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ON PRIME-INDEPENDENT MULTIPLICATIVE FUNCTIONS

WENGUANG ZHAI(JINAN)

1. Introduction

An arithmetical function f : N — C with f(N) # {0} is called a multiplicative
function if f(mn) = f(m)f(n) holds for any m,n € N with (m,n) = 1. Obviously,
if f is multiplicative, then f(1) = 1 and the values of f(n)(n > 2) depend on
f(@*)(p € P,a € N). We say a multiplicative function f(n) is prime-independent
multiplicative function if for any p € P and o € N, the value of f(p®) does not
depend on p but only on a.

We can define the prime-independent multiplicative function in another way.
Suppose g : N — C is any map such that g(N) # {0}. Define

ifn=1,
(1.1) f(n) = { e o(e), ifn>1

Then f(n) is a prime-independent multiplicative function and we say it is gener-
ated from g. Throughout this paper , we use this definition.

There are many well-known prime-independent multiplicative functions.

Example 1.1. Let a(n) denote the number of non-isomorphic abelian groups
with n elements. It is well-known that a(n) is multiplicative and a(p*) = P(c)
for any p € P, a € N, where P(«) is the number of unrestricted partitions of o
Thus a(n) is prlme-mdependent multiplicative.

Example 1.2. The Dirichlet divisor function d(n) is prime-independent mul-
tiplicative since d(p®) = a + 1 for any p € P and a € N. ,

Example 1.3. Suppose n > 1 is an integer and write n = p{* - - - p2. We say
an integer u is an exponential divisor of n if

u=pi* - -pin = Bilai(d =1,-+- ).

Let d®(n) denote the number of exponential divisors of n for n > 1 and d(®)(1) =
1. Then d®(n) is prime-independent multiplicative since d(®)(p®) = d(a) for any
p€Pand a €N.

The aim of this paper is to study the local density property of integer-valued
prime-independent multiplicative functions.

Definition. If [ > 1 is a fixed integer and {a,} ia any subset of N. ‘We say
{an} possesses the local density d; if the limit
(1.2) d=limz" > 1

T—00
'nS:L‘,an=l
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 We suppose now that ¢ : N — N is any map such that g(N) # {1} and f is
generated from g. For any fixed [ > 1, define
Fj={neN: fin)=1},Fs(x)=#{neN: f(n)=1[n < z}.

When f(n) = a(n), The asymptotic behaviour of F; ,(z) was studied by Kendall
and Rankin[10], Ivié[6], Kritzel[12,13], Kritzel and Wolke[14].

The asymptotic behaviour of F; ;(z) for general prime-independent multiplica-
tive functions was studied by Ivi¢[7]. Define

(1.3) Fis(z) = dy o+ R(@),

where d; y > 0 is a constant depending only on g and /.
When g¢(1) = 1, Ivié proved that uniformly in !

(1.4) R(z) < z'/%log’ z,if ¢(2) =1,

(1.5) R(z) < z'/?e~ 4@

if there is a prime p such that p|g(2) but p JI, where A > 0 is a positive constant

and
7(z) := (log z)*/>(log log z)~*/*,

and
(1.6) R(z) < z*?(loglog ) 'log ' z

where ¢ = min{B > 1: p|g(2),p® || L}.

When g(1) > 1, Ivié proved that if [ = p°l’, p f/I', where p is a prime divisor of
g(1), then
(1.7) F ¢(z) < z(loglog z)* ' log™" z.

In this paper we shall further improve Ivié’s results .

2. The case g(1) =1

2.1. On F’l’f(l').

In this section we consider the case g(1) = 1. First introduce some definitions
connected with g. Since g(N) # {1}, there exists an integer £ > 2 such that
g(1) =---=g(k—1) = 1, but g(k) > 1. We define ry to be the smallest j > k
with g(j) = 1if 1 € {g(n) : n > k} otherwise we define 7y = co.

Let Qi(z) denote the number of k—free numbers not exceeding z. If the Rie-
mann Hypothesis (RH) is true, then for some constant 0 < 0 < 1/k the asymp-
totic formula

_ __f_ Ok
(2.1) Qi () 0 + O(z%)

holds. For example, we can take
Oy =17/54+¢,6;, = T/(8k +6) + (3 < k < 5),0s = 67/514 + ¢, etc.
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See Jia[9] , Graham and Pintz[2].
Remark. We always suppose that 1/6; ¢ N.

Now we state the results of Fj ¢(z). For [ = 1, we have
Theorem 2.1. The asymptotic formula

(2:2) F5(z) = di,5z + O(z"/*e~41®)
holds.

