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Abstract

In this paper we give asummary of joint work concerning Lam! equa-
tions having finite monodromy

1Second order equations with finite monodromy

Consider the set of second order linear Fuchsian differential equations of the
form

$Ly=0$ , $L \in \mathbb{C}[z, \frac{d}{dz}]$

having finite monodromy group. Denote this set by $A$. As is well-known, $A$ is
precisely the set of second order equations over $\mathbb{C}(z)$ whose solution set consists
of functions algebraic over $\mathbb{C}(z)$ . By abuse of language we call the elements from
$A$ algebraic differential equations.
Consider an equation $Ly=0$ from the set $A$. At every point of $a\in \mathrm{P}^{1}$ the equals

tion $Ly=0$ has two local exponents $\mathrm{p}\mathrm{i}$ , $\rho_{2}$ . We call $|\rho_{1}-\rho_{2}|$ the local exponent
difference at $a$ . At every non-singular point the local exponent difference is 1.
Suppose conversely that the local exponent difference of $Ly=0$ at $a$ equals 1.
Since $Ly=0$ belongs to $A$ there are no local logarithmic solutions. Denote the
local solutions at $a$ by $(z-a)^{\rho}f_{1}(z)$ and $(z -a)^{\rho+1}f_{2}(z)$ , where $f1$ , $f_{2}$ are locally
biholomorphic at $a$ . Then the differential equation $(z-a)^{-\rho}L((z-a)^{\rho}y)=0$

has the solutions $f_{1}$ , $(z-a)f_{2}$ and $z=a$ is anon-singular point of the new
differential equation.
An equation from $A$ is called pure if the only integral exponent difference that
is allowed to occur is 1. In particular, apparent singularities are forbidden with
such equations. Denote the subset of pure equations by $A0$ . The set of pure
equations is stable under the substitution $Larrow A(z)R(z)^{-\rho}L\circ R(z)^{\rho}$ for any
$A(z)$ , $R(z)\in \mathrm{C}(\mathrm{z})$ and $\rho\in \mathrm{Q}$ . It is also stable under automorphisms of $\mathrm{P}^{1}$ , that

is, replacing $z$ by $az+b\overline{\overline{az+d}}$ for any $(\begin{array}{ll}a bc d\end{array})\in GL(2, \mathbb{C})$ . These two operations give

an equivalence relation in Aq. Denote this equivalence relation $\mathrm{b}\mathrm{y}\sim$ . We have
the following Theorem
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Theorem 1.1 Let notations be as above. Then $A\mathrm{o}/\sim is$ a countable set.

Aproof of this Theorem is given in the last section. As aconsequence of this
Theorem one can start an enumeration of the set A. We perform this enumera-
tion using an increasing number singular points of the differential equation. Let
us start with Fuchsian equations having two singularities, which we may assume
to be 0, $\infty$ . Such an equation is of the form $z_{d}^{2^{d}}4_{z}^{2}+az_{\overline{d}z}^{d\mathrm{p}}+by=0$ . It has a
basis of solutions of the form $z^{\beta 1}$ , $z^{\beta 2}$ where $\rho_{1}$ , $\rho_{2}$ are zeros of $x^{2}+(a-1)x+b$ .
Algebraicity of the solutions is equivalent to $\rho 1$ , $\rho 2\in \mathbb{Q}$ . Hence $a$ , $b\in \mathbb{Q}$ .
The first interesting case is that of three singularities. By application of an
equivalence transformation we can see to it that the singularities are 0, 1, oo
and at 0, 1at least one local exponent is 0. These properties characterise the
Gaussian hypergeometric equation, having the famous hypergeometric series

$F(a, b, c|z)= \sum_{n=0}^{\infty}\frac{(a)_{n}(b)_{n}}{(\mathrm{c})_{n}n!}z^{n}$

as solution, where $(x)_{n}=x(x+1)\cdots(x+n-1)$ is the s0-called Pochhammer
symbol. The numbers $a$ , $b$ , $\mathrm{c}$ are the parameters of the hypergeometric equation.
In 1873 H.A.Schwarz [Schw], using ideas of Riemann, gave acomplete list of all
hypergeometric equations having an algebraic solution set.
The next step would be to study second order equations with four singularities.
However in this case we encounter difficulty. In the previous cases the equation
was determined by the location of the singularities and the local exponents. In
other words, local data. In the case four singularities there is one parameter
which is not determined by local data. This is called the accessory parameter.
The dependence of the monodromy group on the accessory parameter is as yet
little understood. It is possible however to find conditions on the accessory
parameter for the solutions to be algebraic. In particular, we shall do this for
the Lam\’e equation.

