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1 Introduction

Most of the studies of computable analysis have been capturing the computabil-
ity of structures over real numbers. However, there are started some studies on
other general mathematical structures recently.

Hertling studied computability over algebraic structures [H], however he did
not discuss topology. Schréder studied week limit spaces [S], however he did not
discuss modulus of convergence. The author believe that the notions of topology
and modulus of convergence are most important in the study of computable
analysis. This work aims to combine their works, and to apply to the discussion
on modulus of convergence.

In discussing modulus of convergence, it seems natural to do with uniform
topology, which Yasugi and others studied [Y]. They discuss the computabil-
ity under uniform topology with computability structure, while Hertling and
Schréder did with representation.

There are several methods in studying computable analysis. One of them is
representation and another is computability structure.

The notion of representation has been studied by Weihrauch [W] and others.
It is a kind of a mechanical method. A representation r of a mathematical
structure X is a surjective partial function of X* into X. A function f : X = X
is computable if the is a computable partial function f of £* into X* such that
for =rof. We will use N - N as £¥, the domain of representation. It seems
that representations have too much information which comes from the details
of implementation of computation models.

The notion of computability structure is studied by Pour-El et al. [P]. It is
a kind of an axiomatic method. A computability structure over a mathemati-
cal structure X is a subset of X“ which satisfies the axioms of computability
structure. A function f over X is called computable if f is locally uniformly
continuous and preserves the computability structure over X. In order to assert
that a computability structure is natural, the mathematical structure X has
been requested to have a distance. Yasugi et al. attempt to replace the distance
with effective uniform topology in the literature [Y].

This work aims at comparing these two ways, that by computability struc-
ture and that by representation. The author would like to show that the essential
notions are equivalently defined by both ways.



There are several ways to define effective uniform topology. Yasugi et al.
defined it with effective uniform neighbourhood system in the literature [Y].
This work defines it with effective limit, which has not been used in any other
works. An effective limit is a partial function of arity w over the underlying
set, while an effective neighbourhood system is a family of subsets. It seems
that a partial function is more familiar in computational theory than a family
of subset is.

There are three similar words ‘recursive’, ‘effective’ and ‘computable’, all of
which appear in this paper. There are only little difference in the senses of these
words. In this paper, the word ‘recursive’ is used only for the notions concerned
to recursive functions over natural numbers. The word ‘computable’ is used only
for the notion of computability structure which defined by Pour-El et al. [P].
The word ‘effective’ is used for other mathematical structures, Thus, a function
represented by a recursive Type-2 function is called a recursive function in this
paper, although Weihrauch and others call it a computable function [W].

2 Uniform Topology
Notation 2.1 We write N for {1,2,3,...}.

Definition 2.2 (Partial function) A function f is a partial function of X
into Y iff f is a function of X' C X into Y’ C Y. This X’ is called the domain
of f and written as dom(f). We write f : X —, Y when f is a partial function
of X into Y. For z € X, we say that f(z) is defined when z € dom(f), and f(z)
is undefined if not. When we write f(z) = y, we implicitly assert z € dom(f).

The rangeof f: X —, Y is the set {f(z) € Y | z € dom(f)} and written as
range(f). For f : X —,Y and g:Y —, Z, the concatenation go f : X —p Z
is defined as following: dom(go f) = {z € X | z € dom(f), f(z) € dom(g)} and
go f(z) = g(f(z)) for = € dom(g o f).

For partial functions f : X =, Y and g : X' =, Y’, the relation f C, g
holds iff dom(f) C dom(g) and f(z) = g(z) for all z € dom(f). It may be the
case that X # X' or Y #Y" although f C, g. For partial functions f and g, it
holds f=gif fCpgand g C, f.

Notation 2.3 We write X — Y for the function space {f | f : X = Y}, and
X —p Y for the set of all the partial functions {f | f : X —p Y'}. Thus, the
notation E C X - Y does not mean F: X —, Y but meansVf€ E. f: X —
Y. ‘

The operators — and —, are right associative. Thus, the notation X —
Y —, Z is an abbreviation of X — (Y =, Z).

Definition 2.4 (Modular Limit) Let X be a set. An partial function LM is
a modular limit over X if there is a strictly increasing function m : N — N and
the followings hold:

0. LM: X% 5, X



1. Foreachz € X, LM(z,z,z,...) =z

2. Let f be a function of N — N such that f(n) > n for any n € N. If
(T1,22,23,...) € dom(LM), then (xs(1),Ts(2),Ts(3),---) € dom(LM) and
LM(z;(1),T(2), T5(3)s ) = LM (21,22, 73, ...)

