DIFFERENCE IN PROJECTIONS

大阪教育大学 藤井 正俊 (MASATOSHI FUJII*) 茨城大学 工学部 中本 律男 (RITSUO NAKAMOTO**)

ABSTRACT. Let P and Q be orthogonal projections. Then it is well known that

$$||P - Q|| = \max\{||PQ^{\perp}||, ||P^{\perp}Q||\}.$$

For this formula, we give more precise estimations by elementary methods. Among others, an operator inequality

$$-\|P^\perp Q\| \le P - Q \le \|PQ^\perp\|$$

is shown, in which the constants on both sides are optimal except the trivial cases. As a corollary, it is proved that ||R + S|| = 1 + ||RS|| for orthogonal projections R and S.

1. Introduction

Throughout this note, an operator means a bounded linear operator acting on a Hilbert space \mathcal{H} and $\sigma(T)$ denotes the spectrum of an operator T

The following result on the opening of two subspaces is well known:

(1)
$$||P - Q|| = \max\{||P^{\perp}Q||, ||Q^{\perp}P||\}$$

for two (orthogonal) projections P and Q (see [1]), where $R^{\perp} = 1 - R$.

Izumino and Watatani [6] pointed out that (1) is assured by the following two facts:

(i) If A and B are positive operators with AB = 0, then

$$||A+B|| = \max\{||A||, ||B||\}.$$

(ii) If P and Q are projections, then

$$(P-Q)^2 = Q^{\perp}PQ^{\perp} + QP^{\perp}Q.$$

By the way, the formula (1) says that $||P-Q|| \le 1$. If ||P-Q|| < 1 in particular, then P and Q are interchanged by a symmetry U (i.e., $U = U^*$ and $U^2 = 1$), which is given as follows (see [5]):

$$U = Q\{1 - (P - Q)^2\}^{-1/2}P - Q^{\perp}\{1 - (P - Q)^2\}^{-1/2}P^{\perp}$$

Furthermore, Izumino and Watatani [6] proved that if P and Q are projections interchanged by a symmetry, then

(2)
$$||P - Q|| = ||PQ^{\perp}|| = ||P^{\perp}Q||.$$

In this note, we shall give more precise descriptions for the formula (1). Among others, we present an operator inequality

$$-\|P^{\perp}Q\| \le P - Q \le \|PQ^{\perp}\|,$$

Key words and phrases. projection, norm, inequality.

¹⁹⁹¹ Mathematics Subject Classification. 46A30, 47A66.

in which the constants on both sides are optimal except the trivial cases. As an application, we have a result due to Duncan and Taylor [3] that ||P+Q|| = 1 + ||PQ|| for projections p and Q. In addition, we pose an elementary proof of the formula (2) under the assumption ||P-Q|| < 1.

2. Results

First of all, we prove that the following norm equalities hold for two projections.

Lemma 1. Let P and Q be orthogonal projections on \mathcal{H} . Then the following statements hold:

(i) If
$$||P - Q|| \in \sigma(P - Q)$$
, then $||P - Q|| = ||PQ^{\perp}||$.

(ii) If
$$-\|P - Q\| \in \sigma(P - Q)$$
, then $\|P - Q\| = \|P^{\perp}Q\|$.

Proof. (i) If $a = ||P - Q|| \in \sigma(P - Q)$, then using the Berberian representation([2]) if necessary, we may assume that

$$(P-Q)x = (Q^{\perp} - P^{\perp})x = ax$$

for some non-zero $x \in \mathcal{H}$. Hence we have $Q^{\perp}Px = aQ^{\perp}x$ and $PQ^{\perp}x = aPx$, and so

$$\|Q^{\perp}Px\| = a\|Q^{\perp}x\|, \quad (Q^{\perp}Px, x) = a\|Q^{\perp}x\|^2.$$

Also, it is easy to see $Px \neq 0$ because a > 0.

