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1. Introduction–The Waring-Goldbach problem for cubes.
Being based on Vinogradov’s method in his proof of the three prime

theorem, Hua started discussing representations of natural numbers as
sums of powers of prime numbers. This problem is often refered as the
Waring-Goldbach problem. In 1938, Hua [4] proved, amongst others,
that every sufficiently large odd integer can be written as the sum of nine
cubes of primes. In fact, he established an asymptotic formula for the
number of representations of large natural numbers as the sum of $s$ cubes
of primes, for each $s$ exceeding 8.

The above result of Hua implies that for each $s$ exceeding 9, every
large integer can be written as the sum of $s$ cubes of primes, because
for any integer $n$ , either $n$ $-(s-9)2^{3}$ or $n-(s-10)2^{3}-3^{3}$ is odd.
In this direction, therefore, the next target is the sum of eight cubes of
primes. It is conjectured that every large even number can be written in
the latter manner. Although no one could succeed in proving it by now,

some results were shown concerning this problem. First, Roth [6] proved
that every large integer can be written in the form

$n$ $=p_{1}^{3}+\cdots+p_{7}^{3}+x^{3}$ ,

where $p_{\dot{l}}$ ’s are primes and $x$ is anatural number. Briidern [2] improved
this result, by showing that when $n$ is even and large, one can restrict $x$

to $P_{4}$ in the above representation. ( $P_{f}$ denotes anatural number having

at most $r$ prime divisors, counted according to multiplicity.) By changing

the sieve procedure in Briidern’s proof, the author [5] substituted $P_{3}$ for
$P_{4}$ in Briidern’s theorem. It is of course desired to replace $P_{3}$ further with
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$P_{1}$ , that is, aprime, but it seems to me that even the improvement to $P_{2}$

is way beyond the current state of technique.
We then proceed to the sum of seven cubes. Needless to say, the situ-

ation becomes harder than the case of eight cubes, but it is still possible
to show that every large integer can be written as the sum of seven cubes
of almost primes. Indeed, Briidern [3] established that every large integer
$n$ can be written in the form

$n=p^{3}+x_{1}^{3}+\cdots+x_{5}^{3}+y^{3}$ ,

where $p$ is aprime, $x$:’s are $P_{5}$ , and $y$ is $P_{69}$ . The purpose of this short ac-
count is to report several refinements on the latter result of Briidern. This
work was essentially done while Ivisited the University of Michigan at
Ann Arbor through courtesy of Professor Trevor D. Wooley, and enjoyed
the benefits of aFellowship from the David and Lucile Packard Foun-
dation, from April to June 1997. Iam disappointed and ashamed that
even now (as of March 2003) Icould not complete the paper of this work
yet. Also, Iwould like to apologize to the organizer, Professor Noriko
Hirata-Kohno, for violating the deadline for this report (...as usual).

2. Problems on sums of seven cubes.
We are concerned with the conclusions of the following form:
every large integer can be written as $x_{1}^{3}+\cdots+x_{7}^{3}$, where $x_{i}$ is $P_{r_{*}}$. for

each $i$ . ”

As Briidern [3] mentioned, there are various combinations of $r_{\dot{l}}$ ’s for
which one can prove the latter statement. As regards this problem, per-
sonally Iam interested in three questions. Here they are:

(A) What is the possible least value of $\max\{r_{1}, \ldots, r_{7}\}$?

(B) What is the possible least value of $r_{1}+\cdots+r_{7}$ ?

(C) How many variables can we force to be primes? (In other words,
what is the possible largest number of $i’ \mathrm{s}$ with $r:=1?$)

Probably one can expect that every sufficiently large natural number
can be written as the sum of seven cubes of primes, so we may conjecture
that the answers for these questions are 1for (A), and 7for both (B) and
(C), in truth. Before writing down the answers that Iactually proved, we
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should mention acongruence condition relating the sum of seven cubes
of primes.