3. Let {z;;}:; be a double sequence in X, that is, z; ; € X for any 4,5 € N.
Let (y1,y2,¥s,...) be a sequence in X. and z be a point in X. Suppose
that yi = LM(IL';‘,I 1 24,2, T4 3, ) for each 1.

I LM(y1,¥2,¥3,...) = z, then LM(mm(l),m(l)’zm(‘2),m(2)axm(a),m(s)a “w) =
z. .

4. Let {z;;}:; be a double sequence in X, that is, z; ; € X for any i,j € N.
Let (y1,¥2,¥s,-..) be a sequence in X. and z be a point in X. Suppose
that y; = LM (z;,1,%: 2, i3, ...) for each i.

If LM(z1,1,%2,2,%3,3,...) = 2, then LM (Ym(1), Ym(2)s Ym(3)» ---) = 2-

The function m(), which appears in the conditions 3 and 4, is called a modulus
of diagonal convergence.

Definition 2.5 (Effective Limit) A modular limit is called an effective limit
when the modulus of diagonal convergence of it is a recursive function.

Remark 2.6 The conditions 3 and 4 in the definition of modular limit means
that all the converging sequence under the modular limit are uniformly converg-
ing.

Definition 2.7 (Uniform Neighbourhood System) Let X be a set. The
series of subsets {Vj(z)}ieN,zex is a uniform neighbourhood system iff it satisfies
the followings:

z € Vi(z) C X for each i € N and each z € X.
Vi(z) D Vj(z) fori < 5
There is a function m : N = N such that if y € Vp,(;)() then z € V;(y)
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There is a function m' : N — N such that if y € Vin(5)(z) then Vi (5 (y) C
Vi(z)

The functions m and m’ in the conditions 3 and 4 are called the moduli.

Definition 2.8 (Effective Uniform Neighbourhood System) The uni-
form neighbourhood system is effective if both of the moduli are recursive func-
tions.

Remark 2.9 When we replace the condition 4 of the definition above with:
Vz € X.Vi € N.35 € N.Vy € V;(z).3k € N. Vi (y) C Vi(z)

then, the conditions defines the ordinary notion of countable neighbourhood

systems. If we exchange the order of quantifiers Yy and 3k, then, this condition

is equivalent to the condition 4 of the definition above.



Proposition 2.10 Let X be a set and {V;(z)}i; be a uniform neighbourhood
system over X. Then, X is a Hausdorff space iff ﬂN Vi(z) = {z} for any

z€eX.

Remark 2.11 There are several well-known definitions of uniform topology
which are equivalent to each other. One of them is the definition by uniform
neighbourhood systems. The following propositions show that modulus limit
also gives the equivalent definition of uniform topology.

Definition 2.12 (Closeness relation) Let LM be the modular limit of X.
The relation £ -+ y holds iff there is a sequence (1,3, Z3, ...) such that z = z;
and LM (z,,z2,%3,...) = y. We call this relation closeness relation.

Proposition 2.13 The followings hold. The function m( ) is the modulus of
diagonal convergence of the modular limit in the followings.

1. Ifi<j andz-ziy, thenz——i+y

2.Ifm(i)<j andz——)y, theny—-)x

3. If m(3) <j,z>y andy—)z then z 5 2.

4. If m(m()) <j andz—iz(—y, then z 5 y.

5. If it holds that z; —(> y for each i, then LM (zy, 2, z3,...) = ¥.

Lemma 2.14 Let X be a set and LM be a modular limit of modulus m over
X. For each i € N and each z € X, a subet Vi(z) C X is defined as Vi(x) =

{y |y > =} Then, {Vi(z)}:» is a uniform neighbourhood system of modulus m
over X, and it makes X a Hausdorff space.

Moreover, if LM is an effective limit, then {Vi(z)}: , is an effective uniform
neighbourhood system.

Lemma 2.15 Let X be a set and {V;(z)}; . be a uniform neighbourhood system
over X which makes X a Hausdorff space. A partial function LM : X* —, X
is defined as follows:
dom(LM) = {(z1,%2,...) | Jy € X. Vi € N.z; € Vi(y)}
LM (zy,zs,...) =y iff Vi € N. z; € Vi(y)
Note that such x is uniquely determined, because X is a Hausdorff space by the
neighbourhood system {Vi(z)}: .
Then, LM s a modular limit of modulus m over X.
Moreover, if {Vi(z)}iz i3 an effective uniform neighbourhood system, then
LM is an effective limit.

