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Abstract

We propose acategory of topological spaces that promises to be
convenient for the purposes of domain theory as amathematical the-
ory for modelling computation. Our notion of convenience presupposes
the usual properties of domain theory, e.g. $\mathrm{m}\mathrm{o}\mathrm{d} \dot{\mathrm{e}}\mathrm{U}\mathrm{i}\mathrm{n}\mathrm{g}$ the basic type
constructors, fixed points, recursive types, etc. In addition, we seek to
model parametric polymorphism, and also to provide aflexible toolkit
for modelling computational effects as free algebras for algebraic the-
ories. Our convenient category is obtained as an application of recent
work on the remarkable closure conditions of the category of quotients
of countably-based topological spaces. Its convenience is aconsequence
of aconnection with realizability models.

1Introduction

The title of this note deliberately echoes that of Steenrod’s well-known pa-
per: A Convenient Category of Topological Spaces, [46]. In his paper, Steen-
rod sets out to find afull subcategory of the category Top of all topological
spaces that is “convenient” for the purposes of algebraic topology. One as-
pect of “convenience” that is particularly highlighted by Steenrod is carte
sian closure, aproperty famously not enjoyed by Top itself. He argues at
length that the category of compactly-generated Hausdorff spaces, which
is cartesian closed, does provide all the “conveniences” needed for doing
algebraic topology.
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Domain theory was originally developed by Dana Scott to meet the need
for amathematical theory capable of modelling adiversity of computational
and programming language phenomena, see [15] for an overview. The goal of
this note is to propose acategory that is convenient for this purpose, where,
by “convenienc\"e, we mean that the category should fulfill the general aim
as amply as possible.

Such anotion of “convenience” is deliberately vague, and thus open to
many interpretations. In Section 2, we formulate several specific demands
on a“convenient” category, each elaborating an aspect of the general idea
of “convenienc\"e. In the remainder of the note, we then develop anotion
of domain that promises to meet all the requirements. The domains we
settle on are certain topological spaces. Thus, once the programme of re-
search outlined in this note has been completed, we expect to end up with
a“convenient” category of “topological domains”.

This note presents an early overview of ongoing research. No proofs are
given. However, we distinguish clearly between results that have already
been established and “conjectures” representing future work.

2Requirements on aconvenient category

In this section we expand upon the notion of “convenience” by placing five
explicit requirements on aconvenient category. We do not argue that the
requirements we identify are the only possible ones, nor that they are essen-
tial for acategory of domains to qualify as “convenient”. Indeed, traditional
domain theory has progressed avery long way without meeting all our re-
quirements. The goal of this paper is rather to extend the achievements of
traditional domain theory in new directions.

Our first requirement is based on the close connection between topol-
ogy and computation, as developed, in particular, by Smyth, see [44] for
asummary. Adomain represents a“datatype” and must therefore have
an underlying set of associated “data items”. To each domain, it makes
sense to associate the set of all “observable” (an abstraction of “semidecid-
able”) properties over data items in the datatype. One can argue that the
“logic of observable properties” should be closed under finite conjunctions
and arbitrary disjunctions, i.e. that the extensions of the observable ProP-
erties should form atopology on the underlying set, see $[44, 48]$ . Thus a
domain should, at least, be atopological space. Moreover, by allowing ob-
servations to make use of maps between domains, one can derive that every
map between domains must be continuous. Furthermore, the notion of con
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tinuous function is itself an elegant mathematical abstraction of the notion
of computable function, under which the finitary aspects of computability
are modelled without recourse to any notion of algorithm. It is thus natural
to impose the following requirement.

Requirement 1(Topological category) The category of domains should
be afull subcategory of the category Top of topological spaces and contin-
uous functions.

The argument for Requirement 1has been conceptual. However, an
important benefit of the requirement is that domains lie in the realm of
mainstream mathematical structures. For one thing, this means that we
have amultitude of mathematical tools for manipulating domains. More
importantly, the topological structure is indispensible viewing familiar
mathematical objects, such as the real numbers, metric spaces, etc., as em-
bedded within domains. Such embeddings are essential for domains to be
used to model computation over many forms of nondiscrete data, as in,
e.g., $[10, 9]$ .

As asecond requirement, we demand that the category of domains sup-
port all the standard constructions on domains, including the ability to
model recursive definitions of both data and datatypes.

Requirement 2(Basic structure) The category ofdomains should model
(at least) the usual type constructors: cartesian product, $\mathrm{x}$ ;function space,
$\prec_{1}$

. smash product, $\otimes_{1}\cdot$ strict function space, $arrow[perp]$ ;coalesced sum, $\oplus$;and
lifting, $(\cdot)_{[perp]};$ see [1]. These should have the correct universal properties with
respect to the categories of “strict” and “non-strict” maps between domains.
The category should also model recursion and recursive types.

Requirement 2is alone sufficient for modelling many forms of determinis-
tic computation. Nevertheless, even in the realm of deterministic functional
computation, recursive types are not sufficiently powerful for all applica-
tions. There are many additional forms of “type constructor” that one
might also wish to model. In this note, we consider just one such feature,
which is particularly important due to its power and its relationship with
programming practice.

Requirement 3(Parametric Polymorphism) The category of domains
should model full second-0rder (parametric) polymorphism.