Moreover, since

$$(Q^{\perp}Px, x) = (x, PQ^{\perp}x) = a||Px||^2,$$

we have $||Q^{\perp}x|| = ||Px||$, and so $||Q^{\perp}Px|| = a||Q^{\perp}x|| = a||Px||$. That is, $a \leq ||Q^{\perp}P|| = ||P - Q|| = a$.

(ii) If
$$-\|P-Q\| \in \sigma(P-Q)$$
, then $\|Q-P\| \in \sigma(Q-P)$, so that (ii) is proved by (i).

Remark. The following result is due to Izumino and Watatani [6]: If ||P - Q|| < 1 for orthogonal projections P and Q on \mathcal{H} , then

$$\|P - Q\| = \|PQ^{\perp}\| = \|P^{\perp}Q\|.$$

As an application of Lemma 1, we give it an elementary proof with no use of the existence of a symmetry. As a matter of fact, it is sufficient to consider the case $||P-Q|| \in \sigma(P-Q)$. Then, Lemma 1 implies that $||P-Q|| = ||PQ^{\perp}||$ holds. On the other hand, it follows from (3) that $-QP^{\perp}x = ||P-Q||Qx$, so that

$$||QP^{\perp}x|| ||Qx|| \ge |(QP^{\perp}x, x)| = ||P - Q||(Qx, x) = ||P - Q|||Qx||^2.$$

Noting $Qx \neq 0$ as ||P - Q|| < 1, we have $||P - Q|| = ||QP^{\perp}||$.

Based on our consideration in Lemma 1, we have the following estimation of P-Q itself.

Theorem 2. Let P and Q be orthogonal projections on H. Then

$$-\|P^{\perp}Q\| \le P - Q \le \|PQ^{\perp}\|.$$

Moreover the constants $-\|P^{\perp}Q\|$ and $\|PQ^{\perp}\|$ are optimal except the trivial cases (a) P=1 and Q=0, and (b) P=0 and Q=1, i.e., if $-c \leq P-Q \leq d$ for $c,d \geq 0$, then $c \geq \|P^{\perp}Q\|$ and $\|PQ^{\perp}\| \leq d$.

Proof. If $P \geq Q$ or $P \leq Q$ holds, then the conclusion is clear.

Put $b = \sup\{\lambda; \lambda \in \sigma(P-Q)\} > 0$. Since we may assume that b is a positive eigenvalue of P-Q, we have $b \leq \|PQ^{\perp}\|$ as in the proof of Theorem 1 because (3) can be assumed for b. On the other hand, since $Q^{\perp}PQ^{\perp} = Q^{\perp}(P-Q)Q^{\perp} \leq bQ^{\perp}$, we have $\|PQ^{\perp}\|^2 \leq b$.

Therefore it suffices to show that $b \ge ||PQ^{\perp}||$ under the case $||PQ^{\perp}|| < 1$. First of all, if ||P-Q|| < 1, then the existence of a symmetry U with Q=UPU implies the symmetry of $\sigma(P-Q)$ with respect to the origin because

$$P - Q = P - UPU = U(UPU - P)U = U(Q - P)U = -U(P - Q)U.$$

Hence $\pm ||P - Q|| \in \sigma(P - Q)$ and so $b = ||P - Q|| \ge ||PQ^{\perp}||$.

Next we suppose that ||P-Q||=1, and put $M=\{x\in H; Px=0, Qx=x\}$. Then M is the eigenspace of -1 for P-Q, i.e., $M=\{x\in H; (P-Q)x=-x\}$. As a matter of fact, if $x\in M$, then (P-Q)x=-x easily. Conversely, if $(P-Q)x=-x\neq 0$, then $Px+Q^{\perp}x=0$, so that $Q^{\perp}Px=-Q^{\perp}x$ and $PQ^{\perp}x=-Px$. Hence it follows that

$$||Q^{\perp}x|| = ||Q^{\perp}Px|| \le ||Px|| = ||PQ^{\perp}x|| \le ||Q^{\perp}x||,$$

and so $||PQ^{\perp}x|| = ||Q^{\perp}x||$. If $Q^{\perp}x \neq 0$, then $||PQ^{\perp}|| \geq 1$, which contradicts to the assumption $||PQ^{\perp}|| < 1$. Namely we have $Q^{\perp}x = 0 = Px$.