Remark 2.16 The previous lemmata 2.14 and 2.15 mean that modular limit is
corresponds to uniform neighbourhood system, and effective limit is corresponds
to effective uniform neighbourhood system.

Example 2.17 Let R be the set of all the real numbers. Define a partial
function LimE: N“ —, N as:



|zi — ;] <—:—+l.}

dom(LimE) = {(.’131,:1:2,:1:3,...) ]

LimE(zy,z2,...) = z iff limz; = 2
Then, this partial function LimFE is an effective limit with the modulus of diag-
onal convergence n + 2n.

Example 2.18 For i € N and z € R, put VR(z) Cc R as y € VR(z) iff
ly —z| < 1/i}. Then, VR(z) = {y | y D z} and {VR(z)}: is an effective
uniform neighbourhood system. '

Example 2.19 The functional space N — N is regarded as a topological space.
Define a partial function LM NN : (N =& N)¥ —, N - N as:

1. (z1,%3,...) € dom(LM N N) iff for any i < j < k, z;(3) = zx(3)

2. For (z1,x2,...) € dom(LMnN), LMn N(Z1,22,...) = (1 = z;(3))
The condition 1 means that z; and z have the common initial segment of length
J where j < k. Then, this LM N N is a modular limit with the identity function
i — 1 as the modulus of diagonal convergence, and it induces the ordinary
topology of N — N.

3 Algebraic Structure

Definition 3.1 (Algebraic structure) A sequence X = (|X|, f1, f2; 3, -
Ry, Rs, R3,...) is an algebraic structure iff it consists of the underlying set |X|,
partial functions f; : | X|9™(%) 5 |X|, and subsets R; C |X|0TH¥(R:), An
algebraic structure X has finite partial functions or countably many infinite
partial functions, and also X has finite relations or countably many infinite
relations. For any f; and any R;, the arities arity(f;) and arity(R;) belong to
OUNU{w}. The set of the functions and relations {fi, f2, f3,..., R1, Rz, R3, ...}
are called the signature of X.

We sometimes identify X to |X|, and simply write X for |X|.

We may define that an algebraic structure has many sorted, or it refers some
other algebraic structures.

Definition 3.2 (Algebraic Structure With Uniform Topology) Let X =
(1X1, f1, f2 f3, .-, R1, Ra, R3, ...) be an algebraic structure. Suppose that a par-
tial function f; = LM belongs to the signature, and f; = LM satisfies the
definition of modular limit over the domain |X|. Then, this X is an algebraic
structure with uniform topology by the modular limit LM.

If the modular limit is effective, then it is called an algebraic structure with
effective uniform topology

Example 3.3 we define an algebraic structure R = (|R|,0,1, +, —, X, /, LimE,
<) as follows:

The set |R| is the set of all the real numbers. The constants 0 and 1 are
the numbers 0 and 1 themselves. The functions +, — and x are the ordinary



summation, subtraction and multiplication. The partial function / is the or-
dinary division. The partial function LimE : R* —, R is defined as in the
example 2.17, which is a limit operation with modulus 1/n. The relation < is
the ordinary inequality without equality.

Then, This R is an algebraic structure with effective uniform topology.

We sometimes identify R and |R|.

4 Representation

Notation 4.1 We identify a function f : N — N to a infinite sequence (f(0),
f(1),f(2),..) € N“. For a finite sequence z € N* and a finite or infinite
sequence y € N* UNY, we write z C y when z is an initial segment of y. Put
#n+ : N = N* as the standard enumeration of N* and ¥n. : N* = N as its
inverse. -

Definition 4.2 (Recursive Type-2 Function) A partial function of N¥ —,
NY is called a partial Type-2 function or partial functional. A partial functional
F:N¥ -, N“ is recursive iff there is a partial recursive function f : N —, N
which satisfies the following three conditions. We write f for N+ 0 f o YN- -
N* — N*. Then, the conditions are the following:

1. The function f is monotone with respect to C, that is, for any y C z € N*,
fw C ). )

2. For each z : N, z € dom(F) iff there are arbitrary long f(y) such that
y C =, that is, for every n € N, there exists y C z such that f (y) is longer than
the length n.

3. For z € dom(F), F(z) is the infinite sequence such that f(y) C F(z) for any
yCz

Remark 4.3 This definition is equivalent to the notion of recursive functions
relative to another functions (which is given by Odifretti {O]). And also this is
equivalent to the notion defined by Type-2 machines (by Weihrauch [W]).

