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1 Introduction

There are many works discussing formulations of the scattering theories. For hyperbolic
problems, we have two types of the formulations, i.e. the Lax and Phillips type and
the Wilcox type. The Wilcox type formulation is based on the spectral theory of
the self-adjoint operators which is derived from scattering problems .arizing quantum
mechanics. Hence this formulation is called “Schrédinger methods for the acoustic
scattering” (cf. [16], [13]).

On the other hand Lax and Phillips 7] proposed a different formulation of scattering
theories for hyperbolic differential equations. In this theory, considering one parameter
family of unitary operators {U(¢) },er on some Hilbert space H, they introduced concept
of the outgoing subspace D, and incoming subspace D_ of U(t) and showed that U(t)
can be regarded as translation. Namely, corresponding to D., there exist a separable
Hilbert space N and a unitary operator T* from H to L?*(R; N) such that

T=U(t)(T*)™ ==,

T*(D.) = {k(s) € L*(R; N);k(s) =0 in + s < 0},
where 7, : k(s) — k(s —t). Conversely, for a translation representation 7% with
respect to {U(t)}.cr stated in the above, we can define the corresponding subspaces
D... From these operators T*, the scattering operator is defined by T+ (7°~)~!, which is
considered as a mathematical representation of scattering states. Thus, “translation”
and “outgoing (resp. incoming) subspace” are the basis of the scattering theory of Lax
and Phillips.



Furthermore, Lax and Phillips applied their theory to the (scalar-valued) wave equa-
tion. They expressed the solutions as a unitary group U(t) on the energy space H.
They made the translation representations such that the corresponding outgoing and

incoming subspaces D.. are characterized by
(1.1) Dy={f =(fi, ) e H; U)f =0in || < +t}.

This plays an essential role in the Lax and Phillips theory for the wave equation. They
made concretely the translation representations 7% with (1.1), based on the Radon
transform f(z) — [ __ f(z)dS;.

For other hyperbolic equations or systems, many authors have formulated the scat-
tering theories of the Lax and Phillips type (cf. Lax and Phillips [8], Soga [15], Petkov
[11], Yamamoto [17], Shibata and Soga [14], etc). All their theories are treated scat-
tering theories for perturbed problem of hyperbolic differential equations in the whole
Euclidian space R". In these cases, the outgoing (resp. incoming) subspace has the
similar property to (1.1), and the translation representations are given by convination

of the variants of the Radon transform.

In this article we consider the formulation of the scattering theory of Lax and Phillips
for the isotropic elastic wave equation with the Neumann boudnary condition in a
perturbed domain © C R® from the half space R} = {x = (2,,2;,23) = (X,23) €
R3;z; > 0}. Thus we assume that the boundary 99 is smooth and satisfies that
00N {x € R% x| > Ry} = {x € OR3;|x| > Ry} for some Ry. Let p(x) be the density
of the solid, A(x) and u(x) be the Lamé functions satisfying

p(x) >0, A(x)+2p(x)/3>0, u(x)>0  forany x € Q,

where A(x) = Jo + A(X), 4(9) = o + A(x), p(x) = po + F(x) and A(x), Ax), 5(X)
€ CP(QN{|x| < Ro}), and Xy, o and po are the constants. For the displacement field
u = u(t,x) = (u; (¢, x), uy(t, x), u3(t,x)) of the solid at time ¢ and position x, elasticity

gives the following mixed problem:

- (p(x)82 — A(z, 85))ult, x) =0 inRxQ,
(1.2) { N (x,0,)u(t,x) =0 on R x 09,
u(0,x) =f; (x)a 6,u(0,x) = f5(x) on {2,
where

3

A(x, 0 )u = Z Oz, (ai;(x)0,,u) N(x,0)u = Z vi(x)ai; (x)8;,u |an 3

1,j=1 t,5=1
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In A(x, 0x) the coefficients a,;(x) are n x n-matrices and their (p, ¢)-components a;,;,(x)
are given by the Lamé functions of the forms: a;y,(x) = A(X)8ip0;q + 2(X) (005, +
dig0jp), where &;; are Kronecker’s delta. The boundary operator A (x, d,) is the conor-
mal derivative of A(x,0,) and v(x) = (v,(x), 1,(x), v3(x)) is the unit outer normal

vector at x € Of).

For our perturbed problem, we choose the case of the half space as the free problem
in the scattering theory. Even in the free case we have surface waves which are different
from waves traveling inside of the elastic medium. In our case, there are two types of
the surface waves. One is coressponding to the total refrection phenomena, which are
called the evanesent waves. These are caused by the existence of the several waves
having different speeds. The other waves are called the Rayleigh surface waves which
are concrete ones to the Neumann boundary condition in elastic wave equation. This

is one of the main differences between the whole space case and our one.