2The Lam\’e equation
Let $n\in \mathbb{Q},g_{2}$ , $g_{3}$ , $B\in \mathbb{C}$ . The Lam6 equation with these numbers as parameters
is the equation given by

$p(z) \frac{d^{2}y}{dz^{2}}+\frac{1}{2}p’(z)\frac{dy}{dz}-(n(n+1)z+B)y=0$

where $p(z)=4z^{3}-g_{2}z-g_{3}$ and we assume that $p(z)$ has three distinct zeros
$z_{1}$ , $z_{2}$ , $z_{3}$ . This equation will be abbreviated by

$L_{n,B}y=0$ .
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The local exponents are 0, 1/2 at the three finite singularities $\mathrm{a}\mathrm{n}\mathrm{d}-n/2$, $(n+1)/2$

at $\infty$ . Since the equation does not change under $narrow-1-n$ we shall assume
$n\geq-1/2$ . The number $B$ is the accessory parameter of the equation.

Consider a local set of solutions around anon-singular point and consider also

the action of the monodromy group $M$ on this space. The local monodromies $\gamma_{i}$

at the finite singularities $z_{i}$ have $\mathrm{e}\mathrm{i}\mathrm{g}\mathrm{e}\mathrm{n}\mathrm{v}\mathrm{a}\mathrm{l}\mathrm{u}\mathrm{e}\mathrm{s}\pm 1$ and hence $\gamma_{1}^{2}=\gamma_{2}^{2}=\gamma_{3}^{2}=\mathrm{I}\mathrm{d}$ .
Moreover, $717273700=\mathrm{I}\mathrm{d}$ where $\gamma_{\infty}$ is the local monodrmy at $\infty$ . Moreover, $M$

is generated by the $\gamma_{i}$ and the $\gamma_{\dot{l}}$ are reflections. So $M$ is as0-called reflection
group.
There are two particular cases to be mentioned. The first one is $n+1/2\in \mathbb{Z}$ .
Since $n+1/2$ is the local exponent difference at $\infty$ , logarithmic solutions at $\infty$

may arise.

Theorem 2.1 (Brioschi-Halphen) Suppose $n+1/2\in \mathbb{Z}_{\geq 0}$ . Then there ex-
ists $p_{n}\in \mathbb{Z}[g2/4, g3/4, B]$ of degree $n+1/2$ in $B$ such that $L_{n,B}y=0$ has no
logarithmic solutions at $\infty$ if and only if $p_{n}(g_{2}, gs, B)=0$

The polynomial $p_{n}$ is known as the Brioschi-Hdph\’en determinant. In particular,
if there are no logarithmic solutions, then $\gamma_{\infty}$ acts as ascalar. It is not hard
to see that $\gamma^{2}.\cdot=\mathrm{I}\mathrm{d}$ for $i=1,2,3$ and 717273 scalar imply that $M$ modulo
scalars equals Klein’s four group $V_{4}$ . In other words, if $p_{\mathrm{n}}(g_{2}, g_{3}, B)=0$ then
the monodromy group is finite. For example, when $n=3/2$ we have $B^{2}-3g_{2}/4$

There are overcountably many $g_{2}$ , $g_{\mathrm{S}}$ , $B$ satifying $B^{2}-3g_{2}/4=0$ Notice also that
our equation is not pure for such triples since the local exponent difference at
$\infty$ is 2. So we see that Theorem 1.1 cannot hold if we drop the purity condition.
The next case of interest is $n\in \mathrm{Z}$ . Then $n+1/2$ is ahalf integer and $\gamma_{\infty}$ is also
areflection. So we now have

$\gamma_{1}^{2}=\gamma_{2}^{2}=\gamma_{3}^{2}=\gamma_{\infty}^{2}=\mathrm{I}\mathrm{d}$ , $\gamma_{1}\gamma_{2}\gamma \mathrm{s}\gamma_{\infty}=\mathrm{I}\mathrm{d}$ .