If RH is true , then
(2.3) Fi¢(z) =di sz + do f.’EI/r" + 0(3;1/(7'0+1—T09k))
for 7o < 1/6) and
(2.4) Fi ;(z) = dy sz + O(z%%),

for rg > 1/914:

Remark. If ry = oo, then Fj ; is the set of all k—free numbers.

Now we suppose ! > 2. Let r denote the smallest j such that g(j) > 1 and
9(4)|l- Suppose I = g°(r)l',c > 0,g(r) f'. Obviously , r > k.

Theorem 2.2. If r = k, then for any fixed integer N > 1 we have

N
(2.5) F ¢(z) = dy yx + zV/* > Q;(loglogz)log7 'z
+0 (:cl/ *(log ) V?(loglog m)c“l) ,

where @Q;(t) is a polynomial in ¢ of degree not exceeding ¢ — 1.
If r > k, then

(2.6) Fi #(z) = dy jz + O(z/*e @),

If RH is true , then (2.6) can be further improved.
Theorem 2.3. Suppose RH is true and k < r < 7.
If r < 1/6y, then for any fixed integer N > 1, we have

(2.7) F(z) =djx+ /7 Z Q;(loglogz)log™
j=1

+0 (zl/ "(log z) "N "(loglog :c)“'l) ,

where Q;(t) is a polynomial in ¢t of degree not exceeding ¢ — 1.
If r > 1/6, then

(2.8) F, f(:L‘) d; ST+ O(:Eak)

Theorem 2.4. Suppose RH is true and r > ro.
If ro < 1/6, then

(29) E f((l?) dl JT + d IL'I/TO + O( 1/(T°+1‘709k)).
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If ro > 1/9k) then
(2.10) Fi(z) = disz + O(z™).

Taking f(n) = d©(n), we get the following Corollary 2.1.
Corollary 2.1.
If ] =2°,¢c>0,2 /', then for any fixed integer N > 1 we have

N .
(2.11) Fl a0 (2) = d) gz + /2 > Q;(loglogx) log™7 1z

Jj=1

+0 (:Ul/ 2(log z) "V 2(loglog x)c_l) ,

where @Q;(t) is a polynomial in ¢ of degree not exceeding ¢ — 1.
If 2 I, we have

(2.12) Fa0(x) = dijgoz + O(z'/?e~ @),
If 2 J and RH is true, then we have |
(2.13) F) o (z) = dy g0 + O(z%).

Corollary 2.2. Suppose g(1) = g(3) =1, ¢g(2) > 1.
(1) If g¢(2) || I for some ¢ > 1, then for any fixed integer N > 1 we have

N
(2.14) Fif(z) = dijz + 123" Qj(loglogz)log ™ 'z
=1

+0 (:cl/ 2(log )"V ?(loglog x)c‘l) ,

where Q;(t) is a polynomial in t of degree not exceeding ¢ — 1.
(2) If g(2) J1, then

(2.15) Fl,f(x) = d ¢tz + O(.’I)l/ze_A'Y(z)).
If g(2) f and RH is true, then
(216) ﬂ,f(x) — dl,f-’E + d;‘,fxl/3 + O(x18/55+5).

2.2. On F ¢(z+y) — F ().

It is also interesting to study the above problem in the short interval (z,z + ]
with y = o(z). In the case of a(n), it was first proved by Ivi¢[8] that

(2.17) Fio(z +y) — Fie(z) = digy + o(y)

holds for y > x5%8Y/1744]og z uniformly for I > 1. Kritzel[11] proved that (2.17)
is true for y > x!1/42*¢ and even for y > z%°*¢ if | = +1(mod 6). Li[15] proved
that (2.17) is true for y > z'/5*¢ uniformly for I > 1.

In the general case , we have the following Theorem.
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Theorem 2.5. The asymptotic formula
(2.18) Fig(z +y) — Fir(z) = disy + o(y)
holds for y > gl/(@k+1)+e,

3. Preliminary definitions for the case g(1) > 1

In this section , we shall make some further definitions for the use of the case
g(1) > 1. Suppose 7 is a subset of N such that

ko = minn > 2, T # koN.
neT

It is easy to prove the following Lemma 3.1.
Lemma 3.1 There exist integers kg = ap < a; < --- < a; < b, d > 1 such that

{ao, a1, -+ ,a:} C T and for |u| < 1 we have
(3.1) 14+ ) = (1— vy’ x (14 O(|u|*™)).
neT H;'=0(1 — u%)

Remark. d is always 1 or 2.
Definition 3.1. Define

S(T) :={ao, a1, ,at}, Kk(T):=b, E(T):=d.