Here, it should, at least, be possible to incorporate parametricity using
relational parametricity in the sense of Reynolds, $[38, 29]$ . However, in the
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view of the author, it is not settled that relational parametricity is the final
story in giving amathematical account of parametricity. It is possible that
alternative accounts of parametric polymorphism may yet emerge.

It is also vital that the category of domains should model arich vari-
ety of programming language features and computational behaviours, going
beyond deterministic functional computation. The non-functional aspects
of real-world computation can often be encapsulated as computational $efarrow$

fects. As Plotkin and Power have argued, many such effects are modelled
by free algebras for algebraic theories, see [36]. These include the famil-
iar powerdomains used for modelling forms of nondeterminism, as well as
many other computational monads [31]. Accordingly, we make the following
requirement, whose importance was first recognised by Plotkin.

Requirement 4(Computational effects) The category of domains should
provide free algebras for awide class of algebraic theories.

At this stage, we leave open the extent of the class of theories considered, but
it should include, at the very least, all finitary equational algebraic theories.

Finally, we bring in an explicit connection with computability. It might
be possible to satisfy the above requirements using topological spaces of large
cardinality which have no possible computational significance. One would
like amodel in which all spaces have potential computational significance.
One strong way of ensuring this is:

Requirement 5(Effectivity) The notion of domain should have an ef-
fective counterpart, giving rise to anatural category of computable maps
between effective domains, satisfying Requirements 2-4 above.

This requirement also has the direct benefit of establishing notions of com-
putability that apply to all the constructions implicit in Requirements 2-4.

There are several conflicts between the above requirements and tradi-
tional domain theory, which we take to be the study of full subcategories
of the category of directed-complete partial orders (dcpos) and continuous
functions. By definition, all traditional categories of domains do satisfy Re-
quirement 1. As we shall see, it is possible for them to satisfy many of the
other requirements independently, but not all requirements in combination.

In order to satisfy Requirement 5, it seems necessary to restrict to full
subcategories of $\omega$ -continuous dcpos, on which notions of computability can
be defined using enumerations of the countable bases of such dcpos. The
category of $\omega$-continuous dcpos is not cartesian closed; so combining Re-
quirements 5and 2requires, at least, finding cartesian-closed full subcate
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gories. Such subcategories have been classified by Jung, see [1] for asurvey.
There are many, and it is indeed possible to satisfy Requirements 2and 5
in combination.

Requirement 3is more problematic. Indeed, to the best of my knowl-
edge, no existing category of domains has been exhibited as amodel of
parametric polymorphism. There do exist models of non-parametric poly-
morphism, based on dependent product operations on domains, see e.g. [8].
However, Jung has shown that there is an essential difficulity in finding
domain-theoretic models of polymorphism that are closed under the convex
powerdomain [26]. Thus there is aproblem in combining Requirement 4
with (even anon-parametric version of) Requirement 3.

Requirement 4is also in conflict with Requirements 2and 5, as the
following example, due to Plotkin (private communication), shows. In the
category of all $\omega$-continuous dcpos, free algebras are available for any finitary
equational theory. However, no nontrivial cartesian-closed full subcategory
of $\omega$-continuous dcpos is closed under the formation of free commutative
monoids. Thus, in traditional domain theory, it is impossible to simultane-
ously satisfy Requirements 2, 4and 5. This difficulty led Plotkin to first
pose the problem of finding acategory satisfying Requirements 2, 4and 5
in combination. His recent work with Power on computational effects [36]
has highlighted the computational importance of this problem.

The probabilistic powerdomain $[40, 24]$ gives another example of apos-
sible conflict between Requirements 2, 4and 5. Although the category of all
$\omega$-continuous dcpos is closed under the probabilistic powerdomain [23], Jung
and Tix have cast doubt on whether any cartesian-closed full subcategory
remains closed under it [27]. In this case, there is no definitive negative
result. Nonetheless, the formidable technical difficulties in the way of com-
bining $\omega$-continuous dcpos, probabilistic powerdomain and function space
raise the question of whether traditional domain theory provides the right
setting for combining probabilistic computation with Requirements 2and 5.

In contrast, it does seem possible to satisfy all of Requirements 2-5,
using notions of domain that arise in realizability models [28], The type
constructors and recursive types are worked out in $[28, 37]$ . The interpreta-
tion of parametric polymorphism is being worked out in detail by Birkedal
and Rosolini [7]. An indication of how to address free algebras appeared
in [33], although the details there are for the special case of powerdomains
only. Furthermore, many realizability models have an intrinsic notion of
computability built into them, rendering Requirement 5superfluous.

One major drawback of realizability models, however, is that the intrinsic
mathematical structure of the objects modelling types is intangible. Object $\mathrm{s}$
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are given as partial equivalence relations, possibly satisfying additional prop-
erties, over apartial combinatory algebra. In general, isomorphic objects
may have very different partial equivalence relations underlying them. It
is not at all straightforward to extract intrinsic properties of objects ffom
their external presentations as partial equivalence relations.

What we would like instead is anotion of domain given by an explicit
definition of the intrinsic mathematical structure involved. Requirement 1,
whose many other benefits we have already discussed, is astrong constraint
in this direction. It is this requirement that we take as our starting point
for deriving our convenient category of domains.