From these relations it follows easily that the subgroup $H$ generated by $\gamma_{1}\gamma_{2}$

and 7273 is an abelian subgroup of $M$ of index 2. We can now distinguish two
cases.

1. $H$ contains an element with two distinct eigenvalues. Denote the corre-
sponding eigenfunctions by $y_{1}$ , $y_{2}$ . With respect to this basis the group $H$

is asubgroup of
$\{$ $(\begin{array}{ll}\lambda 00 \lambda^{-1}\end{array})$ $|\lambda\in \mathbb{C}^{*}\}$

The monodromy group $M$ itself is then asubgroup of

$\{$ $(\begin{array}{ll}\lambda 00 \lambda^{-1}\end{array})$ , $(\begin{array}{ll}0 \lambda\lambda^{-1} 0\end{array})$ $|\lambda\in \mathbb{C}^{*}\}$
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2. All elements of H have coinciding eigenvalues. Then, with respect to a
suitable basis, H is asubgroup of

$\{\pm(\begin{array}{ll}1 \lambda 0 1\end{array})$ $|\lambda\in \mathbb{C}\}$ .

The monodromy group $M$ itself is then asubgroup of

$\{$ $(\begin{array}{ll}\pm 1 \lambda 0 \pm 1\end{array})$ $|\lambda\in \mathbb{C}\}$

and $M$ acts reducibly. The one dimensional invariant subspace corre-
sponds to the s0-called Lam6 solutions.

The following classical theorem characterises the occurrence of Lam6 and Her-
mite solutions.

Theorem 2.2 (Lamb) Suppose $n\in \mathbb{Z}_{\geq 0}$ . Then there is a polynomial $p_{n}\in$

$\mathbb{Z}[g2/4, g\mathrm{s}/4, B]$ of degree $n$ in $B$ such that there eists a solution of the form

$\prod_{\dot{l}=1}^{3}(z-z:)^{\epsilon=}Q(z)$

with $\epsilon:\in\{0,1/2\}$, $Q(z)\in \mathbb{C}[z]$ if and only if $p_{n}(g_{2}, g_{3}, B)=0$ .

Moreover, the case described in this Theorem is the only case in which the Lamb
equation is reducible over $\mathbb{C}(z)$ (see $\mathrm{M}$ ).

3Algebraic Lame equations
In this section we suppose that the monodromy group $M$ of the Lam\’e equation
is finite. The group $M$ is generated by the three local monodromy elements
$\gamma_{1},\gamma_{2}$ , $\gamma_{3}$ , each having eigenvalues $\pm 1$ . Through the classification of finite sub-
groups of $PGL(2, \mathbb{C})$ we know that $M$ modulo scalars is either one of the fol-
lowing groups. The cyclic group $C_{n}$ of order $n$ , the dihedral group $D_{n}$ of order
$2n$, the alternating groups $A_{4}$ , $A_{5}$ and the permutation group $S_{4}$ . Moreover, in
each of these cases we can find an explicit description of the matrix group in
[K]. The following theorem is immediate.

Theorem 3.1 (Baldassarri) The group $M$ modulo scalars cannot be A4.
This follows from the fact that the $\gamma_{\dot{l}}$ still have order two if we consider them as
elements of $PGL(2,\mathbb{C})$ and $A_{4}$ cannot be generated by elements of order two.
Amore refined description of $M$ can be given when we use the classification
of Shepherd and Todd of finite complex reflection groups. Afinite complex re-
flection group is afinite subgroup of $GL(m, \mathbb{C})$ which is generated by complex
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reflections. Acomplex reflection is asemi-simple element all of whose eigenval-
ues except one are equal to 1. In the following theorem an element $g\in GL(m, \mathbb{C})$

acts on $\mathbb{C}[x_{1}, \ldots,x_{m}]$ via $(x_{1}, \ldots,x_{m})^{t}\mapsto g(x_{1}, \ldots, x_{m})^{t}$ . The action of $g$ on a
polynomial $P$ is denoted by $P^{g}$ . We define

$\mathbb{C}[x_{1}, \ldots, x_{m}]^{G}:=$ {$P$ $\in \mathbb{C}[x_{1}$ , $\ldots$ , $x_{m}]|P^{g}=P$ for all $g\in G$ }.