Definition 4.4 (Representation) A partial function r : N¥ —, X is a rep-
resentation of X iff it is a surjection, that is, range(r) =

Definition 4.5 (Pairing) A pairing function (—,~) : N x N — N is defined
as

(m+n—-1)2(m+n 2) +m,

which is a standard bijection of N x N — N.

- {m,n) =

Remark 4.6 With this paring function (—, —), we can regard a unary function
as a binary function, such as a unary unction (n + f(n)) : N = N as a binary
function ((m,n) = f((m,n))) : N2 5 N. As inverse, we can regard a binary
function as a unary function, such as a binary function ((m,n) — f(m,n)) :
N? - N as a unary functlon ({(m,n) » f(m,n)) : N = N.



Definition 4.7 (Recursive function with respect to representations)
Let X and Y be sets. Let r and r' be representations of X and of Y respectively.
A partial function f: X —, Y is recursive with respect to r and r' iff there is a
Type-2 partial recursive functional F' : N —, N“ such that for Cpr'o F. If
X =Y and r =, then we say simply that the f is recursive with respect to r.

Remark 4.8 We say that f : X? —, X is recursive with respect to r iff it is
recursive with respect to (r',r) where 7' is defined as:
r'(n = (w1(n), wz(n))) = (r(w1),r(wz)) for any w;, w; € N“.
We say similarly for f: X3 —, X, f: X* -, X and so forth.
We say that f : X“ —, X is recursive with respect to r iff it is recursive
with respect to (r”,r) where r” is defined as:
r'(n = (i = w((n,i))) = r(w) for any w € N¥.

Definition 4.9 (Reducibility) Let X be a set, and r be a representation of
X. A partial function f : N¥ —, X is continuously reducible to r if there is a
partial continuous functional F : N¥ — N“ such that dom(f) = dom(F) and
f =roF. The partial function f is reducible to r if such F is recursive.

Definition 4.10 (Admissibility) Let X be a topological space. A represen-
tation r : N* —, X is admissible if the following conditions hold:

1. (continuity) r is continuous.

2. (finality) Every partial continuous function q : N¥ —, X is continuously
reducible to r.

Remark 4.11 The notion of admissibility is just a topological notion, and does
not include none of effectivity. .

Lemma 4.12 Let X be an algebraic structure with uniform topology, and LM
be the modular limit of X, Let r be a representation of X. Suppose that LM is
computable with respect to r. Then any continuous partial function f : N* = X
r 18 continuously reducible to r.

Theorem 4.13 If a representation r of X is continuous, and the modular limit
of X s recursive with respect to r, then r is admissible.

5 Computability Structure

Remark 5.1 A binary partial recursive function f : N x N —, N induces a
total function of natural numbers into partial recursive functions (m — (n —
f(m,n))) : N - (N -, N). When we say a recursive function g : N —
(N —p, N), we will denote that there is a binary partial recursive function
J:N xN —, N such that g : m = g(m) = (n = f(m,n)).

Definition 5.2 (Term) Let {fi, f2,..., R1, R2,...} be a signature and V =
{v1,v2,v3,...} be a set of countably infinitely many variables. Then we de-
fine the set of formal expressions Term, which is defined for each ordinal o as



Termg =V
Termy4+1 = Term,
U {fi(t1, t2, '"!ta'r‘it'y(f.»)) | arity(f;) € {0}uU N,t; € Termqy }
U {fi(t1,t2,t3,...) | arity(f;) = w,t; € Termy}
Term, = 3L<J Termg for a limit ordinal o
¢ 4
It is easy to seen that Term, is saturated for uncountable ordinals a, because the
arity of every function is countable. Thus Term, is unique for any uncountable
ordinal a. We define Term as:
Term = Term, for the least uncountable ordinal a.
Elements of Term are called terms. '

Definition 5.3 (Evaluation) Let X be a structure. We define a partial func-
tion [-] : Term x (N =, X) =, X
- For a variable v; € V = Termy and a partial function p: N =, X,
[vi], is defined iff so is p(i), and [v;], = p(3).
—For a term f;(t1,12,...) € Termqy 1 — Term, and a partial function p : N =, X,
[fi(t1,t2,...)], is defined iff fi([t1],, [t2],,...) is defined

and [fi(t1,t2,.- Mo = fi([t1)s, [t2]p, )

Definition 5.4 (Standard representation of terms) We define a represen-
tation rr of Term with representations r, of T'erm, for any ordinals a.
Let j; : N — N be a function such that j;(n) = 1 + (i,n). Note that
. yN Ji(N) = {2,3,4, ...} and all the summands are disjoint to each other.