Even though there are the surface waves, the scattering theory of the Wilcox type
are developed by the similar methods to the various perturbed problem from the whole
space R® (cf. Dermenjian and Guillot [1]). Contrary, for formulating the scattering
theory of Lax and Phillips, existence of the surface waves makes differences between
the whole space case and our case, and also causes new difficulty. Since as is in [5] we
have the both scattering theories are the same each other in an abstract sense, we can
construct some translation representations using generalized Fourier transforms which
provides one of the key concepts of the theory of Wilcox type (cf. Theorems 4.1 in
[5]). Using these facts, we also have the translation representation of the concrete
forms for the free case in our problem (cf. §3 or, §6 in [5]). The obtained translation
representation consists of not only the terms of the Radon transform but also the other
terms. These additional terms are written using the Poisson integrals and the Hilbert
transforms. They are ones of the influence of the surface waves and of the differeces

between the free case of the half space and the one of the whole space.

The other difference which causes difficulty is that the corresponding outgoing (resp.
incoming) subspace does not have the similar property to (1.1) V(cf. Theorem 3.2 and
Proposition 3.4). This is rather serious since in the theory of Lax and Phillips the
property (1.1) plays an essential role to make the translation representation for the

perturbed case. Thus it seemd to be difficult to develop the theory according Lax and
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Phillips straightforwardly. As Phillips [12] pointed out, this kind of difficulty arized
even in a short range perturbation from the whole Euclidian space though the free case
has the property (1.1). He overcomed this considering the relation between the wave

operators and the subspaces D..

Recently in [2] Ikawa gave a proof of the completeness of the wave operator using
a weak version of the decomposition given by Morawetz. The original decomposition
was proposed in the famous argument of Morawetz to obtain the rate of the uniform
decay of the energy of the solution of the wave equation (cf. [10]). The argument
by Ikawa has an advantage that we can avoid contradiction arguments and gives a
procedure for constructing the preimage of the wave operator. Unfortunately, we can
not apply Ikawa’s argument directly since the decomposition of Morawetz requires
Huygens Principle which holds in the case of the odd (> 3) dimensional space. In our
case, we have neither Huygens Principle nor the similar property to (1.1). Still we can
obtain some modification of the decomposition of Morawetz which is useful to apply
the argument of Ikawa. Hence we also have the completeness of the wave opertor which
is the same as the existence of the outgoing (resp. incoming) subspaces. Thus in this

sense we can develop the scattering theory of Lax and Phillips to our problem.

To obtain the decomposition similar to the one of Morawetz type we use essentially
the translation representation for the free case. This idea was first introduced by
Me]rbse [9] to show the uniform energy decay of the solutions of the wave equation for
nontrapping obstacle case. For the original decaying problem considered by Morawetz
we also have some good decomposition even in the case of elastic wave equation (cf.
[3]). Hence using the translation representations we can determine the rate of the
uniform decay if we assume that the uniform decay property holds. Thus we can say
the property (1.1) is more essential than Huygens priciple to develop the Morawetz
argument. But these arguments can not be applied to show the completeness of the
wave opeator since the completeness result are used in [9] and (3] essentially. Hence we
need to modify the arguments according to ‘showing the complefeness. In this article

we give only the outline. The details are disussed in the forthcoming paper.
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2 Generalized Fourier tranform for the free case

Before going to the construction of the trasnlation representation, we consider the gen-
eralized Fourier transform of the free space problem. The generalized Fourier transform
is one of the basis of the scattering theory of Wilcox type. Since our purpose is to con-
struct the translation representation, we use the generalized Fourier transform modified

the one obtained by Dermenjian and Guillot [1] (cf. see [5]).

The free space problem for our problem is given by the following mixed problem:
(0002 — Ao(Bx))u(t,x) =0 in R x R3,
2.1) No{Byu(t, ) = 0 on R x R,
u(0,x) = f,(x), du(0,x) = f(x) on R},
where A, (Oc)u = 37 i j=1 0z (a;0z;u) and NV (Ox)u = E?J_l v0a3;0z;ulsmy (V0 ="(1], 13,
v§) = *(0,0,—1)). In the above, the coefficients af; are 3 x 3-matrices whose (p, q)-

components a inig

ator Ap(0Ox) is of the following well-known form: Ay (8, )u = (Ao +to) Vi (div u)+poAu.
The velocity cp = /(X + 2u0)/po of P-waves is larger than that cs = y/uo/po of S-

waves and the velocity cg of R-waves is smaller than cp and cg.

are given by af ; ¢ = 200ip0q+2140(0:j05q+0:40;,). In this case the oper-

We formulate the problem (2.1) as an abstract form by introducing the Hilbert
space Ho = L*(R3; C3, ppdx) with the norm ||f]js, = { fRi If(x)|2pod x}'/? and the
self-adjoint operator A, with the domain D(A,) on H, defined by

(22)  Aju=—p;'As(Ox)u for u e D(4A) = {u e H(RS;C?); No(8x)u = 0}.