Theorem 3.2 Shepherd-Todd) Let $G$ be a finite subgroup of $GL(m, \mathbb{C})$ .
Then $G$ is a finite complex reflection group if and only if $\mathbb{C}[x_{1}, \ldots, x_{m}]^{G}$ is

a polynomial ring freely generated by $n$ elements $I_{1}$ , $\ldots$ , $I_{m}$ .

Let $G$ be afinite complex reflection group and $I_{1}$ , $\ldots$ , $I_{m}$ be aset of generat-
ing invariants. We can assume them to be homogeneous polynomials. Denote
the degree of $I_{\dot{1}}$ by A. and suppose that $d_{1}\leq d_{2}\leq\cdots\leq d_{m}$ . Then the 4.
are uniquely determined and they are called the degrees of $G$ . In their paper
[ST] Shepherd and Todd also give a complete classification of aU finite complex

reflection groups. We can use their classification to list the possible finite mon-
odromy groups $M$ that occur for the Lam6 equation. In the case when $m=2$

we get, using the further restriction that $M$ is generated by order 2reflections,

the following list of possibilities.

$G(4,2,2)$ , $G(N, N, 2)(N\geq 3)$ , $G_{12}$ , $G_{13}$ , $G_{22}$

Here $\mathrm{G}(4,2,2)$ is the group of order 16 generated by

$(\begin{array}{ll}i 00 -i\end{array})$ , $(\begin{array}{ll}-1 00 1\end{array})$ , $(\begin{array}{ll}0 \mathrm{l}1 0\end{array})$

Its quotient by scalars is Klein’s four group $V_{4}$ The group $\mathrm{G}(\mathrm{N},\mathrm{N},2)$ is the
dihedral group of order $2N$ generated by

$\{$ $\exp(2\pi i/N)0$ $\exp(-2\pi 0:/N))$ , $(\begin{array}{ll}0 11 0\end{array})$

The group $G_{12}$ is generated by

$\frac{1}{\sqrt{2}}$ $(\begin{array}{ll}0 1+i1-i 0\end{array})$ , $\frac{1}{\sqrt{2}}$ $(\begin{array}{ll}1 \mathrm{l}1 -1\end{array})$ , $\frac{1}{\sqrt{2}}$ $(\begin{array}{l}1i-i-1\end{array})$

The group $G_{1\mathrm{S}}$ is the group generated by the elements of $G_{12}$ together with

$(\begin{array}{ll}i 00 i\end{array})$ . The groups G12, $G_{13}$ modulo scalars are isomorphic to $S_{4}$ . They will

be called octahedral groups. Finally, the group $G_{22}$ is generated by

$(\begin{array}{ll}i 00 \dot{l}\end{array})$ , $\frac{1}{\sqrt{5}}(_{\zeta_{5}^{2}-\zeta_{5}^{3}}^{\zeta_{5}-\zeta_{5}^{4}}$ $\zeta_{5}^{2}-\zeta_{5)}^{3}\zeta_{5}^{4}-\zeta_{5}$ , $\frac{1}{\sqrt{5}}(_{\zeta_{5}^{4}-1}^{\zeta_{5}^{3}-\zeta_{5}}$ $\zeta_{5}^{2}-\zeta_{5}^{4)}1-\$

Its quotient by scalars is $A_{5}$ and we call it the icosahedral group. We have the
following Theorem.
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Theorem 3.3 (Van der Waall) Suppose the Lam\’e equation $L_{n,B}y=0$ has

finite monodromy group M. Then

7. $M=G(4,2,2)\Rightarrow n\in 1/2+\mathbb{Z}$

2. $M=G(N, N, 2)\Rightarrow n\in \mathbb{Z}$ and $N\neq 4$

3. $M=G_{12}\Rightarrow n\in\pm 1/4+\mathbb{Z}$

4. $M=G_{13}\Rightarrow n\in\pm 1/6+\mathrm{Z}$

5. $M=G_{22}\Rightarrow n\in\pm 1/10,$ $\pm 3/10,$ $\pm 1/6+\mathrm{Z}$

Moreover, in each of the cases we can find a Lam\’e equation such that the group
actually occurs together with the given residue class $n$ $(\mathrm{m}\mathrm{o}\mathrm{d} \mathbb{Z})$ .