3Quotients of countably-based spaces

Requirement 1demands that our category of domains be afull subcate-
gory of Top. At the same time, Requirement 5demands that an effec-
tive version of the category be available. Thus our domains must be top0-
logical spaces to which it is possible to associate anotion of effectivity.
Such anotion of effectivity is known to be available for all countably-based
(a.k.a. second-countable) topological spaces. For example, the topology of
any such space $A$ can be “presented” using atopological pre-embedding
$\pi_{A}$ : $Aarrow P\omega,1$ where $P\omega$ is the powerset of $\omega$ with the Scott topology.
Given two such presentations $\pi A:A-P\omega$ and $\pi B:Barrow P\omega$ , acontin-
uous function $f:Aarrow B$ is said to be effective if there is some computable
$r:P\omega$ $arrow P\omega$ (in the standard sense, see [43]) such that $r\circ\pi A$

$=\pi_{B}\circ f.\mathit{2}$

For further discussion of related notions of effectivity, see e.g. [44, \S 5.1].
Restricting to countably-based spaces is unnecessarily constraining. It

turns out to be possible to associate anotion of effectivity with amore
general class of space. The spaces we consider axe arbitrary quotient spaces
of countably-based spaces, i.e. spaces $X$ for which there exists atopological
quotient $q:A-X$, where $A$ is countably based. We call such spaces
$qcb$ spaces, and we write QCB for the full subcategory of Top consisting of
such spaces. Quite unexpectedly, QCB has very good categorical structure.

Being apre-embedding means that, for every open $U\subseteq A$ , there exists an open $V\subseteq B$

such that $U=\pi_{A}^{-1}(V)$ . Apre-embedding is atopological embedding if and only if it is
an injective function.

$2\mathrm{I}\mathrm{n}$ general, $r$ only determines $f$ when $\pi_{B}$ is atopological embedding, i.e. when $B$ is To.
Areader who prefers effective maps to be determined by their computational component
may adapt the discussion throughout the paper by assuming all spaces to be To

58



Theorem 3.1 The category QCB has all countable limits and colimits and
is cartesian closed.

For proofs of the theorem see $[30, 41]$ . N.b., the countable colimits are
inherited ffom Top, but limits are not inherited; both finite products and
equalizers differ in QCB and Top.

Theorem 3.1 is amajor reason for considering the category of all qu0-

tients of countably-based spaces rather than simply restricting to countably-
based spaces themselves. The category of countably-based spaces does not
have coequalizers, and, more importantly, it is not cartesian closed.

In the remainder of this section we give two other characterizations of
qcb spaces. The first shows explicitly how qcb spaces can be provided with
an associated notion of effectivity. The second gives amore intrinsic char-
acterization of qcb spaces.

To give an account of effectivity, we introduce the following definitions,
which are motivated by the straightforward Proposition 3.4 below.

Definition 3.2 An $\omega$ -representation of atopological space $X$ is given by a
topological quotient $q:A-X$, where $A$ is acountably-based space.

Definition 3.3 An $\omega$-representation $q:Aarrow\cdot X$ is said to be tO-projecting
if, for every countably-based $B$ and continuous $f:B-X$, there exists a
continuous $g:Barrow A$ such that $q\circ g=f$ .

Proposition 3.4 Suppose that $q:A-\sim X$ and $r:Barrow\prime \mathrm{Y}$ are $\omega-$

projecting $\omega$ -representations. Then, for any continuous $f:X-\mathrm{Y}$ , there
exists a continuous $g:A-B$ making the square below commute.

$g$

$A$ $B$

$q\downarrow$ $|r$

$X$ $\mathrm{Y}$

$f$

Also, given arbitrary functions $f,g$ making the square cornmute, if $g$ is con-
tinuous then so is $f$ .

Thus $\omega$ projecting $\omega$-representations determine the topological structure of
the represented spaces to the extent that continuous maps between $X$ and
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$\mathrm{Y}$ are completely determined by continuous maps between the representing
countably-based spaces $A$ and $B$ .

The above definitions relate to the desire of having an associated notion
of effectivity as follows. The notion of an effective map between $X$ and
$\mathrm{Y}$ can be derived from the notion of effective map between $A$ and $B$ as
countably-based spaces. Specifically, we stipulate that acontinuous function
$f:Xarrow \mathrm{Y}$ is effective if there exists an effective continuous 9: $Aarrow B$

making the diagram commute. The notion of effectivity thus depends upon
presentations of $A$ and $B$ , and also upon $q$ and $r$ , but such dependency
is unavoidable. Effectivity is always associated with the presentation of
mathematical structure, rather than directly with the structure itself.

We have shown that anotion of effective map is available between those
spaces for which there exists an $\omega$-projecting $\omega$-representation. Such spaces
were first introduced in [30], where, using aresult due to Schr\"oder, it is
proved that they coincide with qcb spaces.

