oboooooooooO 13110 20030 124-139

124

Mass Normalization of Collapses in the Theory
of Self-Interacting Particles

Takashi Suzuki ($5AE, frKX - ZRET)*

1 Introduction
This paper is concerned with the elliptic-parabolic system of cross-diffusion,

us = V- (Vu—uVv)

0=Av—av+u } in 2x(0.T)

ou Ov
E—E—-O on BQX(O,T)
Ulgg =u(z) In 0 (1)

where Q C R? is a bounded domain with smooth boundary 0%, a > 0 is
a constant, and v is the outer unit normal vector on 9. It is proposed
by Nagai [8] as a simplified form of the ones given by Jéger and Luckhaus
[6], Nanjundiah [12], Keller and Segel [7], and Patlak [14] to describe the
chemotactic feature of cellular slime molds. It is also a description of the non-
equilibrium mean field of self-attractive particles subject to the second law of
thermodynamics. Actually, this physical principle is realized by introducing
the friction and fluctuations of particles. See Bavaud [1] and Wolansky [23],
[24]. On the other hand, the mathematical study has a long history, and we
refer to [21] for the background, known results, and standard arguments.
Actually, it follows from Yagi [25] and Biler [2] that the unique classical
solution exists locally in time if the initial value is smooth, and that the so-
lution becomes positive if the initial value is non-negative and not identically
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zero. Letting Timax > 0 to be the supremum of the existence time of the solu-
tion, we say that the solution blows-up in finite time if Tiax < +00. Then, it
is proven in Senba and Suzuki [16] that in the.case of Tipax < +00 there exists
a finite set S C O and a non-negative function f = f(z) € LY{(Q)NC(Q\ S)
such that

w(z,t)dr = S m(x0)ds(dz) + f(x)dz  in M(Q) (2)

" ZgES

as t t Tnax with
m(zo) > mi(z0) (%0 €5), (3)

where M(S2) denotes the set of measures on Q, — the *-weak convergence
there, and’

_ | 8« (III() € Q)
ma(Zo) = { ar (zo € O9).

It follows from Tp.x < 400 that

Jim [, = +oo
and S is actually the blowup set of u. That is, zo €  belongs to S if and
only if there exist x; — o and t; T Tmax such that u(z, ty) = +o0o. Because

lu(@)ll, = [luoll, @)
holds for ¢ € [0, Thax), inequality (2) with (3) implies that
- 2:4(QNS) +§ (02N S) < lluoll, /(47). (5)

We have, furthermore, that S # 0 if Tax < +00, and therefore, ||ug|l, < 4
implies Tyax = +00. This fact on the existence of the solution globally in
time was proven independently by Nagai, Senba, and Yoshida [11], Biler
[2], and Gajewski and Zacharias [4], while relation (2) was conjectured by
Nanjundiah [12]. It is referred to as the formation of chemotactic collapses,
and each collapse

| m(xO)az‘o (d.’E)

is regarded as a spore created by the cellular slime molds.
In 1996, Herrero and Veldzquez [5] constructed a family of radially sym-
metric blowup solutions by the method of matched asymptotic expansion,



where it holds that m(zo) = m.(zo) with zy = 0 € 2N S. Also, Nagai [9]
and Senba and Suzuki [17] showed that if

lluoll, > 47 and / 2z — zo|* uo(z)dz < 1
Q

hold for zy € 052, then it follows that Tin,x < +oo. This means that the mass
of collapses made by those solutions can be close to 47 as we like. However,
it may be always 47, and under those considerations it was suspected that
m(zg) = m.(xq) for any zo € S.

This problem, referred to as the mass normalization in the present paper,
is related to the blowup rate, and we say that zo € S is of type (I) if

limsup sup r(t)*u(z,t) < +o0
t>T  |z—z0|<Cr(t)

holds for any C > 0, and that it is of type (II) for the other case that

limsup sup r(t)%u(z,t) = +oo
t=T |z—z0|<Cr(t) ,
holds with some C > 0, where T = Tipax < +00 and r(t) = (T — )2 It

is expected that type (I) blowup point never arises. Here, we shall show the
following.