For the operator A, we introduce the generalized eigenfunctions consisting of the
five parts ¢}, ¢3V, #6570, #5H and ¢R. Each ¢¢ (e € A’ = { P,SV,SVO,SH}) is sum
of the incident wave ¢ and the reflected (or the totally reflected) wave ¢3”". Note
that We choose these ¢3 different from the ones in Dermenjian and Guillot [1]. This
differences is important to make the translation representation in the theory of Lax

and Phillips. The eigenfunctions ¢ are defined as the following way:

We set S}, :SgH =Si ={w =*(w',w3) € S?; ws >0}, S§V={w € S_z’-; W] <
£}, Shvo ={w e 8;|w| > =} and S = {¢ € R*; (| = 1}. We define the

— HO

functions ¢§* = ¢3*(x;0,w) (a € A, o € R,w € S2) by

P* —  iocplax ~ SVO,i(.. ASVO (U’w) iocglax
(Xj0,w) = €“F “*ap(@), g5 O (x;0,w) = We asv (@),
0 (Kow) = €0 M agy (@), ¢5(x;0,w) = €7F PXagy (@),
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where s = i f = () (9 =€ = €., o asv(§) = *(—7€. €,
sa(€) = rgr'(~6a.61,0).

(o) = () (1-2w) f"li—’;lw’lzwan(w), n(w)=\/(z—’;)2lw’lz—1,
ATOW) = 1T (0w = (L)1 - 2+ 16(E o).

The functions ¢g" = ¢y (X; 0, w) are defined of the forms:

Af(w) AP (w) »
P, — iocplwx eiocs 1¢P(w)x P
" (X; 0,w) AP(w)e P “Xap(w) — Af_’(w) s agy (& (w)),
ASV(w) irc=1¢SV A‘_S'_V(w) igc=tw-
SV (o - _ tocp €57 (w)x SV _ iocg WX
&y " (x;0,w) AV (w )e P ap(£” (w)) Af_v(w)e s “*agy (W),
SHr(x 0'(4)) — ewcswanH(w)
ASVO(W) ceaml -1
SVO,rs_ . _ tocg w'x' —|olc w)zs Vo
o (Kiow) = —gavgrgye e map (¢ (0,0)
SVo
A— (0', w) eiacglw-xasv (UJ),

T ASVO(w)
where X' = 4(21,3,), €7(w) =* (2w, & (w) ) £V (w) = (ggw',gg"(w) )
£5V0 (o) = * (2, fom(w)), () = /1= (EPWP, & () = /1= (ZPWP,

cs

2
APw) = (&) (1_2(55)2|w'|2) + 455 |0 PwgtP (),
Cp Cp

Cs
c C
AT (w) = —E)2 (1-2wP)’ + 4£|w'|2“’355w(“’)’
- 4c C ’
APw) = wslu/|((D) - 2w'P),
B(w) = A%O(w) = - 22| - 2P
S

We introduce the following generalized eigenfunctions of Ay:

85 (x; 0,w) = ¢5"(x; 0, w)+¢3'r(x;0, ) (@ € A,
B, 9,¢) = \/2mpoCe*w ¢ ZCR ~loloR' €224 (7, ¢).
j=1

Here £} = /T~ (cr CR/CP_ €9 = \/T=(crfes)?, CF =2 — (cr/cs)?, OF = -2,

all(e,¢) = (¢, ‘: 1, a®(0,¢) = ‘(£R2)C, 12), and the positive constant CE is taken
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satisfying |o|(27pocr)™! [ |#F(x; 0,¢)[*d 3 = 1. Note that the constant CE depends
only on cp, cs and cg. The function @& is the eigenfunction corresponding to the

Rayleigh waves.

Using the above generalized eigenfunctions, we can make a spectral representation
of Ay (i.e. the generalized Fourier transform) in the sense of the scattering theory
of Wilcox type. We set (-)™"H, = {f € LE (R3); (x)*f(x) € Ho}, where (x) =

(1 +|x[*)*/2. For any function f € (-)=*H, we put

(FANN W) = po ;¥ (—io)(f, 8(50,w))w (€A,
(FREDQ) = p' ez (—io)(F, 6B( 0, ))o-

Note that 77 (o) are bounded operators from (-)~*%#, to L?(S2) for any o € R if we
take sp > 1. Set X = (-)7°Ho, N = Boea L*(S?) (A = A'U{R}) and F°(c) = *(F2(0),
Fov(0), Fvo(o), Foy(o), F&(0)). Then, we can show that F°(c) is a B(X, N)-valued
measurable function and the spectral representation in the sense of the scattering theory
of Wilcox type. From the operator F°(c), using Theorem 4.1 in [4], we can construct
the translation representation Tj and the spectral representation 7, in the sense of the

scattering theory of Lax-Phillips type.