When we consider representaions of $n$ as the sum of seven cubes of
primes, it is natural to impose the following condition on $n$ :For every
natural number $q$ , the congruence

$n$ $\equiv x_{1}^{3}+\cdots+x_{7}^{3}$ $(\mathrm{m}\mathrm{o}\mathrm{d} q)$

has asolution such that all the $x_{i}’ \mathrm{s}$ are coprime to $q$ . By elementary
argument, one may easily confirm that the latter condition is eventually
equivalent to 2\dagger $n$ and 9{ $n$ . What happens if $n$ violates $\mathrm{i}\mathrm{t}^{7}$ For instance,
suppose that $9|n$ . Then for $q=9^{*}$ , the above congruence has no solution
with $(x_{1}x_{2}\ldots x_{7},9)=1$ . Therefore, if such an $n$ is written as the sum of
seven cubes of primes, then at least one of the primes must be not coprime
to 9, namely, it must be 3. Thus $n$ is asum of seven cubes of primes, if and
only if $n-3^{3}$ is asum of six cubes of primes. Still $n$ may be written as the
sum of seven cubes of primes, but the representation problem no longer
involves seven variables in practice. In this sense the above congruence
condition arises naturally, when one investigates the sum of seven cubes
of primes. And as amodest form of the above conjecture, one may say
that every large $n$ satisfying 2\dagger $n$ and 9\dagger $n$ can be written as the sum of
seven cubes of primes.

’It may be worth pointing out not only that 9looks similar to $q$ in shape, but
also that in Japanese, 9is pronounced exactly the same way as the letter $” \mathrm{q}"$ . How
curious!

$\dagger \mathrm{A}\mathrm{n}$ elementary deliberation on the above congruences may convince us that most
likely this statement is true even in the cases where $2|n$ or $9|n$ . The hardest case will
be the integers $n$ satisfying $14|n$ and $n\equiv \mathrm{O}\mathrm{o}\mathrm{r}-2(\mathrm{m}\mathrm{o}\mathrm{d} 9)$ . If such an $n$ is written as
the sum of seven cubes of primes, then three of the seven primes must be 2, 3and 7,
which means that $n-2^{3}-3^{3}-7^{3}$ must be the sum of four cubes of primes. Although
one may expect so if $n$ is large, one must face aproblem on four cubes which seems
very hard to solve.

In this context, moreover, it may be worth recording here that 7is presumably the
least value of $s$ for which every large integer can be written as the sum of $s$ cubes of
primes. To see this, suppose that an odd natural number $n$ satisfies the congruences
$n+1\equiv 0$ or $\pm 1(\mathrm{m}\mathrm{o}\mathrm{d} 9)$ and $n\equiv\pm 1(\mathrm{m}\mathrm{o}\mathrm{d} 7)$ , and that $n$ is written as the sum of six
cubes of primes. Then elementary argument on congruences reveals that there must
exist three primes $\mathrm{p}\mathrm{i}$ , $p_{2}$ , $p_{3}$ such that $n-2^{3}-3^{3}-7^{3}=p_{1}^{3}+p_{2}^{3}+p_{3}^{3}$ . But if $n\leq X$ ,
then $p_{\dot{\iota}}\leq X^{1/3}$ , so simply there are at most $O(X(\log X)^{-3})$ such numbers $n$ . Hence
almost all numbers satisfying the congruence conditions we are now assuming cannot
be written as the sum of six cubes of primes.
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3. Results.
In connection with the congruence condition observed in the previous

section, we introduce the numbers $a_{n}$ and $b_{n}$ as follows;

$a_{n}=\{_{2’}^{1}$

,
$\mathrm{w}\mathrm{h}\mathrm{e}\mathrm{n}n\mathrm{i}\mathrm{s}\mathrm{e}\mathrm{v}\mathrm{e}\mathrm{n}\mathrm{w}\mathrm{h}\mathrm{e}\mathrm{n}n\mathrm{i}\mathrm{s}\mathrm{o}\mathrm{d}\mathrm{d},$

,
$b_{n}=\{\begin{array}{l}\mathrm{l},\mathrm{w}\mathrm{h}\mathrm{e}\mathrm{n}9\{n3,\mathrm{w}\mathrm{h}\mathrm{e}\mathrm{n}9|n\end{array}$

Then, as for the questions (A) and (B) above, the following conclusions
may be obtained.

Theorem 1Every sufficiently large integer $n$ can be written as each of
the following forms;

(i) $n$ $=x_{1}^{3}+\cdots+x_{5}^{3}+(a_{n}y_{1})^{3}+(b_{n}y_{2})^{3}$ , where $x$: ’s are $P_{4}$ , and $y_{1}$ , $y_{2}$

are $P_{3}$ .