Theorem 1 If o € S is of type (II), then the mass normalization m(xy) =
m.(xo) occurs.

2 Preliminaries

‘We suppose that T = Tax < +00, and take the standard backward self-
similar transformation '

z(y,s) = (T — t)u(z, t)

for y = (x — z0) /(T — )% and s = —log(T — t), where x5 € S denotes the
blowup point in consideration. The zero extension of z(y, s) is always taken
to the region where it is not defined.

The following fact is proven similarly to [20] concerning Jéger - Luckhaus
model, where

{m.(40)dy,(dy) | yo € B}
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and F(y)dy = poa..(dy) are called the sub-collapses and the residual term,
respectively. It is referred to as the formation of sub-collapses, and the proof
is quite similar to the one given in [19] concerning the blowup in infinite time
for the pre-scaled system. Here and henceforth, u,(dy) and p,.. (dy) denote
the singular and the absolutely continuous parts of u(dy) € M(R?) relative
to the Lebesgue measure dy, respectively.

Lemma 2 Any s, — +oo admits {s},} C {sn} such that

2(y, sp)dy  —  po(dy)

as n — 0o in M(R?), where supp uo(dy) C L and

po(dy) = Y m.(yo)dy,(dy) + F(y)dy (6)

Yo€B

with
8t (yo€ L)

- (v0) = { 4r " (yo € OL),
0<FeILYL)NnC(L\B), and

| R? (z0€9)
L—{H (20 € 99).

Here, H denotes the half space in R? with OH containig the origin and parallel
to the tangent line of 0S) at xo, and the case B = () is admitted.

On the other hand, the following fact is referred to as the existence of the
parabolic envelop.

Lemrﬁa 3 We have

m(zo) = uo(L) = 3 ma(wo) + | F(y)dy. ™)

Yo€EB

Proof: First, we take
(p = (praR”R



for 1o € S and 0 < R’ < R satisfying 0 < ¢ < 1, supp ¢ C B(zo,R), p =1
on B(zo, R'), and 22 = 0 on 0. Then, we set

Mg(t) = /ﬂ ¥(z)u(z, t)dz
for ¥ = @3, por- Relation (2) implies that
On the other hand, in [16] it is proven that

— MRg(t)

l:t <C(MR?+AR™)

with a constant C > 0 determined by €2, and hence we obtain
|MR(T) - Mp(t)] < C (AR™2+ AR7Y) (T - 1).

Putting .
R = br(t) = b(T — t)}/?

to this inequality with a constant b > 0, we get that
| My (T) = My (8)] < € (3272 + 207 (T = )*/?),
andrtherefore, for |
My (zo) = lir?_’?p M) (2) and  my(xo) = liﬂ ;Iglf M5 (t)
it holds that
m(zo) — CA%b~2 < my(z0) < Mp(z0) < m(zo) + CA2b72
by m(zo) = limHT Mir(1y(T'). We note that this inequality is indicated as
(T0) — CA%b™2 < m(zo) < my(zo) + CAZ72. (8)

Here, we have

t)dz < Mgt </ 1)d
/B(zo,R)nn u(w ) 7= R( ) ~ JB(z0,2R)NQ u(a: ) :v
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and hence it follows that
dy < My (t) < ,8)dy.
forosy 200y < Mo < [ 2(,5)ay
Thus we obtain
o (B(0,b — 1)) < my(zo) < (o) < po (B(0,2b+ 1)),
and hence it follows that

lim my (o) = bEToo Mib(To) = Ho (Rz) = Mo (T/) :

b—+o00

Then, (7) is obtained by (8).