In the scattering theory of the Wilcox type, there is no essential difference among
the differences caused by multiplications of unitary transforms to generalized eigen-
functions used to define the generalized Fourier transform. But in the theory of Lax
and Phillips type, these unitary transforms make differences in the properties of the
outgoing and incoming subspaces DY. This is why we do not use the generalized

eigenfuncion obtained by [1] straightforwardly.

3 Translation representation for the free case

In this section we consider the translation representation of free space problem and
give the concrete form of it. The corresponding outgoing (resp. incoming) subspace
does not satisfy the property similar to (1.1). Rather than that we can show that there

does not exist any translation representation having (1.1) (for the detail, see [5]).

For the self-adjoint operator Ao, the space H(AL/?) denotes the completion of the
domain D(A}/?) of AY? with the norm || A3/%F|| for £ € D(AY?). We introduce the
Hilbert space Hy = H(A5'*) x Ho, which is an abstruct formulation of the energy



space for the usual wave equation. We also define the one parameter family of unitary

operators {Up(t)} corresponding to problem (2.1) by Up(t)f = *(u(t), Byu(t)).
For any f ¢ W = {f" =1(fy,£); (x)*fi(x) € H'(R}), f, € (-)"*Ho } (50 € R), we
set
(31) Tonf(s,r) = / e Touf (0,)do (o€ A)
(B2)  Touf(0,r) = (@m)7 {io(FA-)R)() + (Fo(-0)E)()} (acA).

Since Y2 (C D(AY?) xH,) is dense in Hp, from Theorem 4.1 in [4], the mapping

Ty = Y(To.p, Tosv, To.svo, Tosu, Tor) (tesp. To = *(To,ps To,svs To,svo, Tosu, ToR))
becomes the translation (resp. the spectral) representation of {Up(t)}. Now we obtain

the following theorem.

Theorem 3.1 For {Uy(t)}, we can construct a bounded linear operator Ty : Hy —
L*(R; N) such that

Tof = 4(27)?||f ||2 fcH
[ | o gy = 2CTE W, for amy € e o,
T* is surjective,

ToUo(t) = Ty for any t € R, where 7, : k(s) — k(s —t).

Each element of Ty corresponds to the reflection phenomenon or surface waves. For
example, T sy corresponds to the total reflection phenomenon and T p corresponds
to the Rayleigh surface wave, etc. We give the concrete representations of the trans-
lation representation Ty. We set So = {f = (f;,£;); f; € S(RZ)}, where S(R3) =
{f lms ; f € S(R®)} and S(R®) is the usual Schwartz's function space consisting of
rapidly decreasing functions in R3. From (3.1) and (3.2), it follows that

1

Toof (8,w) = pg 22D " (=8,)27F {F 7! [(f14;, #5(0,w)), ] ()} (€ A).

=0

Hence we have the concrete forms of Ty.«- The operators Ty, (o = A) are of the forms:

_()

Topf (s,w) = (cppo)'/? [ap(w) (Rpf )(cps,w) — AT ()

—5r—~apw) - (Rpf ) (cps,w)

- 3 e (€ (0) (Rel s 7))
Tosvf (s,w) = (cspo)/? [asv( @) - (Rsf)(css;‘:’)”égﬂasv(w)'(ﬂsf)(cssﬂ)
A (w)
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- %g—;—%ap(ww» - (RoF )(cps@”(w))] ,

Tosuf (3,0) = (csp)'”* {asn(@) - (Rsf)(ess,5) +asu(w) - (Rsf)(ess,w)}

{asv(dl) . (RSF)(C,S'S, (:J)
— agv((d) . (Rsf)(CsS,w)}
+ 4(CP/252‘|/“;’£?;3"7(W) {asv(w) . (K(Ds)Rsf)(CsS, &)

+ agy(w) - (5(D,)RsF )(css,w)}

ct ASVO(w) [ (2w <.z cp
- Zamo D -(R}';f)(CPS,ES—'W,,”I(W))

# () Ea s, Lot}

2
Torf (s,() = (crpo)/*/2mpoCR {C}vlf)? (g) - (RE)(crs, ¢, 69)
. i=1
0 -~ . :
+C.7(,21% (1) : (RRf)(cRss C:&g)) }
for any f = (f;, f,) € Sy, where “ .” means the inner product of C3, and the operators

Ras ’féf are defined by

RaE (3,€) = ca0iR%8:(5,€) — 0,R°8:(5,§) (a=P,8),

RIE (5,8, &) = caO2Re1(5, €, &3) — O,RLE(5,€,&) (=S, R).
Here, R%h(s, &) = [, {xERS ;x-¢=s} h(x) dSy is the usual Radon transform and ’fé& are the
operators defined by

ﬁih(s,e,ﬁa) = % Gy fz? — s)2h(x) dx,
~0 , . 1 s — EI ox!
Rlh(s,£,&) = ;/Ri A s)2h(x) dx.