Another result of Schr\"oder’s gives amore intrinsic characterization of
qcb spaces. Recall that the relation of sequence convergence on atopological
space $X$ is defined by $(x:)arrow x$ if, for every open $U\ni x$ , the sequence (xj)
is eventually in $U$ (i.e. there exists $n$ such that, for all $i\geq n$ , $xi\in U$). A
subset $W\subseteq X$ is said to be sequentially open if $(x:)arrow x\in W$ implies that
$(x:)$ is eventually in $W$ . Trivially, every open subset is sequentially open.
We say that $X$ is sequential if every sequentially open subset is open. A
sequential pseudobase of atopological space $X$ is afamily $B$ of subsets of $X$

satisfying: for every open $U\subseteq X$ and convergent $(xi)arrow x$ $\in U$ , there exists
$B\in B$ such that $x\in B\subseteq U$ and $(x:)$ is eventually in $B$ . This notion is due
to Schr\"oder [42]. Note that afamily of open sets is asequential pseudobase
if and only if it is abase for the topology.

We can now summarise the main characterizations of qcb spaces.

Theorem 3,5 The following are equivalent for a topological space X.

1. $X$ is a $qcb$ space.

2. X has an $\omega$ -projecting $\omega$ -representation.

3. X is sequential and has a countable sequential pseudobase.

The implication 2implies 1is trivial. Lawson has given adirect proof
that 1implies 3[11]. Bauer gives the construction of an cj-projecting
$\omega$-representation from acountable sequential pseudobase for asequential
space [3]. Nevertheless, all the main ingredients of the theorem are, in a
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slightly different context, due to Schroder, see [42, Theorem 13] and and [41,
Theorem 3.2.4]. The latter result provides another interesting characteriza-
tion of qcb spaces using ageneralization ofWeihrauch’s notion of Baire space
representation [49]. This leads to an alternative (but presumably equivalent)
account of effectivity in terms of Type-2 Turing Machines.

There are many ways of understanding the cartesian-closed structure of
QCB. As in [30], the structure of QCB is preserved by an embedding
QCB $\subset_{arrow}\mathrm{E}\mathrm{q}\mathrm{u}$, where Equ is Scott’s category of equilogical spaces $[4].3$

This embedding allows one to understand limits in QCB in terms of lim-
its in Equ, which are defined using limits in Top, but with the caveat
that spaces are considered modulo an equivalence relation. Alternatively,
the cartesian-closed structure of QCB can be understood via structure-
preserving embeddings into many cartesian-closed coreflective hulls of Top.
For example, there are such embeddings into the categories of sequential
spaces [30], of (not necessarily Hausdorff) compactly-generated spaces, and
of core-compactly-generated spaces [11].

The existence of so many structure-preserving embeddings persuades the
author that QCB is an “inevitable” category, arising as asubcategory of any
of the main approaches to reconciling topological continuity and cartesian
$\mathrm{c}\mathrm{l}\mathrm{o}\mathrm{s}\mathrm{u}\mathrm{r}\mathrm{e}.4$ People differ in whether they prefer to consider cartesian-closed
subcategories of Top, but lose topological limits; or to consider cartesian-
closed supercategories of Top, retaining topological limits, but going outside
the familiar world of topology. In the author’s view, these two alternatives
are not in conflict. In either case, QCB lives as afull subcategory via a
structure reserving embedding. Moreover, all reasonable spaces lie inside
QCB. Furthermore, the existence of many categories embedding QCB
provides arange of alternative tools for understanding constructions in QCB
(e.g. one can use the sequential function space, the compactly-generated
function space, the function space in Equ, etc.).

On the other hand, in spite of so many available tools, aspects of the
cartesian closure of QCB remain hard to understand. For example, consider
the “type hierarches” over $\mathrm{N}$ (with the discrete topology) and $\mathbb{R}$ (with the
Euclidean topology) given by $\mathrm{N}$, $\mathrm{N}^{\mathrm{N}},\mathrm{N}^{\mathrm{N}^{\mathrm{N}}}$ , ... and $\mathbb{R},\mathbb{R}^{\mathrm{R}}$ , $\mathrm{R}^{\mathbb{R}^{\mathrm{R}}}$ , . .. . Here, $\mathrm{N}^{\mathrm{N}^{\mathrm{N}}}$

and $\mathbb{F}^{\mathrm{B}}$ are examples of non-countably-based spaces that axe nonetheless
qcb spaces. It is easily shown that these spaces are Hausdorff. Also, $\varphi^{\mathrm{N}}$ is
totally disconnected. As the following open questions illustrate, other basic

$3\mathrm{B}\mathrm{e}\mathrm{c}\mathrm{a}\mathrm{u}\mathrm{s}\mathrm{e}$ we are not requiring qcb spaces to be To, the To condition in the definition
of equilogical space must be omitted.

$4\mathrm{I}\mathrm{t}$ remains to be checked that there is astructure-preserving embedding of QCB into
Hyland’s category of “ffiter spaces” [18]. The author strongly expects this to be the case
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properties of their topologies remain, however, tantalisingly elusive.

Question 3.6 Are the spaces $\mathrm{N}^{\mathrm{N}^{\mathrm{N}}}$ and $\mathbb{R}^{\mathbb{R}^{\mathrm{R}}}$ regular?

Question 3.7 Is $\mathrm{N}^{\mathrm{N}^{\mathrm{N}}}$ zero dimensional (i.e. does it have abase of clopen
subsets) ?

Question 3.7 was posed in [5], where an application of apositive answer to
the question is given.

