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Many formulations of proof nets and sequent calculi for Classical Linear
Logic (CLL) $[7, 8]$ take it for granted that atype $A$ is identical to its double
negation $A^{[perp][perp]}.$ .On the other hand, since Seely [13], it has been assumed that
$*$ -autonomous categories $[1, 2]$ are the appropriate semantic models of (the
multiplicative fragment of) CLL. However, in general, in a $*$-autonomous
category an object $A$ is only canonically isomorphic to its double involution
$A^{**}$ . For instance, in the category of finite dimensional vector spaces and
linear maps, avector space $V$ is only isomorphic to its double dual $V^{**}$ .
This raises the questions $\mathrm{w}\mathrm{h}\mathrm{e}\mathrm{t}\mathrm{h}\mathrm{e}\mathrm{r}*$ -autonomous categories do not, after all,
provide an accurate semantic model for these proof nets and whether there
could be semantically non-identical proofs (or morphisms), which must be
identified in any system which assumes atype is identical to its double
negation. Whether this can happen is not completely obvious even when
one examines purely syntactic descriptions of proofs with the isomorphism
between $A$ and $A^{[perp][perp]}$ present such as $[11, 9]$ or the alternative proof net
systems of [4] which are faithful to the categorical semantics.

Fortunately, there is no such semantic gap: in this talk we provide a
coherence theorem on the double involution on $*$-autonomous categories,
which tells us that there is no difference between the up-t0-identity approach
and the up-t0-isomorphism approach, as far as this double-negation problem
is concerned.

Theorem. Any $ffee*$ -autonornous category is strictly equivalent
to a free $*$ -autonornous category in which the double-involution
$(-)^{**}$ is the identity functor and the canonical isomorphism $A\simeq$

$A^{**}$ is an identity arrow for all $A$ .
This remains true under the presence of linear exponential comonads and
finite products (the semantic counterpart of exponentials and additives re-
spectively). Our proof is fairly short and simple, and we suspect that this
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is folklore among specialists (at least everyone would expect such a result),
though we are not aware of an explicit treatment of this issue in the litera-
ture.

This result should be compared with the classical coherence theorem for
monoidal categories, as found e.g. in $[12, 10]$ . In fact, we follow the proof
strategy by Joyal and Street in [10]. We first show a weaker form of coherence
theorem which turns $\mathrm{a}*$-autonomous category into an equivalent one with
“strict involution” (where $A^{**}$ is identical to $A$), for which we ma $\mathrm{e}$ use of
(a simplified version of) a construction of Cockett and Seely [6]. We then
strengthen it to aform of ”all diagrams commute” result by some additional
arguments on the structure-preserving functors. In this way, this work also
demonstrates the applicability of the Joyal-Street argument (which actually
can be seen an instance of a general flexibility result on free algebras of
2-monads developped by Blackwell, Kelly and Power [3] $)$ to other sorts of
coherence problems.
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