In the formulae of T ,, the Radon transform R° appears only in the terms represented
by R,. This is the same as those in the cases of the problems for the whole space (cf.
[7], [14]). In our case, however, we must add the new terms with ’ﬁf These terms

come from the evanescent waves and the Rayleigh surface waves.

By using the translation representation stated above, we can introduce the com-
ponents of the waves. Set U p(t) = Uy(t)(To) ! *(To,p, 0,0,0,0), then Uy p(t) repre-

sents the element concerning the reflection phenomena of P-waves, set Upsvo(t) =
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Uo(t)(To)~1%(0,0,Tp svo,0,0), then U syo(t) represents the element concerning the
total reflection phenomena and set U r(t) = Us(t)(Zo) "1 4(0,0,0,0, T, ), then Up g(t)
represents the element concerning the Rayleigh surface waves. The others are also de-
fined in the same way. As is in [5] we can obtain the concrete form of Up,(t) (o € A)
using the components of the translation representation 7°* (cf. Theorem 6.2 in [5]).
Using these concrete expressions we can characterize the outgoing and incoming sub-
spaces associated with the translation representation Tp. Note that for Tp, DY are
given by
To(DY) = {k € L*(R; N); k(s) =0 for +s < 0}.

Then we know that D{ and D? are the outgoing and incoming subspaces. We obtain

the characterization of DY as follows:

Theorem 3.2 For any f € Hy, T belongs to DY if and only if

(3.3) supp P |(Uo(t) — Uosr(t)F | C {x € RY; %est < x|} and

(3.4) supp P [Uo t)f ] .

C {x' € OR} ; £crt < |X'|}

3=

hold for any ¢t > 0, where Uy sr(t) = Up svo(t)+Us r(t) and Pt(uy, ug, us) = *(ug,up).
For any f c DY, we also have the following properties:

(i) supp Upa(t)f C {x € R%; +c,t < |x|} for a=P,SV,SH;

(i)  for a = SVO,R, the functions Uy () (x) are C-function in +c,t > |x|,
and for any & > 0, ¢ € NU {0} and multi-indices v € (NU {0})3, there exists
a consiant Cs,qny > 0 independent of f e DY such that

8707 [Uoa®F | ()| < CranL + 1) +44" M To o | amozacsmy
foranyl=1,2,(t,x) € R x R, e, (1 — )t > |x|;
(i) (P [Uo,a(t)]lf")(x',O) =0 on tct>|X| foraeAandl=1,2.

Remark 3.3 Our generalized eigenfunctions ¢35 © (x; 0, w) and ¢f(x; g, {) are different
from the ones in Dermenjian and Guillot {1]. We multiply %V;é%;l and ig/|o| to
Dermenjian and Guillot’s ones respectively. This reason is that we wish to obtain
Theorem 3.2. Namely if we choose these eigenfunctions in other way, we can no longer

obtain the characterizations (3.3) and (3.4).
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In the case of Cauchy problem, DY has the property
(3.5) DY ={f =*(fi, o) € H; Ut)f =0in |z] < £ct}

for some constant ¢ > 0 standing for the latest speed of propagation speed of the
waves (see e.g. [7], [14]). But in the case of (2.1), there do not exist translation
representations such that corresponding outgoing and incoming subspaces DY have

the same property as (3.5).

Proposition 3.4 For anyf € H,, the following two statements (a) and (b) are equiv-

alent to each other:

(a) supp Up(t)f C {x ¢ R} ; tcpt < [x|} forany £t > 0.
(b) feDY, Tosvof(s,w)=0 for any (s,w) € R x Skyo,
and Ty rf (5,() =0 for any (s,¢) e R x S%.

In the cases of the Cauchy problems of the wave equation and the elastic wave equation,
the condition (a) in Proposition 3.4 just characterizes the set DS (cf. [7] and [14]).
Consequently, Proposition 3.4 shows that in the case of the elastic wave equation in the
half-space, the condition (a) in Proposition 3.4 is too strong to characterize DY. These

. . vo
differences come from existence of “the evanescent waves” ¢ °"

(x; o,w) corresponding
to the total reflection phenomena and the Rayleigh surface waves o8 (x; 0,¢), which
is caused by existence of the boundary. In the case of the transmission problem of
the scalar valued wave equation, we also see such phenomena since there also exist

evanescent waves. (cf. [4]).

Lastly, we give other decay estimates for the solution to (2.1), which are required
to prove existence and completeness of the wave operatores. For any r € R, we set

% = Up(£(C2,,) 1) DY, where C°

min min

= cr. Note that cg is the slowest speed of the

waves for the free problem (2.1).

Proposition 3.5 (i) For any g € D, (r € R), Uy(t)g € C® int > (C.,.) 1 (Ix| +7).
(ii) For any m € NU {0} and 6 > 0, there exists a constant C,, > 0 such that

> 1) 0*96]82[Us(6)& 1 2me npey

lal+i=m

< OBt 4+ (Crn)™Hr = B) T €

m



foranyg e D7, R>1,t>(C%,,) Y (R—1).

min

(iii) For any m € NU {0}, there exists a constant C,, > 0 such that

Z |63 62 [Uo(t)&1llL2®e nBRys) S Om(1+ t)‘”/"’“'mug||D(Lg,,x{o,,,,_1})

lal+i=m
for any g € D(LT!) N DR*? (m > 2), g € Hyn DB*? (m =0,1), ¢t > 0.