4Topological (pre)domains

Quotients of countably-based spaces form, apparently, the largest class of
topological spaces to which it is possible to associate anotion of effectiv-
ity. The category QCB thus addresses Requirements 1and 5. Moreover,
Theorem 3.1 shows that the category has surprisingly rich categorical struc-
ture. Nonetheless, it does not satisfy Requirements 2-4. In this section, we
address Requirement 2, by cutting down to afull subcategory of QCB.

It is easiest to address Requirement 2by identifying, in the first place, a
category of predomains within QCB. In traditional domain theory, pred0-
mains are distinguished from domains by not being required to have least
element in the partial order. (Thus predomains are dcpos, and domains are
pointed dcpos.) This relaxation allows, for example, the category of pred0-
mains to have countable coproducts. Although endomorphisms on predo
mains need not have fixed points, the familiar cartesian-closed category of
domains, which does have afixed-point operator, is recovered simply as the
full sucategory of those predomains that do have least element. The fixed-
point operator exists because partial orders are required to be directed com-
plete and because continuous functions (with respect to the Scott topology)
preserve directed suprema. In fact, as is well known, the weaker properties
of $\omega$-completeness and $\omega$-continuity suffice.

In traditional domain theory, the topology (the Scott topology) is derived
from the partial order. To define our notion of predomain, we also work
with order-theoretic properties, but we take the topology as primary and
the order as derived. Recall that the specialization order $\subseteq \mathrm{o}\mathrm{n}$ atopological
space $X$ is defined by $x\subseteq y$ if, for all open $U\subseteq X$ , $x\in U$ implies $y\in U$ . In
general $\subseteq \mathrm{i}\mathrm{s}$ apreorder on $X$ . The space $X$ is said to be To if $\subseteq \mathrm{i}\mathrm{s}$ apartial
order. We can now give adefinition of topological predomain.

Definition 4.1 (Topological predomain) Atopological predomain is a
topological space X satisfying the following properties
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1. $X$ is a qcb space;

2. [is an $\omega$-complete partial order (in particular, $X$ is $T_{0}$ );and

3. every open $U\subseteq X$ is inaccessible by $\omega$-lubs(i.e., for any ascending
sequence $x_{0}\subseteq x_{1}\subseteq x_{2}\subseteq\ldots$ , if $\mathrm{u}_{i}x_{i}\in U$ than $x_{i}\in U$ for some $i$ ).

Apart from being phrased with respect to $\omega$-lubs rather than directed lubs,
this definition recalls the notion of monotone convergence space [14].

Definition 4.2 Atopological space $X$ is amonotone convergence space if:
the specialization order on $X$ is adcpo (in particular, $X$ is $T_{0}$ ), and every
open subset of $X$ is Scott-0pen with respect to the order.

Monotone convergence spaces include: all $T_{1}$ spaces, all sober spaces, and
all dcpos with the Scott topology.

Proposition 4.3 A $qcb$ space is a topological predomain if and only if it is
a monotone convergence space.

Thus, because of the restriction to qcb spaces, it makes no difference whether
topological predomains are defined using $\omega$-lubs or using directed lubs.

Next, we give auseful category-theoretic characterization of topological
predomains. We write $\omega$ for the set of natural numbers under the Alexan-
droff topology on the their usual linear ordering. We write $\overline{\omega}$ for $\omega$ $\cup\{\infty\}$ ,
where $\infty=\mathrm{U}_{i}i$ , with the Scott topology.

Proposition 4.4 In the categor$ry$ QCB the following are equivalent.

1. $X$ is a topological predomain.

2. For all $qcb$ spaces $Z$ and maps $f:Z\mathrm{x}\omegaarrow X$ , there exists a unique
$g:Z\mathrm{x}\overline{\omega}-X$ such that the diagram below commutes:

$Z\mathrm{x}$

$[$

$Z\mathrm{x}\omega$

We write TP for the category of topological predomains and continuous
functions
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Corollary 4.5 TP is an exponential ideal of QCB.

Explicitly, this means that: (i) for topological predomains $X$ and $\mathrm{Y}$ , the
product $X\mathrm{x}\mathrm{Y}$ in QCB is atopological predomain; and (ii) for any qcb
space $X$ and topological predomain $\mathrm{Y}$ , the function space $\mathrm{Y}^{X}$ in QCB is a
topological predomain. Thus, in particular, TP is cartesian closed and the
embedding $\mathrm{T}\mathrm{P}=$ QCB preserves the cartesian-closed structure. It is
also easy to see, directly from the definition of topological predomain, that
TP is closed under countable coproducts in QCB (and hence in Top). The
existence of more intricate $(\mathrm{c}\mathrm{o})\mathrm{l}\mathrm{i}\mathrm{m}\mathrm{i}\mathrm{t}\mathrm{s}$ is aconsequence of the result below.

Proposition 4.6 (Schr\"oder) The category of monotone convergence spaces
is a full reflective subcategory of Top, and the reflection functor cuts down
to a refection $R$ :QCB $arrow \mathrm{T}\mathrm{P}$ .

Corollary 4.7 TP has all countable limits and colimits.

Limits in TP are inherited from QCB, but colimits are constructed using
the reflection. So neither limits nor colimits in TP are inherited, in general,
from Top. (This is afact of life, not aproblem.)