Acomplete proof can be found in [W] and [BW]. Partial results in this direc-
tion were obtained by Baldassarri [B] and Chiarellotto [C]. In [C] and later [L]
there is amethod to count the number of inequivalent Lamb equations whose
projectivised monodromy group is agiven dihedral group.
In [B] it is stated that the octahedral group cannot occur when $n\in 1/6+\mathbb{Z}$ .
However, this is due to an error since the Lame6 equation with $g2=1$ , $g3=$
$0$ , $B=0$, $n=1/6$ does have octahedral monodromy, as it is the rational pull-
back of the hypergeometric equation $x(x-1)y’+(5x/4-3/4)y’-(7/24^{2})y=0$
by the substitution $x=z^{2}$ . The latter hypergeometric equation has octahedral
monodromy.

4Enumeration of algebraic Lr\’e equations
For each choice of group $M$ and parameter $n$ there is an algorithm to construct
all $g_{2}$ , $g_{3}$ , $B$ such that the group $M$ actually occurs. Here we give only an exam-
ple of such aconstruction. We like to determine aU algebraic Lam6 equations
with parameter $n=3/10$ . According to Theorem 3.3 the monodromy group
must be $G_{22}$ . This has an invariant of degree 12. Let $y_{1}(z)$ , $y_{2}(z)$ be two $1\triangleright$

cal solutions around infinity. Then there is abinary form I of degree 12 such
that $I(y_{1}, y_{2})$ is invariant under monodromy. Hence it is arational function in
$z$ . Moreover, since the local exponents at all finite points are non-negative, we
have $I(y_{1}, y_{2})\in \mathbb{C}[z]$ . The explicit solutions read

$y_{1}(z)=z^{3/20}(1+ \frac{5B}{4}\frac{1}{z}+(\frac{25B^{2}}{192}-\frac{7g_{2}}{1280})\frac{1}{z^{2}}+\cdots)$

$y_{2}(z)=z^{-13/20}(1+ \frac{5B}{36}\frac{1}{z}+(\frac{25B^{2}}{4032}+\frac{299g_{2}}{8960})\frac{1}{z^{2}}+\cdots)$ .

The only degree twelve monomials that occur in $I(y_{1}, y_{2})$ are therefore, $y_{1}^{11}y_{2},y_{1}^{6}y_{2}^{6}$ , $y_{1}y_{2^{l}}^{11}$

The others all contain ffactional powers of $z$ . We must find $\alpha,\beta$ such that
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$I=y_{1}^{11}y_{2}+\alpha y_{1}^{6}y_{2}^{6}+\beta y_{1}y_{2}^{11}\in \mathbb{C}[z]$ Notice that the three relevant monomials
are of $\mathrm{o}\mathrm{r}\mathrm{d}\mathrm{e}\mathrm{r}-1,3,7$ in $1/z$ . Up to order $1/z^{3}$ we have

$I$ $=$
$z+ \frac{125B}{9}+\frac{10000B^{2}-3g_{2}}{112}\frac{1}{z}+$

$+ \frac{750000B^{3}+650Bg_{2}-63g_{3}}{2128}\frac{1}{z^{2}}+O(\frac{1}{z^{3}})$

The coefficients of $1/\mathrm{z}$ and $1/z^{2}$ must be zero. Notice that through the substition
$zarrow\lambda z$ in the Lame equation the parameter $B$ changes into $B/\lambda$ . Hence after
suitable normalisation we can assume that $B$ has some arbitrarily given value.
We take $B=1/1\mathrm{O}\mathrm{O}$. It then follows from the vanishing of our two coefficients
that $g_{2}=1/3$ and $g_{3}=5/108$ . Applying Kovacic’s algorithm to this particular
case shows that we have indeed an algebraic differential equation.