(iv) For any £ € NU {0} and 8’ > O there exists a constant Cp 5 > 0 such that

. IZ Iy~ +) 8] o2 Wo(®)f lill2me) < Cror(l + t)~ (4| £ | reqs )6
1< o] +5<1+2

for anyt > 0,f € D(LE) with Hﬂlm(mi),s' < +o0.

where |1f || 3 )50 = Xja<ed 1) 02902 Vi |2 my ) + ()02 2]l 2re ) }-

4 Existance of the wave operators

From now on we proceed to the perturbed case. In this section, we consider existence
of the wave operators. For the perturbed case, in the same manner as the free case
we can formulate problem (1.2). Let H = L*(Q;C3, p(x)dx) and A be the Hilbert
space with the norm ||f||2, = {f, If (x)|2p(x)dx}l/ ? and the self-adjoint operator an H

defined by

Au = —(p(x)) " A(x,8)u  (u € D(A) = {u € H(R;C%) | N(x, 6)u = 0}).

For the operator A, we also define the Hilbert spaces H(A'/?) and H = H(AY?) x H,

and the one parameter family of unitary operators {U(t)} corresponding to problem

(1.2).

We take a cut-off function 9 € C*(R?) so that 0 <9 <1, ¢(x) =1in |x| > Ry +2

and ¥(x) =0 in |x| < Ry + 1. We define the wave operator W.. € B(H,, H) by
Wye=s- t—légloo U(—t)J¢Uo(t) € B(Ho, H),

where J, € B(H,, H) is given by J,f = t(¢f;, ¥f,).

Proposition 4.1 The wave operators are partially isometric and satisfy

U)Wy = Wely(t) foranyteR.
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In what follows, we consider only the outgoing (i.e. t — co) case since the incoming
(ie. t — —oo) case is the same. To show Proposition 4.1, we need some existence
theorem which is useful to choose decaying part of solutions. We set H™(2) = {u €
H2(Q); 02u € L2 () for 1 < |a| < m,lim,er 2 Jo<ixi<er I0(X)[?dx = 0}. For

W € iz CF(R; H*3(Q))), O,w € Nio C7(R; H'*+-1(Q)) (3¢ € NU{0}), we consider

the following mixed problem:

{ (02 = (p(x))"LA(x, 0x))u(t,x) = qw(t,x) in R xQ,
(4.1) N (x, 0x)u(t, x) = my(t,x) - on R x99,
limy oo ||u(t, -)l|l1e =0,

where [[u(t,)lp0 = i cjaps i<y 185020(E, )22y (p=1,2,...) and

aw(t,x) = (p(x))~1A(x, B) (¥ (x)W(t, X)) — 5 (%) Ao (Bx)W(t, X)
= ((p(x)) " A(x, 8e) — p5" Ao(0x)) (Y(x)W(t, X)) + pg ' [Ao(Bx), BIw(t, X).
m,, (¢, x) P(x) No(Bx)w (¢, x) — N (x, 8x) (Y (x)w(t, x))

(Mo(8x) — N (x, 8x)) (% (x)w (t,x)) — (Mo(Ox)9) (%) - w(t, x).
We also set F,(t) = Elgj+|a|sp |8joew(t, )2 (P=1,2,...).

Proposition 4.2 Set £ = 0, then we have the following:

(1) if we assume that Fy,, € L'(]0,0)) and lim, ,oo Fo(t) = 0 (p = 0 or 1 ), then
problem (4.1) admits a unigue solution u such that u € (VX5 C/(R; H*?=3(RQ)) and
Opu € (i, C/(R; H*~7(12)).

(ii) The solution u stated in (i) has the following estimate:

there ezists a constant C > 0 depending only on Q and A(x, 8,) such that
P o0
la(t, )|li4pe < C {sup (Z E,(T)) + / Fiy,(T)dr for anyt e R.
t<r . t
<r \i=o

Especially, when p =1 we have
lu, )lza < ClI(w(0,), 8;w(0,-))lpe)  for any t € R.