(ii) $n=p^{3}+x_{1}^{3}+\cdots+x_{4}^{3}+(a_{n}b_{n}x_{5})^{3}+y^{3}$ , where $p$ is a prime, $X$: ’s are
$P_{3}$ , and $y$ is $P_{5}$ .

The part (i) says that every large integer can be written as the sum
of seven cubes of $P_{4}$ , and we may consequently answer 4to the question
(A). By (ii), as regards odd integers $n$ with 9\dagger $n$ , we may answer 21 to
the question (B).

Theorem 1may be proved by adding two ingredients to the method of
Briidern [3]. One of them is concerned with the technique that is called,
for example, as “Vaughan’s iterative method restricted to minor arcs”
In [3], asimpler version of the latter method was adopted, but we may do
better at this point by appealing to the original argument of Vaughan [8].
Another point is about sieve methods. Briidern [3] used aweighted sieve,
but we apply the switching principle (or, the reversal role technique) with
the ordinary linear sieve. It seems that the switching principle may give
stronger conclusions than weighted sieves, in most of the situations where
it can be applied.

We then proceed to the problem (C). Iconfess that all my efforts to
answer 4to this problem have ended in failure by now, while one can
easily answer 3to (C) by acouple of known results. In fact, it follows
immediately from the work of Vaughan [7] that when $n$ is alarge integer,
the number of positive integers of the form $n-p_{1}^{3}-p_{2}^{3}-p_{3}^{3}$ with primes $p_{i}$
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is $>>n^{8/9+\epsilon}$ , for any fixed $\epsilon$ $>0$ . On the other hand, Briidern [1] showed
that the number of positive integers less than $n$ that is not the sum of four
cubes is $<<n^{37/42+\epsilon}$ , for any given $\epsilon>0$ . Since $8/9>37/42$ , these results
together indicate the existence of an integer of the form $n-p_{1}^{3}-p_{2}^{3}-p_{3}^{3}$

with primes $p_{i}$ that is written as the sum of four cubes, whenever $n$ is
large. This tells that 3is apossible answer for (C).

Moreover, it is possible to refine the last conclusion by saying that
every large $n$ can be written as $n=p_{1}^{3}+p_{2}^{3}+p_{3}^{3}+x_{1}^{3}+\cdots+x_{4}^{3}$ with
primes $p_{i}$ and almost primes $x_{j}$ . In this respect, Isuppose that the best
result may be given by the vector sieve of Briidern and Fouvry. Our
method of the proof of Theorem 1can also say something on this, due
to Wooley’s breaking classical convexity device. Via the latter way and
some numerical computation, Iconfirmed that in the last representation
of $n$ , one can restrict $\mathrm{x}\mathrm{i}$ , $x_{2}$ and $x_{3}$ to $P_{10}$ , and $x_{4}$ to $P_{24}$ , for example. In
any case, rather than refining the quality of almost primes here, Iwould
like to make serious effort towards establishing 4as apossible answer for
(C).

4. Sums of eight cubes of almost primes.
Finally Iwould like to discuss the questions on the sum of eight cubes

corresponding to (A), (B) and (C) above. As is written in the introduc-
tion, Roth [6] answered 7for the question corresponding to (C), and the
improvement on this seems far beyond our grasp at present. The result
of the author [5] shows that 10 is apossible answer for the question corre-
sponding to (B). To beat it, one must work with the sum of seven cubes
of primes and acube of $P_{2}$ , and it is again quite hard to do for now, I
think. As regards (A), the best known answer is 3in view of [5], and
there is room for improvement on this. Actually, Idiscussed this problem
with Briidern, and obtained the following result recently. We now recall
the definition of $a_{n}$ in the previous section.

Theorem 2Every sufficiently large integer $n$ can be written as
$n$ $=p_{1}^{3}+\cdots+p_{5}^{3}+(a_{n-1}p_{6})^{3}+x^{3}+y^{3}$ ,

where $p_{\dot{l}}$ denotes primes, $x$ and $y$ are $P_{2}$ .

Iconfess that Ispent quite alot of time on this problem, but at last it
could be proved within the techniques of Briidern [2] and Kawada [5]
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