So M is a (nontrivial) reducing subspace of both P and Q. We here put $P_1 = P|_{M^{\perp}}$ and $Q_1 = Q|_{M^{\perp}}$. Noting that $PQ^{\perp}|_{M} = 0$, we have $\|PQ^{\perp}\| = \|P_1Q_1^{\perp}\| < 1$, and $b_1 = \sup\{((P_1 - Q_1)x, x); x \in M^{\perp}, \|x\| = 1\} = b$. Since $\|P_1Q_1^{\perp}\| < 1$, we have $P_1 \wedge Q_1^{\perp} = 0$, where \wedge means the infimum for projections. Moreover we may assume that $P \wedge Q = P^{\perp} \wedge Q^{\perp} = 0$. Namely, P_1 and Q_1 are in generic position in the sense of Halmos [4]. So the structure theorem [4; Theorem 2] says that there exist commuting positive contractions S and C on some Hilbert space such that $S^2 + C^2 = 1$, $\ker S = \ker C = 0$ and that P_1 and Q_1 are unitarily equivalent to

$$E = \begin{pmatrix} 1 & 0 \\ 0 & 0 \end{pmatrix}$$
 and $F = \begin{pmatrix} C^2 & CS \\ CS & S^2 \end{pmatrix}$.

Since it is easily checked that

$$EF^{\perp}E = \begin{pmatrix} S^2 & 0 \\ 0 & 0 \end{pmatrix} \quad \text{and} \quad (E - F)^2 = \begin{pmatrix} S^2 & 0 \\ 0 & S^2 \end{pmatrix},$$

we have $||E - F|| = ||S|| = ||EF^{\perp}|| < 1$. Applying P_1 , Q_1 and b_1 to the first case in this proof, we have

$$b = ||P_1 - Q_1|| = ||P_1Q_1^{\perp}|| = ||PQ^{\perp}||.$$

Finally the other part $-\|P^{\perp}Q\| \leq P - Q$ is equivalent to the inequality $Q - P \leq \|QP^{\perp}\|$. So there is nothing to do.

As a direct consequence, we have the following result appeared in [3]:

Corollary 3. If R and S are orthogonal projections, then

$$||R + S|| = 1 + ||RS||.$$

Proof. We have

$$0 \le 1 - \|R^{\perp}S^{\perp}\| \le 1 + R - S^{\perp} \le 1 + \|RS\|$$

by Theorem 2. As $R+S=1+R-S^{\perp}$ and the last inequality is optimal by Theorem 2 again, the conclusion ||R+S||=1+||RS|| is obtained.

Acknowledgement. The authors would like to express their thanks to Professor Araki and Professor Kosaki for their kind suggestion.

REFERENCES

- [1] N.J.AKHIEZER AND I.M.GLAZMAN, Theory of linear operators in Hilbert space, vol. 1, Ungar, New York, 1961.
- [2] S.K.BERBERIAN, Approximate proper vectors, Proc. Amer Math. Soc., 13(1962), 111-114.
- [3] J.DUNCAN AND P.J.TAYLOR, Norm inequalities for C*-algebras, Proc. Roy. Soc. Edinburgh Sec. A 75(1975/76), no.2, 119-129.
- [4] P.R.HALMOS, Two subspaces, Trans. Amer. Math. Soc., 144(1969), 381-389.
- [5] Y.KATO, Some theorems on projections of von Neumann algebras, Math. Japon., 21(1976), 367-370.
- [6] S.IZUMINO AND Y. WATATANI, Appendix to Kato's paper [4].
- *) Deaprtment of Mathematics, Osaka Kyoiku University, Kashiwara, Osaka 582-8582, Japan.

E-mail address: mfujii@cc.osaka-kyoiku.ac.jp

**) Faculty of Engineering, Ibaraki University, Nakanarusawa, Hitachi, Ibaraki 316-0033, Japan.

E-mail address: nakamoto@base.ibaraki.ac.jp