From Proposition 3.5, we can only obtain Fy(t) = O(t~/?) ¢ L*([1,00)). Hence, usual
existence theorem dose not ensure Proposition 4.2. We have to take into account of
the forms of qy and m, to show Proposition 4.2. Using Proposition 4.2, we obtain
Proposition 4.1. For f € D*? we take the solution w(t,x) = [Uo(t)f];, Where
[ J1 = f;. The uniqueness of the solution to (1.2) implies that

U(=t)JyUs(t)f = (Jy, + V(O)) — U(—t)V(t)f



for any t > 0 and f € D(Lo) N Do+?, where V)F =t(v(t,-),0v(t,-)) and v(t,x) is
the solution to (4.1) obtained in Proposition 4.2 with respect to the solution w(t,x) of
(2.2). Hence Proposition 3.5 and Proposition 4.2 implies that the limit W.f is defined
for f € D(Lo)ND5o*? and is partially isomorphic. Since | J,cg Uo(t){D(Lo)N DFo*?} =
(User Uo(t)DE*?) N D(Ly) is dense in Hy, we obtain Proposition 4.1.

5 Completeness of the wave operators

We define closed subspace Dy in H by Dy = Wi (DY). Our purpose is to show that
Dy (resp. D_) is outgoing (resp. incoming ) subspce of {U(t)}. Since {J,cg U(t)Dz =
Wi (U,er Uo(t) DY), this is equivalent to show the completeness of Wy. In what follows,

we concentrate on the outgoing case.

- Definitely to show the completeness, we need “ local decay property”. From Theorem
1.2 in [6], we have 0,(A) = 0, which implies the following local decay property shown

in the same way as in [7]:

Lemma 5.1 There is a sequence {t;} C R such that lim; ,oct; = oo and for any
f € H, w—lim;_,o, U(t;)f =0 in H in the weak topology.

Using the local decay property, we show the completeness of W, , i.e. D, is outgoing.

Theorem 5.2 The wave operators Wy are complete in the sense of R(W.) = H,
where R(W.) is the range of Wy.

Hence, in this sense, we can say that the scattering theory of Lax and Phillips can be

also formulated.

To show Theorem 5.2, for all f € D(L), it sufficies to find § € H, satisfying
f = W4ig. This is simplest approach, however, it seems to be different to find g
directly. Usually Theorem 5.2 are shown by contradiction arguments (cf. [7], [8]
etc). In [2], Professor Ikawa gives an intresting approach to obtain g. He makes an
successible approximation of g by using a weak version of the decomposition due to
Morawetz [10] originally. Since Huygens principle dose not hold, however, we have to

change the decomposition as follows:
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Proposition 5.3 There exist constants C, and C, > 0 depending only on Q and
A(x, 0x) such that the following decomposition holds:

for any f € D(L), there exist Ty = To(f) > 0, 8o € Ho, Fo € H and Zo(t) €
C([To,0); H) such that

Eollz, < Callf llpw), Follpw) < Cslif lIpw, Il < 274 1o,
Zo()lla < (L +t—To) Y4 f)lg  (for anyt > T, > 0)

and U(t)f is decomposed as

UR)E = JyUs(t — To)go + Zo(t) + Ut — To)fo  in H (t>T).

Note that Cy, C; > 0 do not depend on f € D(L) , however, Ty = To(f“ ) may depend

on f. This is the meaning of “a weak version”.

Using Proposition 5.3 iteratively, we can follow the argument of Ikawa [2]. Thus we

can obtain sequences T; > 0, g, € H, f; € D(L) and Z; € C([T};, 00), H) satisfying

4 . ; . R
I€illme < Cillf il NIE ;o) < Cullf j-1llpery IIf ;lle < §||fj—1||H
1Z;®)la < 1+t —T;) ) joy)|m

Ut = Ty-1)f o1 = JyUo(t — T})&; + 7;(t) + Ut - T;)f; im H

for any t > T} and j € N, where T; = Y7_, T,. From this we can conclude that the
limit g = Z;‘;O Uo(—Tj)g‘j € H, exists and this g is just the solution of f = W.g.
Hence we have Theorem 5.2.

Next we show Proposition 5.3. Let P (r € R) be the orthogonal projection to
the space (D5)*. We introduce a regularization PY of PFe+? defined by Pj_’g‘ =
T3 ¢(-)Tog (-)], where p € C°(R) sothat 0 < ¢ < 1, p(s) = Lins < (C3,;,) " (Ro+2),
¢(s) =0ins > (C%, )"1(Ro+3). These operators work as “cutoff” for energy escaping
part of data in Hj (cf. [9]).

We also need an extension operator E4, € B(D(L), D(L,)) and E4 € B(H,, D(L))
to keep regularities of the solutions after they are cut off. Basically this is made using

usual Seeley extension.

Lemma 5.4 There erists an operator E4, € B(D(L),D(Ly)) such that the following
prpoerties hold:



() [Eafi(x) = fi(x) in R3 N Q2 or [x| > Ry + 2 for some fized b > 0,
(i) [Bafla(x) =f(x) inRENQ,
(ili) there exists a constant Cs > 0 such that

182{[Eaof )1 — £} |2 (@nBry4a) < CallO2Hillz2@nBgy,z)  for any £ € D(L).