3 Movement of Sub-collapses

Similarly to the pre-scaled system treated in [18], Lemma 2 is refined in the
following way. Namely, any s, — +oo admits {s},} C {s.} such that

z2(y,s+sy)dy - — p(dy,s)

in C, ((—o0, +00), M(R?)), where supp u(dy, s) C L, m(zo) = p (f, s), and

ps(dy, s) = Z m*(yO)éyo(dy)

yoEBs

with :
8m - (LN Bs)+4m - § (0L N Bs) + pac.(L, s) = m(zo).

This u(dy, s) becomes a weak solution to

2=V -(Vz—2Vp) in L x (—00,00) 9)
%;z =0 on 0L x (—o0,00),

where p = w + ]%E and

Vyw(y,s) = [ 9,Go(w,y)=(v, 5)dy



vy avuaa

1 1
Go(y,9") :{ i"izg'_ylyl_' 1 1og L (20 €
27 108 =7 + 57 108 =y (@0 € 0)
for the reflection y™* of y' with respect to OH. The proof is similar to the one
for the pre-scaled case ([18]), and the precise notion of weak solution is not
necessary for later arguments. However, let us note that the zero extension
of u(dy, s) to R?\ L is always taken in the case of zo € 9, following the
agreement for z(y, s), and furthermore, that if n € Co(L) N C?(L) satisfies

an _ .
3UlaL = 0, then the mapping

s€f0,00) /En(y)u(dy,S)

is locally absolutely continuous, where Cy(L) is the set of continuous func-
tions on L taking the value zero at infinity. _
If F(y, s)dy = pa.c.(dy, s), then F(y,s) > 0 is smooth in

D=J (T\B,) x{s}.

seER

Actually, this is a consequence of the parabolic and elliptic regularity, and
F(y, s) satisfies there that :

F,=V.-(VF-FVp) (10)

with smooth p. As a consequence, if G C L is relatively open, if n € C?(G) N
C(G) satisfies 7], = 0 and 22 oL =0, and if supp u,(dy, s) N G = 0 holds
for s € J with the time interval J # 0, then

sedJ o /E'n(y)u(dy,S)

is locally absolutely continuous.
First, we study a special case of Theorem 1, making use of

‘ s'=s+As s+As
[ /m (R* —Iyf*), nlay, s’)] , > / ds’
s'=s s

A, = bPuen )+ suBes]

4
m.(3o)
where R > 0, Bg = B(0,R), and 0 < s < s+ As.
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In fact, in use of the standard backward self-similar transformation given
in the previous section,

2(y,s) = (T — t)u(z, t) and  w(y,s) =v(z,t)
with y = z/(T — t)/2 and s = — log(T — t), it follows that

=V - -(Vz—-2Vw—yz/2) i 0

0=Aw+ 2z —ae Sw .
0z Ow -
% = Ej‘ = 0 OI’l‘ P
zls:—logT =20

for zo(y) = Tuo(z),
| o= e*? (Q — {zo}) x {s},

s>—logT

(12)

and

= |J e72(8Q - {zo}) x {s}-

s>—logT
Here, we have

w(y,s)‘z v(z,t) = /Q.G(a:,x')u(a:',t)dx'

= G (e7*%y + zo, e~y +10) 2(, 8)dy,
O(s)
‘and therefore, system (12) is reduced to

2=V -(Vz—2Vp) in O

oz
3 =0 on I

with p = w+ L-l— , where G =G (y, y') denotes the Green’s function for —A+a
in § with a sq = 0

Lettlng
o= (R’ |y’
we have
Jy Oy
©lsg. =0, — <0, and —| =0
9Br ov|, Br oV |on
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with the last case valid only for zg € 0€2. Let us note that
Br=B(0,R) = {y e R*| p(y) > 0} .
Then, from (12) we can deduce that

