Hp m-7(q%) ® Hrn-5(q*).

(2) The map * : Hr,m—s(q?)@HR,n—7(a%) = Hrm—f(a?)®HR,n—r(q”) defined
on generators by * : X, ® X, — X,-1 ® X1, coincides with the map
me¢ — mys for all s,t € ¥ and extends linearly to an R-linear algebra
anti-involution of Hg,m—£(q%) @ Hr,n—5(4*);

(3) Let A € Ay. If u € Std(\) and h € Hr,m—5(¢?) ® HR,n—r(¢*), then there
exist a; € R, for s € Std(A), such that

mwhEE asmmys mod A
8

for all v € Zfs(N).
In particular, we have a cellular basis for H,— 7(@?) ® Hn-y(g%).
Now let
min{m,n}
A= |J A
f=0 .
and extend the order < to A by writing A < u if either (i) A € Ay and u € Ag where
Ff<gor, (ii) \,u € Ay and A< pin (Ayf, D).
By Theorem 6.13 the cellular basis for Am,n (7, g) will be indexed by the ordered
pairs
min{m,n}

N = |J {6 (w,v)|s €Std(N), X € Ay and (w,v) € D }
f=0

where, for each f, v is the multi-partition with v@ = (m — f) and v = (n = f).
Each pair (s, (w,v)) € Z(\) corresponds to a unique A-multi-tableau

(17) (s, (w,v)) & v = t*(d(s?),d(s*)) (v, w).
There is no harm therefore in identifying Z()\) with the multi-tableaux
) = {t|t=*(d(sP®),d(s¥))(v,w) where s € Std()\) and (v,w) € D }.
We now define for each multi-partition A the element
s
=15 X Tw T
i=1 weS, (2) vES, (a)
and, for (s, (w,v)), (t, (u,t)) € Z(N), set
(s, (w,0)), (4 (w,t)) = (Tas@) TwTae@nTd)* EA(Td(t(m)Tqu(t(“))Ttu)'
In light of (17) we may write this more compactly as

where b = t*(d(s(?), d(s)) (v, w) and u = t(d(t?), d(t'))(u, t).
Let A* be the R-submodule of A,, »(r,q) generated by

{bou|o,u € Z(u) and p > A }-
Theorém 7.1. The collection
M = {Bnu

u,0 € Z(\) and A € A}
defined above is a free R-basis for Am n(r,q)- Furthermore, the following hold.
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(1) The R-linear map determined by
Bnu —> E’un

for all by, € A is an algebra anti-involution of Am,n(7,9).
(2) If A€ A, u€ I(A) and b € Ay n(r,q) then there exist a,, for s € I(\), such
that

bou b = Zaﬁ bos mod 4>
S

for all v € Z()\).
Consequently (# ,A) is a cellular basis for for A, n(r,q).

8. SPECHT MODULES FOR A, » (7, §)
Let Apn(7,4) = Am,n(r,q) ®r Kk denote the specialization of A, »(7,9) to the
field k = C(#, §) and ‘ 3

.//{-—{Enu v,u € Z(A) and)\eA}

be the specialization to k of the Murphy basis for A, »(r, ¢) given by Theorem 7.1.
Then .# will be a basis for 4,, (%,§). For A\ € A, let N* be the xk-module with
basis

{Eouln,uel(u) and > A}

and N* = }° ) N#. Define S* to be the right Am n(f,§)-submodule of N*/N>
generated by N> + by. Being isomorphic to a right cell module, $* has a x-basis

{N* +bpx,|oeZ(N}.

For v € Z(}A), let b, denote the element N* + i)l,\v in S*. As in Lemma 2.5, there
is a symmetric bilinear form (, ) : S* x S* — k defined by

(Eg, 5;. )BA = Bt*bautk mod N’\
for all multi-tableaux v,u € Z(\). Since ( , ) is associative,
rad S* = {b e S*|(b,b') =0 for all ¥’ € S*}

is a Am (7, §)-submodule of S*. Naturally, we define D> to be the right A4,, (%, §)-
module S*/rad S*. We now have the following consequences of Theorem 2.8 The-
orem 2.9 respectively.

Theorem 8.1. The set
{D’\lAeAf such that D :,néO}
is a complete set of non-isomorphic absolutely irreducible A,, (7, §)-modules.

Theorem 8.2. The algebra A, »(7,q) is semisimple if and only if D* = S* for
all A € A.
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