We now briefly discuss how Requirement 2has been met. First, another
definition is needed.

Definition 4.8 (Topological domain) Atopological domain is atopolog-
ical predomain for which $\subseteq \mathrm{h}\mathrm{a}\mathrm{s}$ aleast element.

The various type constructors listed in Requirement 2can all be defined on
topological domains entirely in the expected way. Their universal properties
are also as expected. The important categories here are: $\mathrm{T}\mathrm{D}$ , the category
of continuous functions between topological domains; and $\mathrm{T}\mathrm{D}[perp]$ , its subcat-
egory of strict maps (those preserving the least element). The category TD
is cartesian closed (it is an exponential ideal of $\mathrm{T}\mathrm{P}$), with aleast-fixed-point
operator; the category $\mathrm{T}\mathrm{D}_{[perp]}$ is symmetric monoidal closed, with respect to
$\otimes \mathrm{a}\mathrm{n}\mathrm{d}$ $arrow[perp]$ , and has $\oplus \mathrm{a}\mathrm{s}$ coproduct. Moreover, the inclusion of $\mathrm{T}\mathrm{D}[perp] \mathrm{i}\mathrm{n}$

TD has aleft adjoint, given by $(\cdot)[perp]$ , with the adjunction giving rise to a
model of intuitionistic linear type theory. Furthermore, TDx is also char-
acterized as the Eilenberg-Moore category of the monad given by $(\cdot)[perp] \mathrm{o}\mathrm{n}$

TP.5 Finally, the standard technology for recursive domain equations, [45],
$\epsilon$ As in ordinary domain theory, $\mathrm{T}\mathrm{D}[perp] \mathrm{i}\mathrm{s}$ also equivalent to the Kleisli category of the

lifting monad
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applies directly to $\mathrm{T}\mathrm{D}\mathrm{j}_{-}$ , which can be shown to be algebraically compact
in the sense of Preyd $[12, 13]$ .

We end this section by relating TP and TD to traditional categories
of domains. Firstly, note that TP contains very many topological spaces
that are not normally included in categories of predomains; for example:
$n$-dimensional Euclidean space $\mathbb{R}^{n}$ , and also $\mathbb{R}^{\omega}$ ; Baire space, $\mathrm{N}^{\omega}$ ; Cantor
space $2^{\omega}$ ;etc. Also, by Corollary 4.5, the type hierarchies $\mathrm{N}$, $\mathrm{N}^{\mathrm{N}}$ , $\mathrm{N}^{\mathrm{N}^{\mathrm{N}}}$ , $\ldots$

and $\mathbb{R}$
$\mathbb{R}^{\mathbb{R}}$ , $\mathbb{R}^{\mathrm{R}^{\mathrm{R}}}$ , . .. are in $\mathrm{T}\mathrm{P}$ .

Obviously, TP contains every dcpo whose Scott topology has acountable
base. In particular, every $\omega$-continuous dcpo is contained in $\mathrm{T}\mathrm{P}$ . Actually,
it can be shown that acontinuous dcpo is contained in TP if and only if
it is $\omega$-continuous Thus the extra generality of allowing non-countably-
based spaces does not manifest itself with continuous $\mathrm{d}\mathrm{c}\mathrm{p}\mathrm{o}\mathrm{s}.6$ As TP is
cartesian closed, it should be interesting to examine function spaces over
the notorious examples of $\omega$-algebraic dcpos that are not contained within
any of the cartesian-closed categories of ci-continuous epos, see e.g. [1]. We
have not yet performed the required calculations, but we strongly expect
that such function spaces in TP go outside the category of dcpos, i.e. that
they result in spaces whose topology is not the Scott topology.

On the other hand, well-behaved categories of dcpos do turn out to live
faithfully inside TD (and so also inside $\mathrm{T}\mathrm{P}$ ). Let $\omega \mathrm{S}$ be the category of
continuous functions between $\omega$-continuous Scott domains (i.e. bounded-
complete pointed $\omega$-continuous dcpos).7

Proposition 4.9 $\omega \mathrm{S}$ is an exponential ideal of QCB (hence also of $\mathrm{T}\mathrm{P}$ ,
and of $\mathrm{T}\mathrm{D}$ ).

Conjecture 4.10 $\omega \mathrm{S}$ is the largest full subcategory of pointed u-continuous
dcpos that forms an exponential ideal of $\mathrm{T}\mathrm{D}$ .

Being an exponential ideal is avery strong requirement. Aweaker require-
ment is merely to ask for the existing cartesian-closed structure of acategory
of domains to be preserved. Jung has identified the largest cartesian-closed
full subcategory, cjFS, of the category of pointed $\omega$-continuous dcpos [25].

Conjecture 4.11 The embedding $\omega \mathrm{F}\mathrm{S}arrowarrow \mathrm{T}\mathrm{D}$ preserves the cartesian-
closed structure.

$6\mathrm{T}\mathrm{h}\mathrm{i}\mathrm{s}$ is aspecial case of amore general result: acore-compact space is qcb if and only
if it is countably based, see [11].