The function ro of V = Termy is defined as follows.
For z : N¥, z € dom(rp) iff z(1) =1
For ¢ € dom(ro), ro(z) = vg(2) _
The representation ry4; of Termqy; is defined as follows.
For =z : N¥, z € dom(ro) iff either
z € dom(ry)
or,
z(1) # 1,
the signature has the function f;(;)_,
and z o j; € dom(r,) for each i < arity(fz(1)-1)
For z € dom(rq+1),
if z € dom(r,) then royq;(z) = ro(z),
otherwise r441(2) = fz(1)-1(ra(Z 0 j1),ra(Z © j2),ra(z 0 j3), --.)
The representation r, of Term, for a limit ordinal « is defined as follows.
dom(ry) = ,@L<J dom(rg)
o]

For a € dom(r,),
if £ € dom(ro) then rq(z) = ro(z) = va(1),
and if z € dom(rg41) — dom(rg) then rqo(z) = rg41(x)
This r, is saturate as « is uncountable. We define r1 as
~ rr(z) = ro(z) for the least uncountable ordinal c.

10



Remark 5.5 It is obvious that this r, : N“ —, Term, is surjective. Thus, rr
is a surjection into Term.

Definition 5.6 (Computability Structure) Let X be an algebraic structure.
A subset S C N — X is a computability structure over X if S satisfies the
followings: .

1. (Permutation) For each s € S and each total recursive function f : N — N,
it holds that so f € S.

2. (Merging) For any s,s' € S, there is s € S such that s”(2n) = s(n) and
§"(2n + 1) = §'(n).

3. (Effective sequence of terms) For each s € S and each recursive function
f:N = (N =, N),if f(m) € dom(rr) and [r7(f(m))](ims((n,iy)) is defined for
eachm,n € N, then there is s' € § such that s'((m,n)) = [rr(f(m))]} i s((n.i))

Example 5.7 Regard N“ as an algebraic structure with uniform topology
(N“,LM N N), as in Example 2.19. Put Sn. as

{f : N = N“| f(?)(j) = g(4,5), g is a binary total recursive function}.
Then, this SN« is a computability structure over N¥. This SN is the standard
computability structure of it.

Definition 5.8 (Computable function) Let X and Y be algebraic structure
with effective uniform topology, and LM* and LMY be the effective limits of
them, respectively. Let Sx and Sy be computability structures of X and Y,
respectively.

Then, a partial function f : X — Y is computable if there exists a total
recursive function m : N2 — N and the following five conditions hold:

1. There is @ € Sx such that s(N) is dense in dom(f).

2. For each s € Sx, there is a partial recursive function i : N —, N such
that for each n € N, if s(n) € dom(f), then LMX (a(i(n, 1)), a(i(n,2)),
a(i(n, 3)),...) = s(n).

3. foa€e Sy _
4. For every (i1, iz, i3, ..) € N, if (a(i1), a(iz), alis), ...) = dom(LMX), then

there is a sequence (ji, j2, j3,...) € N* such that m(i;,,n) < jn for any
n € N.

5. if LM* (a(s,),a(i2), alis), ...) = z, and m(ij,,n) < jn for any n € N, then
LMY (f(ali)), f(ais)), f(aliz)), ) = f(=).
Proposition 5.9 Let f : X -, Y and g : Y —, Z be computable functions

with respect to (Sx, Sy) and (Sy,Sz), respectively. If range(f) C dom(g), then
go f is computable with respect to (Sx,Sz).

11



Notation 5.10 We abbreviate the following condition over a quadruple (X,
LM,r,S) as the condition (x):

— The first component X is an algebraic structures with effective uniform topol-
ogy.

— The second LM is the effective limits of X.

- The third r is a representation of X such that all the partial functions of
the signature of X are recursive with respect to r. Thus, S, is a computable
structures over X.

— As for the forth component, S = S;.

Lemma 5.11 Let (X,LM,r,S;) be a quadruple which satisfies the condition
(¥). Then, for each function f : N¥ — X, if f is computable with respect to
(Snw,Sy), then f is reducible to r.

Remark 5.12 This proof follows the steps similar to those in the proof of
Lemma 4.12.

Corollary 5.13 A partial function f : N¥ —, NY is recursive if it is com-
putable with respect to Sne .