Now we define the primitive generating subset of 7. We suppose 7 \ kN # 0.
Write 7 = Ty|J7;, where

To={n€T :kn}, T1i={neT:k In}

Then 77 # 0.

A subset Tp of T is said the primitive generating subset if it satisfies the
following conditions:

(1). Every element of 7; can be written as a linear combination of elements of
Tp with non-negative integral coefficients;

(2). For any A C Tp, A # Tp, there exists an n € T; such that n can’t
be written as a linear combination of elements of A with non-negative integral
coefficients.

If ko|T, then define Tp = {ko}.

We also need estimates of multi-dimensional divisor functions. Suppose S =
{u1, u2, -+, u;} is a finite subset of N with u; < uy < -+ < u;. The multi-
demensional divisor function d(n;S) is defined by

d(n; S) = d(uy,ug, -+ ,us;n) = Z 1.

1., %t
Ty

Write _
D(z;8) =Y _d(n;S) = 3 ¢;z7 + A(; 9).

n<z JES
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Now we define §(S) to be a real number such that 0 < §(S) < 1/u; and the
estimate

Az; S) < z°)

holds, and define §*(S) to be a real number such that 0 < §*(S) < 1/u; and the
estimate
> d(n;8) = Cuyya (1 +0(1)) + O(z” )
z<n<lz+y
holds. Obviously, §*(S) < 6(95).

It is important to get good values for é(S), which can be done by the theory
of exponential sums and the theory of the Riemann Zeta-function. The value of
0*(S) is connected with many short interval problems. For example, the value of
6*({1,k})(k > 2) is connected with the distribution of k—free numbers in short
intervals, the value of 6*({2,3}) is connected with the distribution of square-
full numbers in short intervals, the value of 6*({3,4,5}) is connected with the
distribution of cube-full numbers in short intervals,etc.

For more details about multi-demensional divisor problems, see Kratzel[11].

4. The case g(1) > 1

4.1. On Fi,f($).

Now we consider the case g(1) > 1. Let ko denote the smallest element in the set
Go = {n € N: g(n) = 1} if it is not empty; otherwise define kg = co. Let r denote
the smallest j such that g(j) > 1 and g(5)|I. Suppose I = g¢(r)l',c > 0,g(r) JI’.

Theorem 4.1. If r < ko, then for any N > 1 we have

(4.1)

N
Fis(z) = 2'/" > Qj(loglogz)log™ z + O (:1:1/’ (logz) N~ (loglog x)c”l) :

J=1

where @;(u) is a polynomial in u of degree not exceeding ¢ — 1.
Now suppose I =1 or | > 2 with 7 > k. We have the following Theorem 4.2.
Theorem 4.2.
(I) Suppose I =1 or | > 2 with 7 > k(Gp).
If 6(S(Go))k(Go) > 1, then we have

(4.2) Fsz)= Y ajz'i+0(E0),
j€8(Go)
If 6(S(Go))k(Go) < 1, then we have
(43) Ef(m Z Cz,JIIIl/J +0( 1/k(go)e A"/(Z))
j€S(Go)

(IT) Suppose ko < r < k(Gp) and let S; denote the set of elements in S(Go) less
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If §(S1)r > 1, then
(44) -Fl sl Z CZ’J.’L'I/J + O(x5(5'1))
JES1
If 6(S1)r < 1, then for any fixed integer NV > 1 we have

(4.5) Fiz)= ) ajz el +x1/TZQJ (loglog z)log™7~% g
Jj€S Jj=1

+0 (xl/"(log z)~N-1"%(Jog log a:)c“l) ,
where Q;(u) is a polynomial in u of degree not exceeding ¢ — 1, and

0, if r < k(gg),
Sp = { 1, if r = k(go), E(go) = 1,
2, if r= k(go), E(go) = 2.

For the function f(n) = d(n), we have the following Corollary 4.1.
Corollary 4.1. Suppose [ > 2. Let p denote the smallest prime divisor of !
and write | = pl’,c¢ > 0,p JI'. Then for any fixed integer N > 1, we have

(4.6)

Fia(z) = 77 Y Q;(loglog z) log ™ z + O (277 (log z) ™V~ (log log z)°*) ,

=1

where Q;(u) is a polynomial in u of degree not exceeding ¢ — 1.
Corollary 4.2. Suppose 1y > 3 is a fixed integer such that

{2: 3, e ,7’0} - gOag(l) > 1a9(7'0 + 1) > 1.
If r = 1, then for any fixed integer N > 1, we have
(4.7)
N .
Fs(z) =z Qj(loglogz)log™ z+ O (m(log )"V "1(loglog x)c‘l) :
j=1
where Q;(u) is a polynomial in u of degree not exceeding ¢ — 1.