$\tau$ One reason for requiring Scott domains to be pointed is that the category of all
bounded-complete $\omega$-continuous dcpos is not cartesian closed
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5Topological predomains and realizability

Proposition 4.9 and, if true, Conjecture 4.11 show that, to alarge extent,
traditional domain theory lives faithfully inside $\mathrm{T}\mathrm{D}$ . The benefit of the
much richer world provided by TD (and also $\mathrm{T}\mathrm{P}$ ) is that Requirements 3
and 4can also, apparently, be addressed. To appreciate this, we now give
an alternative characterization of the category TP using the techniques of
realizability semantics.

In this section, we assume the reader has some acquaintance with real-
izability models, as presented in [28]. We only consider models built over
Scott’s combinatory algebra Pw [43]. We write Asm(Pa;) for the associated
category of assemblies and Mod(7 u) for its full subcategory of modest sets.
Using the terminology of [28], consider the divergence $D=\{\emptyset\}$ . As in [28,
\S 4], the divergence determines alifting functor $L$ and dominance C. Us-
ing the lifting functor $L$ , we identify the notion of acomplete object of
Asm(Pu), see [28, \S 5]. Using the dominance $\Sigma$ , we define the notion of an
extensional object of Asm(Pci), see [28, \S 10]. Let CE(Pu)$)$ be the full sub-
category of complete extensional objects of Asm(P\mbox{\boldmath $\omega$}). As in [28], CE $(7 \mathrm{c}\mathrm{v})$

is in fact afull subcategory of Mod(P\mbox{\boldmath $\omega$}). Moreover, for very general rea-
sons, CE(P\mbox{\boldmath $\omega$}) is awell-behaved category of predomains in Mod$(7 \omega)$ ; see,
for example, [32] (where extensional objects are called regular H-posets).

In fact, CE(Pu) is much more that awell-behaved category of predo
mains. It is acomplete internal full subcategory of Asm(7 u) in the sense
explained in $[19, 21]$ . This implies many properties: CE(Vu) is afull reflec-
tive subcategory of Asm$(7 \omega)$ ; as an internal category, CE(Vu) is cocom-
plete; CE(P\mbox{\boldmath $\omega$}) is amodel of the polymorphic A-calculus; and, by $[39, 7]$ , this
model can be refined to yield amodel of parametric polymorphism. Finally,
following the approach of Phoa and Taylor [33], it should be possible to use
the internal completeness of CE(P\mbox{\boldmath $\omega$}) to construct free algebras for (at least
finitary) algebraic theories. Although the details of this construction need
further work, there seems to be no fundamental obstacle to it succeeding. In
summary, the category CE(P\mbox{\boldmath $\omega$}) promises to satisfy Requirements 3and 4.

At this point, the reader may be wondering what all this has to do with
topological (pre)domains. The connection is provided by the result below.

Theorem 5.1 The categories TP and CE(P\mbox{\boldmath $\omega$}) are equivalent

This theorem is aconsequence of properties of the embedding of QCB into
the category of countably-based equilogical spaces given in [30], using the
fact that the latter category is equivalent to Asm(P\mbox{\boldmath $\omega$}) [5]. Several further
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ingredients are needed in the proof, including the characterization of TP
given by Proposition 4.4.

6Summary and further work

We have introduced acategory TP of topological predomains, with asub-
category TD of topological domains, that together promise to meet our 5
requirements for “convenienc\"e. In the definition, Requirements 1and 5
were explicitly taken account of by the use of qcb spaces, as in Section 3.
Requirement 2was established directly in terms of the the topological defi-
nition of the categories TP and $\mathrm{T}\mathrm{D}$ . On the other hand, our arguments for
Requirements 3and 4were indirect, making use of aconnection with realiz-
ability models. (It should be repeated that the argument for Requirement 4
is not yet rigorous.)

As was emphasised in Section 2, one of the major benefits ofworking with
acategory of topological spaces is that one is working with (at least to some
extent) familiar mathematical structures. We thus view it as very desirable
to establish Requirements 3and 4in direct topological terms. It should
not be necessary to take adetour through areadability model in order
to understand the interpretation of polymorphic types and computational
effects.

In the case ofRequirement 3, our results indicate the existence of apurely
topological model of parametric polymorphism. In fact, by constructing the
model over TDjl, it should be possible to obtain aconcrete model combining
parametric polymorphism, intuitionistic linear type theory and fixed points.
As has been argued by Plotkin $[34, 35]$ , such acombination of features is
immensely powerful. The existence of readability models of this setting was
first outlined by Plotkin, and is being worked out in detail (and in much
greater generality) by Birkedal and Rosolini [7]. Asyntactic model, based on
aterm calculus quotiented by operational equivalence, has been presented
by Bierman, Pitts and Russo [6]. However, to the best of my knowledge, the
only existing model defined in terms of concrete mathematical structures
is due to R. Hasegawa, using his bicategorical theory of twiners [16]. Our
work demonstrates that it is also possible to obtain apurely topological
model of linear parametricity and fixed points. It is to be hoped that a
direct topological interpretation of parametric polymorphism in the model
will prove forthcoming.