5Proof of Theorem 1.1
Given alinear differential equation from $A_{0}$ , let $M\subset GL(2, \mathbb{C})$ be its finite
Galois group. The conjugacy class of $M$ depends on the choice of alocal basis
$y_{1}$ , $y_{2}$ with respect to which $M$ is determined. According to F.Klein’s work,
$y_{1}$ , $y_{2}$ can be chosen in such away that $M$ modulo scalars is one of aconcrete list
of possible groups in $PGL(2, \mathbb{C})$ . They are the cyclic group $C_{N}$ of order $N$, the
dihedral group $D_{N}$ of order $2N$ , the tetrahedral group $A_{4}$ , the octahedral group
$S_{4}$ and the icosahedral group As. Let $G$ be such agroup. Arational function

$f(z)$ is called $G$-invariant when $f(_{z+} \frac{a}{c}zA\frac{b}{d})=f(z)$ for every $(\begin{array}{ll}a bc d\end{array})\in G$ . The

$\mathrm{G}$-invariant rational functions form asubfield of $\mathbb{C}(z)$ whi$\mathrm{c}\mathrm{h}$ we will denote by
$\mathbb{C}(z)^{G}$ . Klein constructed for each $G$ an explicit rational function $J\acute{G}(z)\in \mathbb{C}(z)$

such that $j_{G}$ generates $\mathbb{C}(z)^{G}$ . Moreover, $j_{G}$ ramifies only above 0, 1, $\infty$ .
Now consider the composite function $\mathrm{R}\{\mathrm{z}$ ) $=j_{G}(y_{1}/y_{2})$ . Then $R(z)$ is invariant
under monodromy, hence ameromorphic function on $\mathrm{P}^{1}$ , i.e. $R(z)\in \mathbb{C}(z)$ . Let
$z_{0}\in \mathrm{P}^{1}$ . The ramification order of $R(z)$ at $z_{0}$ is equal to the local exponent dif-
ference of $Ly=0$ at $z_{0}$ times the ramification order $\mathrm{o}\mathrm{f}j_{G}$ at $y_{1}(z\mathrm{o})/y_{2}(z\mathrm{o})$ . This
implies in particular that any point $z_{0}$ where the local exponent difference is not
an integer, must be mapped to aramification point $\mathrm{o}\mathrm{f}j_{G}$ by $z0\mapsto y_{1}(z\mathrm{o})/y_{2}(z\mathrm{o})$ .
Since $j_{G}$ ramifies only above 0, 1, $\infty$ , we conclude that $R(z\mathrm{o})\in\{0,1, \infty\}$ . Let $z_{0}$

be any point such that $\mathrm{R}\{\mathrm{z}\mathrm{q}$ ) $\neq 0,1$ , $\infty$ . Then $z_{0}$ must have integral exponent
difference. Since our equation is pure this difference is 1and therefore $R(z)$ is
unramified in $z_{0}$ . We conclude that $R(z)$ is as0-called Belyi-function, arational
function $R:\mathrm{P}^{1}arrow \mathrm{P}^{1}$ such that $R$ ramifies only above 0, 1, $\infty$ .
According to [Schn, Lemma I. $\mathrm{I}$] the set of Belyi functions is countable when we
consider two Belyi-functions $f(z)$ , $f( \frac{az+b}{cz+d})$ as equivalent. The set of functions $j_{G}$

is also countable and therefore the set of ratios $y_{1}(z)/y_{2}(z)$ modulo fractional
linear transformations in $z$ is countable. Suppose now that two differential
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equations $\tilde{L}y=0$ and $Ly=0$ give rise to the same quotient $y1/y2=\tilde{y}1/\tilde{y}2$ .
Differentiate both sides to get $W/y_{2}^{2}=\tilde{W}/\tilde{y}_{2}^{2}$ where $W$ and $\tilde{W}$ are the Wronskian
determinants of the differential equations. For example $W(z)=y_{1}’y_{2}-y1y_{2}’$ . It is

well-known that $W(z)=S(z)^{a}$ for some $S(z)\in \mathbb{C}(z)$ and $a\in \mathrm{Q}$ . And similarly
$\tilde{W}(z)=\tilde{S}(z)^{\overline{a}}$ . Hence $\tilde{y}_{2}=\tilde{S}^{\tilde{a}/2}S(z)^{-a/2}y_{2}$ and we conclude that $Ly=0$ and
$\tilde{L}y=0$ are equivalent. Hence, up to equivalence the set of equations in Ais
countable, as asserted. qed
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