%/ 0(y)z(y, s)dy 2/ (A¢+%-V¢)Z(y,8)dy

2 / / Po(u:9)2(y, 5)2(V', 5)dydy/ (13)
with |
pcp(ya ) =Vop(y) V,G(y,y) + Vo(y') - VG (y, 1)

and G°(y,y') =G (e“‘/ 2y + o, ~*/%y + 7).
Here, we have

A<p+g-V<p=—4—lyl2

in Bg. Also we have for 8 € (0,1) that

Gy, y") = Go(y,y') + K1(y,v")

with K; € CEH(Q x Q)N CLY(Q x Q). In the case of g € Q, those relations
imply the continuity of p?, as well as the uniform convergence pj, — p° as
s = 400 on By x Bg, where

, 1
P (¥,9) = Vo(y) - VyGoly, ) + Vo(y) - VyGolyy) =~ (14)
In the case of o € 9(2, on the other hand, we can make use of
G(y,y) = Go (X(y), X(¥)) + Go (X (), X(¥)") + K2(y,¥)

with K, € COMH(QuUy x Q) N CHH9(Q x QU %), where X : @ — RZ is the
conformal mapping satisfying X (zo) = 0, 7 is the connected compornent of
0f) containig z,, and () is the domain defined by 8Q = «. Then, the above
conclusion follows similarly, with (14) replaced by

2
Py, y) ==

™
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Now, inequality (11) follows from (13) with z(y, s) replaced by z(y,s + s,)
and sending n — oo. Here, we refer to [16], [22] for those facts on the Green’s
function.

In terms of v(dy, s) = u(dy, s) — m.(yo)do(dy), inequality (11) reads;

[ (B2 = 107), vidy, )]~
> [TV ag{ [ (B - 1l), vlan ) + 1)) 19)

s'=s+As

with
4
Ir(s) = m.(yo)R? — (R?* + 4)u(Bg, s) + 1(Bg, s)2.
: m*(yO)
Here, 0 < R < 2 and -
u(Br, s) > m.(yo) (16)
imply Ir(s) > 0. On the other hand, (16) follows from
./R2 (R2 — |y|2)+ v(dy,s) > 0.
We now show that
0<R<2 with / (R - yl?)  v(dy,0) >0 (17)
R? +

gives a contradiction. In fact, applying (15) with s = 0, we see that

{s € [0, 00) | /Rz (R2 _ |y|2)+u(dy, s)>0o0ns € [0,3]}

is right-closed from the above consideration. Its right-openess follows from
p(dy, s) € C. ((—o0,00), M(R?)), so that (17) induces

. '/Rz (R2 - |y|2)+ v(dy,s) >0

for any s € [0, 00). Simultaneously, it also holds that Ir(s) > 0 for s € [0, 00),
and again (15) assures the monotone increasing of the mapping

s€[0,00) /R'l (R2 - |y|2)+ v(dy, ).



Therefore, for n =1,2,--- we have
2 2 2 2
/R2 (R -yl )+V(dy,n+1) > /R2 (R* - Iyl )+V(dy,n)
n+41 ~
+/n ds' - /R2 (R2 — |y|2)+ v(dy, s')
2 2
>2 | (B~ ), v(dy,n),

which implies that
2 2 n 2 2
/R? (R — |y] )+1/(dy,n) > 2 /RZ (R — |y| )+u(dy,0).

However, this is impossible by u(R2, s) = m(zo) < +o0.
We have shown that (17) does not occur. If 0 € supp u;(dy,0), then
v(dy,0) > 0 holds and this means that |

v(dy,0) =0 on B(0,2),
or equivalently, supp us(dy,0) N B(0,2) = {0} and
F(y,0) =0 for a.e. y € B(O, 2).

Recall the notation that F(y, s)dy = pa..(dy, s). Because F(y, s) > 0 satisfies
the parabolic equation (10) with smooth coeficient p in D = User (f\ Bs) X
{s}, the strong maximum principle quarantees F'(y,s) = 0 there. Hence
to.ac.(dy) = 0 follows.