Further, if we consider the case replaced A(x,0x) to Ao(Ox),  to RY and L to Lo re-

spectively, we also have an operator E4 € B(Hy, D(L)) satisfying EaJy € B(D(Lo), D(L))

and all properties (i) - (ii) correspongind to the case.

Next we can state our decomposition of the solution U (t)f which gives the basis on
the proof of Proposition 5.3. Let H,,(Q) = H*™(Q) x H™(Q).

Lemma 5.5 For anyf € D(L), U(t)f can be decomposed as

U =UEt—T — T + Wp(t)f + J,Us(t — T)(I — PY)E4U(T)E
for any t,T,T > 0 with t > T +T,

where V7 (T) € B(D(L)) and Wr(t) € C([0,00) : B(D(L), H())) have the following

estimates:

there exist constants C,, Cs, Cg > 0 depending only on A(x,0y) and Q such that

" sup |Ve(D)lspwy < Ci
T,T>0

sup {(1+t —T)||Wz(t)||sowy.m) + IWr@®)llsowy} < Cs

t2>T20

V@) < Co { @+ D)2 oy + 1 P{E U D) |1,

HIT@)E lroansng) + | U] Ne@ansay }

foranyT, T > 0 and f € D(L). In the above, Ry = 2(Rg + 3 + CrnazT) and
Crmar = max{C} ., C? where CL,.. and C

ar? mazr } ) max mazx

(1.2) and (2.2) respectively.

are the finite propagation speed of

To show Lemma 5.5, for all t > T + T, T', T > 0, we separeate U(t) as

Ut+T) = JUs()(I = BO)EAU(T) + Wr(t) + Ut - YUV + VD),
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where ViV = (I — EoJyEa)U(T) + ExPYEAU(T) and VP(t) = (U(t)Edy —
JyUs())I — PE)E 4, U(T) — Wy (t). In the above, Wy (t)f = t(v(t,-),d,v(¢,-)) is deter-
mined by the solution v(t,-) to (4.1) for choosing w(t,-) = [Us(t)(I — P£)E4,U(T)f];.
From the uniqueness of the solution to (1.2), it follows that V,?)(t) = U(t — T)V?(T).
We define Vz(T) in Lemma 5.5 by Vo (T) = U(T)VY + V{(T). Using local decay
estimates for the solutions of the free problem (i.e. Proposition 3.5), Lemma 5.4 and

the property of the finite propagation speed, we can obtain Lemma 5.5.

To obtain Proposition 5.3, we need various local decay property which are derived
from Lemma 5.1.

Lemma 5.6 For anyf € D(L), it follows that
(i) for any R > 0, lim;oo{|U(t)F |mo(@nr) + 11U (5)E Ll 208 } =0,
(i) Himy; o0 || PYE4, U (t;)F |5, = O,

where {t;} is the sequence obtained in Lemma 5.1.

Proof. (i) is obtained by well known argument using Rellich compactness Theorem (cf.
e.g. [7] or [2]). To obtain (ii), we require the following Lemma which is shown by
using the formula of T; (cf. §3 ).

Lemma 5.7 There is a constant C > 0 such that for any & > 0, the following estimate
holds:

/ ITog ()l ds < Cr=20+9||g .m0

oo

for any & € Ho, ||&|lmymy),s < 00, 7 2 2(Cpyn) 77

We set G(t) = E4 U(t) — Uy(t)E4,. The Duhamel principle and Proposition 4.2,
we have G(t)f = f3 Us(t — 8)Q(s)fds in H, for any f € D(L?), where Q(t) is a

B(D(L}), H)-valued continuous function having the estimate
IQ®) Il rows s < Cillfllpzy for any t € R, £ € D(L?)

for any é > 0 fixed.

Hence from Lemma 5.7 and (iv) in Proposition 3.5, we obtain

1Py GO |, < Cor™|If ey for any r > 2(CY,;,)~* and £ € D(L?).



This estimate, Lemma 5.1 and the fact that for any r € R PY — P;" € B(D(Lo), Hy)
is compact imply lim;_e [|G(2;)f ||g, = 0. By definition, it follows that

~1_4

~ - (Cgmfﬂ) -
IW@WW&W%SC/ | To o (5) % ds.
Hence we obtain (ii) of Lemma 5.6.

For f € D(L), we take T = T(f) > 0 so that Cs(1 + T)"V2||f || ) + 4Cs(1 +
T)12|f|pwy < |If|la. Then we have [|Wr(t)f |x < (1 + ¢t — T)"Y4|f|| for any

t,T > 0 with t > T + T, where Wy (t) is in Lemma 5.5.

For this T > 0, from Lemma 5.6, we can choose N € N such that
. 1 -
Ve ) 11 < 51F 1,

Thus, if we take fo = Vo (T)f € D(L), & = Us(T)(I — PO)E4U(tn)E € D(Lo),
7Zo(t) = W, ()f and T, = ty + T, Lemma 5.5 implies that they satisfy all properties

in Proposition 5.3, which completes the proof of Proposition 5.3.
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