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In this article, we introduce aresult on the logarithmic term of the Szeg\"o kernel on
the boundary of tw0-dimensional Grauert tubes. In Section 1, we give the definition of
Grauert tube and some examples. In Section 2, we introduce aresult in [5]. This result
plays very important roles in studying CR manifolds in Grauert tubes. Finally, in Section
3, we state the main theorem in [8] and some remarks.

1The definition of Grauert tube and examples

Let $(X, g)$ be an $n$-dimensional complete C’ Riemannian manifold, and let 7: $\mathrm{R}$ $arrow X$

be ageodesic. Then we define the mapping $\psi_{\gamma}$ : $\mathbb{C}arrow TX$ by

$\psi_{\gamma}(\sigma+i\tau):=\tau\dot{\gamma}(\sigma)$ .

Definition 1.1. Let $TrX:=\{v\in TX|g(v, v)<r^{2}\}$ , where $0<r\leq\infty$ . Acomplex

structure on $T^{r}X$ is said to be adapted if $\psi_{\gamma}$ is holomorphic for every geodesic $\gamma$ on $X$ .
If an adapted complex structure exists, then it is uniquely determined (see [9]).

The Grauert tube of radius $r$ over $X$ is the manifold $TrX$ with the adapted complex

structure. $X$ is called the center of the Grauert tube.
Let $r_{\max}(X)$ be the maximal radius $r$ such that the adapted complex structure is defined

on $T^{r}X$ . It is known that $r_{\max}(X)>0$ if $X$ is compact or $X$ is homogeneous.

Example 1.2. Let $X:=\mathrm{R}^{||}$ . Then $T^{\infty}\mathrm{R}^{n}$ is biholomorphic to $\mathbb{C}^{n}$ .

Example 1.3. Let $X:=S^{n}$ , the unit sphere in $\mathrm{F}^{l+1}$ . Then $T^{\infty}S^{n}$ is biholomorphic to

the manifold $Q^{n}:=\{z =(z_{1}, \ldots, z_{n+1})\in\emptyset^{+1}|z_{1}^{2}+\cdots+z_{n+1}^{2}=1\}$ . We call $Q^{n}$ the

complex quadric.

Example 1.4. Let $X$ be the $n$-dimensional real hyperbolic space with constant sectional
curvature -1. Then $T^{\pi/2}X$ is biholomorphic to $B^{n}$ , the unit ball in $\mathbb{C}^{n}$ . We note that
$r_{\max}(X)=\pi/2$ (see [11, Theorem 2.5]).
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2 CR manifolds in Grauert tubes

Let $(X, g)$ be an $n$-dimensional compact C’ Riemannian manifold, and let $T^{r}X$ be the

Grauert tube. We define the mapping $\rho:T^{f}Xarrow \mathbb{R}$ by $\rho(v):=2g(v, \mathrm{t}1)$ for $v\in T^{r}X$ .

Theorem 2.1 ([5], [9]). $\rho$ has the following properties:

(1) $\rho$ is strictly plurisubharmonic,
(2) $X=\rho^{-1}(0)$ ,

(3) the metric $ds_{T^{f}\lambda}^{2}$. obtained from the K\"uhler foml $i\partial\overline{\partial}\rho/2$ is compatible with $g$ , that is,

$ds_{T^{r}X}^{2}|_{X}=g$ , and
(4) $(\partial\overline{\partial}\sqrt{\rho})^{n}=0$ in $T’.X-X$ .

Let $\Omega_{\epsilon}:=\{\rho<\epsilon^{2}\}\subset T^{f}X$ , and let $M_{\epsilon}:=\partial\Omega_{\epsilon}$ . Then we see that $\Lambda f_{\epsilon}$ is astrongly

pseudoconvex CR manifold.
One of the interesting problems on Grauert tube is to study relations between $M_{\epsilon}$ and

$(X, g)$ . Several results have been known on this problem. Stenzel [10] studied orbits of

the geodesic flow and chains. Kan [7] computed the Burns-Epstein invariant, and showed

that $M_{\epsilon_{1}}$ and $M_{\epsilon_{2}}$ are not CR equivalent if $\epsilon_{1}\neq\epsilon_{2}$ when $\dim X=2$ . This Kan’s result

is also true for $\dim X\geq 3$ (see [12]). This implies that there exist many CR manifolds in

the Grauert tube. This fact is one of the reasons why we are interested in this problem.