If r =19+ 1(ro = 3,4, 5), then for any fixed integer N > 1, we have
(4.8) Fis(z) = Cz() 1/2 +C(3) 1/3

. |
+5 3 Qy1 (log log z) log 7 2 + O (5757 (1og )™~ loglog 2)°™*)
Jj=1

where @, ¢(u) is a polynomial in u of degree not exceeding ¢ — 1, and

L[ L ifro=3,4,
0= 2, if’l‘0=5.
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Ifr > 7o+ 1(ro = 3,4,5) or r > 19+ 1(ro > 6), then

(4.9) Fi(z) = Cz(z’f)xl/z + C(3) 13 4 Ozt e 4@,
where
4:, if To = 3,
t1 =< 5, ifrg=4,
6, if To 2 5.

4.2. Fl,f(:c + y) - Fz,f(x).

Now we study the short inteval results . Note that if Fj; # @, then [ is
factorizable on g(N\ Go). If | has a factorization [ = g®(r1)---g%(re), then let
G = {r1, -+ ,7e}. And we define

G* = {G|l has a factorization on g(G)}.
Let Gy, -+, Gy denote all elements of G* and define
T,=6UGG=1,--,h)
If koN is not a subset of Gy, then we define k; > 2 to be an integer such that
{ko,2ko, - -+, (kx — 1)ko} C Go, kiko & Go;

If kgN C Gy, then define k; = oo.
For [ = 1, we have the following Theorem 4.3.
Theorem 4.3. Suppose kg < co. If

. xk%; +(2k1+1)ko +e if kolgo,
= m—%—mw(m' "'(g“’))*s, if ko fGo,
then
(4.10) Fii(z +vy) — Fii(z) = coyz'/* (14 0(1)),

where ¢y > 0 is some positive constant.
Now suppose ! > 2 and we have the following Theorem 4.4.
Theorem 4.4.
If r = 1, then for y > 27/12*¢ we have

(4.11)
Fis(z +y) — F1(z) = coy(loglog z)° " log ™ z(1 + o(1)),

where ¢ is a constant.
If 1 <7 < ko, then for

y >z =1y max( £z.6* (Tip),+ 8% (Thp) ) +€

we have
(4.12)

Fii(z+y) — Fysz)= coyz+ " (loglog ) log ™! 2(1 4 o(1)).
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If » > kg, then for

y > xﬁ%;i+max(m’5*(ﬂp)r"ﬁ*('fhp)) +e
we have
(4.13) Fop(z +y) — Fi(z) = cro syz 71 (1 + 0(1)).

Taking f(n) = d(n), we get
Corollary 4.3.
(1) Suppose 2|l, then the asymptotic formula
(414)  Fu(z+y) - Fia(z) = coy(loglogz) log™ z(1 + (1))

holds for y > z7/12*e,
2) Suppose [ = pf'---pS with 2 < p; < -+ < p,. Let » = p; — 1, then the
e
asymptotic formula

(4.15) ,
Fla(z+y) — Frq(z) = coy:c%"l(log logz)*tlog™tz(1 + o(1))
holds for y > z"+ *mex(76W)+e where ‘
5(l) = z=I};11?-‘~}1{1d 6*({77,1 - 1, e, Ng — l}p)

d>2,n;>1

Corollary 4.4. Suppose ro > 3 is a fixed integer and {2,3,--- ,75} C Go.
If r = 1, then for y > z7/1%*¢ the asymptotic formula

(4.16) Fs(z+y) — Fi5(z) = coy(loglog z)** log ™! z(1 + o(1))
holds. |

If r £ 1, then
(4.17) Fs(@ +y) = Fis(z) = coyz™/*(1 + o(1))

holds for y > z5/8+¢,
Corollary 4.5. Suppose ro > 4 is a fixed integer such that

{3,4,---,10} C Go,9(1) > 1,9(2) > 1,g(ro+1) > 1.

If r=1,2, then for y > x%l’fT;‘r*e, we have

(4.18)
Fif(z +3) — Fig(z) = coy(log log 2)° log ™ (1 + o(1).

Suppose 1o = 4. If I = 1 or 7 > 4, then for y > 2?/3+t1/11+¢ e have
(4.19) Fis(z +y) = Fi5(z) = coyz™*(1+ o(1)).

Suppose 19 > 5. If [ = 1 or 7 > 1y, then for y > g2/3+19/159+¢ e have
(4.20) Fi(z+y) — F () = coyz™*(1 + 0(1)).
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