Lemma 5.14 Let f be a partial function of N¥ —, N“. Suppose that f is
recursive and there is a € SN such that a(N) is dense in dom(f). Then, f is
computable with respect to SNw .

Corollary 5.15 Let f be a partial function of N“ —, N“. Suppose that there
is a € Snw such that a(N) is dense in dom(f). Then, f is recursive iff it is
computable with respect to Snw .

Lemma 5.16 Let (X, LMX,r, Sx) be a quadruple which satisfies the condition
(¥). Let Y be an algebraic structure with effective uniform topology, and LM Y
be the effective limit of it. Let Sy be a computability structure over Y. Suppose
that r is computable with respect to (Snw,Sx).

Then, for any f : X —, Y, if f or is computable with respect to (Snw, Sy),
then f is computable with respect to (Sx,Sy).

Theorem 5.17 (Main Theorem) Let (X, LMX rx,Sx) and (Y, LMY ry,
Sy) be quadruples which satisfy the condition (x). Suppose that rx and ry are
computable with respect to (Snw,Sx) and (Snw, Sy ), respectively.

Let f: X =, Y and F : N* -, N“ be partial functions which satisfy the
following:

1. forx =ryoF

2. range(F') C dom(Ry)

3. There is a € Sne such that a(N) is dense in dom(F).
Then, F' is recursive iff f is computable with respect to (Sx,Sy).
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6 Computability in Yasugi’s sense

Remark 6.1 There is another definition of computable functions, which is
given by Yasugi et al. [Y]. Their definition is defined by using uniform neigh-
bourhood system. We call the computability defined by their definition the
computability in Yasugi’s sense, or Y-computability.

Definition 6.2 (Computable function in Yasugi’s sense) Let X = (| X]|,
{VX(z)}iz,Sx) be a triples which consists of an underlying space X, an ef-
fective uniform neighbourhood system {V;X(z)}, and a computability structure
Sx. As is usual, we identify | X| to X. :
- A partial function f : X —, R is computable in Yasugi’s sense, or Y-
computable, iff the following hold: ’
1. For s € Sy, if s(N) € dom(f), then fos € Sr.
2 For any s € Sy, there is a total recursive function j; : N — N¥ such that
in) (%)) C V¥(f(2:)) for any ¢ and n. '
'f‘here are e € Sx and a total recursive function j. : N - N*“ such that
(3.1) The range e(N) is dense in X.
(3.2 f(V S (.'1:;)) C VR( f(z;)) for any ¢ and n.

63 U, Ve = X

Lemma 6.3 Let X be an algebraic structure with effective uniform topology,
and LM be the effective limit of it. Put {V;(z)} be the effective uniform neigh-
bourhood system defined as Lemma 2.14. Let Sx be a computable structure over
X.

If a function f : X — R is computable, then it is Y-computable.

Lemma 6.4 Let X be an algebraic structure with effective uniform topology,
and LM be the effective limit of it. Put {V;(z)} be the effective uniform neigh-
bourhood system defined as Lemma 2.14. Let Sx be a computable structure over
X. Suppose the following set is recursively enumerable for each s € Sx:
{(i,4,n,n') € N* | Vj(s(n")) C Vi(s(n))}
If a function f : X = R is Y-computable, then it is computable.

Corollary 6.5 Under the same assumption as the previous lemma (6.4), a
Junction f : X — R is computable iff it is Y-computable.

Remark 6.6 The algebraic structure R satisfies the assumption of the previous
lemma (6.4). Therefore, for each function of R — R, it is computable iff it is
Y-computable.

Remark 6.7 This condition appears in the definition of computability by Ya-

sugi et al.:
X —
in I/je(ian)(mi) =X.
The function j, corresponds to the modulus m in our definition.
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In their definition, the condition asserts only the existence of ¢ such that
z € VXj.(i,n)(x;) for z, but not the effectivity of such i. Our definition asserts
the effectivity of such i, because our definition asserts the numerical inequality,
which is recursively justified.

7 Conclusional remark

The essential definition of this work is Definition 5.8, which defines computable
functions over algebraic structures with effective uniform topology. The main
theorem (Theorem 5.17) says that the computability in our definition is equiv-
alent to that in the definition by Weihrauch and others, with some suitable
assumption. And also, Corollary 6.5 says that our computability is equivalent
to that by Yasugi and others, with some suitable assumption.

The author think that this definition 5.8 has some conditions on the domain
of the function, which seems inessential. The author would like to make this
condition more natural as a future work.
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