To treat the general case, we note that if s € [0,00) — yo(s) € R? is
locally absolutely continuous, then inequality (11) is replaced by

[ (7 =), it )] " 2 [T

§=s

oy @000 = 90() = 4=y (v = wa(s)) m(d )

— s (Bl (<), ). ')

In terms of u'(dy, s) defined by p'(A,s) = u(A+ {yo(s)},s), it is represented

as
[/Rz (R2 _ |y‘2)+ N'(dy, 3')] s'=s+As > /:+As s

s'=s
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(, (F4= 1o + @u(9) = 0() -v) (a5

m:(lyo) NI(BR’ 8,)2}.

+

If we take
Yo(s) = yoe*/?,

then it is reduced to (11):

[/Rz (R2 _ |y|2)+ /J'I(dy, 3’)] s'=s+As > /s+As ds' -

s'=s

{ /BR (—4— Iyl*) w'(dy, s) + m*?yo)ﬂ,(BR’ 8’)2} :

We see that 0 € supp u,(dy,0), or equivalently yo € supp us(dy,0), implies
Ua.c.(dy,0) = 0 and

“supp u,(dy, 0) N B (y0,2) = {vo} -

If o € S is of type (II), then there is s, — +o0o such that z(y, s,)dy —
po(dy) in M(R2) with supp ugs(dy) # 0. We now take {s,} C {sn} such
that z(y, s + s,)dy — u(dy, s) in C, ((—o0, 00), M(R?)) with u(dy, s) being
the weak solution to (9). Because of us(dy,0) = uos(dy) # 0, it follows
from the above argument that p,.(dy,s) = 0. We also have u(dy,s) €

C. ((—oo, O<>),M(f)) and u ({yo},s) = m.(yo) for any yo € supp ps(dy, s),
and therefore, it holds that

p(dy, s) =Y midy.s(dy),
=1

with s € (—00,00) — y;(s) € L being continuous, y;(s) € L or y;(s) € dL
exclusively in s € R, and L

7M={8W(MQGL)
PS4 () eol).

Then, again the above argument guarantees that

wi(s) —ys(s) =2 (i#), seR). (18)



We also have N

=1

Now, we take i = 1,---,n, R € (0,2), and the interval

Ji = {5 € [0,00) | supp ps(dy, ') N B(gi(0)e” 7%, B) = {yi()}
for any s’ € [0, 5]},
which is a right neighbourhood of 0. Then, we repeat the same argument for

v(dy, s) = i/ (dy, s) — miéo(dy) with u'(4,s) = p (A + {y,-(O)es/z} ,s). This
time, we have I(s) = 0 for s € J;, where

4
iul(BR? 3)2'

In(s) = m'R? — (R* + 4)1/(Bg, s) -+

Furthermore,
2 2
sEJ; /R? (R — |y| )+u(dy,s)

is locally absolutely continuous, and it holds by (15) that

%Az (R2 _ |y|2)+ v(dy, s) > /R2 (R2 _ ly|2)+y(dy, s)

for a.e. s € J;. Therefore, because of

Az (R2 - ly|2)+ V(dy, 0) =0

we obtain ,
[ (B =), vldy,5) 2 0,

or equivalently

R? — |yi(s) — :(0)e*?|” > R?,

and hence y;(s) = y;(0)e*/? follows for s € J;.
This relation holds for each i = 1,:--,n, so that

di(s) = min lyi(s) — y;(s)|

is increasing in s. We have J; = [0,00) and the relation y;(s) = y;(0)e®/?
continues to hold for every s € [0,00). Now, we translate the time variable
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as s — $— Sg, repeat the same argument, and see that y;(s—sg) = y,—(—so)es/2
holds for any so > 0. This implies y;(—s)e® = y;(0) for s > 0, so that

vi(s) =5i(0)e’?  (s€R)

holds. Consequently,
lim y;(s)=0
§—>—00

follows for ¢ = 1,---,n. However, this contradicts to (18) in the case of
n > 2. We get n =1, m(zg) = m.(z0), and

p(dy, s) = mu(zo)dypeer2(dy) (s €R),

and the proof is complete.
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