For Requirement 4, the presence of arbitrary countable colimits in TD
suggests that free algebras should be available for algebraic theories that
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are, in asuitable sense, countably presented. For defining free algebras for
computational effects, countable presentations should be of similar useful-
ness to the countable enriched Lawvere theories of Plotkin and Power [36],
although the details will necessarily be different as TD is not locally count-
ably $\mathrm{p}\mathrm{r}\mathrm{e}\mathrm{s}\mathrm{e}\mathrm{n}\mathrm{t}\mathrm{a}\mathrm{b}\mathrm{l}\mathrm{e}.8$ It is plausible that, in $\mathrm{T}\mathrm{D}$ , it will also be possible to
allow operations of uncountable arity, as long as the “arity” is given by a
countably-based space, possibly even an arbitrary qcb space. Precise condi-
tions on the algebraic theories should emerge when Requirement 4is worked
out in detail.

In addition to providing the general construction needed to verify Re-
quirement 4, it will also be of interest to look at specific examples of compu-
tationally interesting effects; for example, probabilistic choice, which is tradi-
tionally modelled by the probabilistic powerdomain $[40_{;}24]$ . As has already
been reported, in the context of traditional domain theory, there are (possi-
bly insurmountable) difficulties in combining the probabilistic powerdomain
with any cartesian-closed category of continuous dcpos [27]. However, it is
well established that the probabilistic powerdomain lives naturally in wider
categories of topological spaces than dcpos, see e.g. $[17, 2]$ . Our categories
TP and TD will allow such awider topological notion of probabilistic pow-
erdomain to be combined with the usual domain-theoretic constructions (as
summarized in Requirement 2) and also with polymorphism. At the time of
writing, we have an explicit definition of aprobabilistic powerdomain in $\mathrm{T}\mathrm{P}$ .
However much remains to be done to relate it to the established definitions
for $\omega$-continuous dcpos (and wider classes of spaces). Also, we would like to
characterize the probabilistic powerdomain as afree algebra, as in [23].

Another very interesting topic for future research is to combine Require-
ments 3and 4in the stronger sense of extending the notion of parametric
polymorphism to incorporate parametricity for the operators associated with
computational effects.

In this note, we have used effectivity as amotivating factor in the
identification of qcb spaces and in the subsequent definition of topological
(pre)domains. However, Requirement 5has only been dealt with in acursory
manner. In particular, we have glossed over one important issue. The sim-
ple account of effectivity for QCB given in Section 3is, in itself, insufficient
as an account of effectivity in $\mathrm{T}\mathrm{P}$ . The problem is that an effective version
of Proposition 4.4 is required in order for domain-theoretic constructions,
such as fixed points, to exist in the category of effective maps. In order to

$8\mathrm{I}\mathrm{t}$ is almost certainly impossible for any locally presentable category to satisfy either
of Requirements 3and 5.
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implement this concretely, additional effective information is needed in the
“presentation” of atopological predomain. Obtaining apalatable explicit
description of this effective structure is one possible goal for future research.
Moreover it should also be established that all the constructions needed in
fulfilling Requirements 2-4 behave well with respect to effective maps.

There is, however, an alternative more conceptual approach to effectivity
in $\mathrm{T}\mathrm{P}$ . This is, simply, to extract the notion of effectivity and its properties
as aconsequence of all constructions being formalizable in the internal logic
of the realizability category Asm(Pcv), or rather in its associated subcat-
egory of effective maps. This approach should, of course, be equivalent to
the external approach discussed above.

Ultimately, it will thus be beneficial to have both the topological ac-
count of TD and the alternative realizability account worked out in detail.
Moreover, the realizability account suggests other perspectives. Theorem 5.1
gives one example of asituation in which the category of complete exten-
sional objects in arealizability category turns out to have avery elegant
concrete description (as the category $\mathrm{T}\mathrm{P}$ ). This is consistent with the estab-
lished observation that, in many different realizability models, the complete
extensional objects form the category of predomains with the most natural
external decription, see the introduction to [32] for other examples. Never-
theless, several other categories of predomains are available in realizability
models, see $[28, 32]$ for overviews. It would be particularly interesting to
obtain aconcrete description of the category Rep(7 u) of replete objects
in Asm$(7 \omega)$ , as defined by Hyland and Taylor $[20, 47]$ , which is nicely
characterized as the smallest full reflective exponential ideal of Asm(P\mbox{\boldmath $\omega$})
containing the object $\Sigma$ . Considered as acategory of topological spaces,
Rep(7 u) forms acategory of predomains contained in $\mathrm{T}\mathrm{P}$ . This contain-
ment is strict. For example, the space of natural numbers with the topology
of cofinite subsets is atopological predomain that is not replete. This space
is awell-known example of a $T_{1}$ space that is not sober. Indeed, the very def-
inition of repleteness suggests aconnection between repleteness and sobriety.
In an attempt to make this connection rigorous, recall that the category of
sober topological spaces is afull reflective subcategory of Top, see e.g. [22].
The following question, which should be compared with Proposition 4.6,
seems nontrivial.

Question 6.1 Is the sober reflection of a qcb space also a qcb space?

If (and only if) the answer to this question is positive, then it holds that
the category Rep(7 u) is equivalent to the category of sober qcb spaces
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Such an equivalence would provide avery elegant concrete description of
the category Rep(P\mbox{\boldmath $\omega$}). This would be interesting as, at the time of writing,
no concrete description of the category of replete objects in areadability
model has ever been established.
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