3Result

Let $(X, g)$ be atw0-dimensional compact Riemannian manifold, and let $TrX$ be the

Grauert tube. We put $\Omega_{\epsilon}:=\{\rho<\epsilon^{2}\}\subset T^{r}X$ and $M_{\epsilon}:=\partial\Omega_{\epsilon}$ .
Let $\theta:=\iota_{\epsilon}^{*}(-i\partial\rho)$ , where $\iota_{\epsilon}$ is the embedding of $M_{\epsilon}$ in the Grauert tube. Then $\theta$

defines apseud0-hermitian structure on $M_{\epsilon}$ . Let $S_{\epsilon}$ be the Szeg\"o kernel with respect to

the volume element $\theta\wedge \mathrm{d}9$ . Then by [2] and [1], the singularity of $S_{\epsilon}$ on the diagonal of
$M_{e}$ is of the form

$S_{\epsilon}(z,\overline{z})=\varphi(z)\rho_{\epsilon}(z)^{-2}+\psi(z)\log\rho_{\epsilon}(z)$,

where $\varphi$ , $\psi\in C^{\infty}(\overline{\Omega_{\epsilon}})$ and $\beta\epsilon$ is adefining function of $\Omega_{\epsilon}$ with $\rho_{\epsilon}>0$ in $\Omega_{\epsilon}$ .

Theorem 3.1 ([8]). The boundary value of the logarithmic term coefficient Oo $=\psi|_{M_{\epsilon}}$

has the following asymptotic expansion as $\epsilonarrow+0$ :

(3.1) $\psi_{0}\sim\frac{1}{24\pi^{2}}\sum_{l=0}^{\infty}F_{l}^{\psi 0}\epsilon^{2l}$ ,

where $F_{l}^{\psi 0}(\lambda^{2}g)=\lambda^{-2l-4}F_{l}^{\psi_{0}}(g)$ for $\lambda>0$ .
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In particular, we have

(3.2) $F_{0}^{\psi_{0}}=- \frac{1}{10}\underline{/\backslash }k-\frac{2}{5}(\epsilon^{2}T^{2}k)|_{\epsilon=0}$ ,

where $k$ is the scalar curvahire, $\Delta$ is the $Laplac,ian$ and $T$ is the unique vector field on $\Lambda f_{\epsilon}$

such that $\theta(T)=1$ and $T\rfloor d\theta=0$ .

We now make two remarks on the term $(\epsilon^{2}T^{2}k)|_{\epsilon=0}$ . One is that we can regard this

term as afunction on the circle bundle over $X$ , and it is not constant on each fiber of the

bundle in general (see [8, Lemma 4.5]). This means that the value to which $\psi_{0}$ tends as
$\xi$ $arrow+0$ varies with the way $\epsilon$ goes $\mathrm{t}\mathrm{o}+\mathrm{O}$.

The other is that

(3.3) $\int_{M_{e}}(\epsilon^{2}T^{2}k)|_{\epsilon=0}\theta\wedge d\theta=c\epsilon^{2}\int_{\lambda}$.
$\Delta kdV+O(\epsilon^{3})$ ,

where $c$ is aconstant and $dV$ is the volume form on $X$ (see also [7]). It follows from

(3.1)-(3.3) and $\int_{X}$ $AkdV=0$ that the coefficient of $\epsilon^{2}$ in the integral

$\int_{\Lambda\prime I}$. $\psi_{0}\theta\wedge d\theta$

is equal to 0. This is not contradict to the fact that the integral above is eqaul to 0.

Finally, we note that $\psi_{0}$ is aconstant multiple of the $Q$-curvature of three-dimensional
$\mathrm{C}\mathrm{R}\mathrm{m}$ anifolds (see [3], [4] and [6]). In conformal geometry, there has been great progress

recently in understanding the $Q$-curvature and its geometric meaning in low dimensions.

However, roles of $Q$-curvature in CR geometry are not clear. We hope that this result

will become an approach to studying CR Q-curvature.
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